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Abstract

Motivated by the pricing of lookback options in exponential Lévy models, we study
the difference between the continuous and discrete supremums of Lévy processes. In
particular, we extend the results of Broadie, Glasserman and Kou (1999) to jump diffusion
models. We also derive bounds for general exponential Lévy models.
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1. Introduction

The payoff of a lookback option typically depends on the maximum or the minimum of the
underlying stock price. The maximum can be evaluated in continuous or discrete time depending
on the contract. In the Black–Scholes setting, Broadie et al. [4], [5] derived a number of results
relating discrete and continuous path-dependent options (see also [10] for results on diffusion
processes). In particular, they obtained continuity correction formulae for lookback, barrier,
and hindsight options. The purpose of this paper is to establish similar results for exponential
Lévy models. We will focus on lookback or hindsight options, leaving the treatment of barrier
options to another paper (see [8] and also [9]).

Our results are based on the analysis of the difference between the discrete and continuous
maximums of a Lévy process. In the case of a Lévy process with finite activity and a nonzero
Brownian part, we extend (see Theorem 5) the theorem of Asmussen et al. [2] which is the key
to the continuity correction formulae for lookback options in Broadie et al. [5]. This allows us
to extend these formulae to jump diffusion models. We also establish estimates for the L1-norm
of the difference between the continuous and discrete maximums of a general Lévy process.
These estimates are based on Spitzer’s identity, which relates the expectation of the supremum
of sums of independent and identically distributed (i.i.d.) random variables to a weighted sum
of the expectations of the positive parts of the partial sums. In the case of Lévy processes with
finite activity, we derive an expansion up to order o(1/n), where n is the number of dates in
the discrete supremum; see Theorem 1. In the case of infinite activity, we have precise upper
bounds (see Theorem 2). We also derive an expansion in the case of Lévy processes with finite
variation (see Theorem 3).

The paper is organized as follows. In Section 2 we recall some basic facts about real Lévy
processes. In Section 3 we state Spitzer’s identity for Lévy processes and use it to analyse the
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Connecting discrete and continuous lookback or hindsight options 1137

expectation of the difference between the continuous and discrete maximums of a general Lévy
process. Section 4 is devoted to the extension of the theorem of Asmussen et al. [2]. The last
two sections are devoted to financial applications. In Section 5 we derive continuity corrections
for lookback options in jump diffusion models, and in Section 6 we give upper bounds for the
case of general exponential Lévy models.

2. Preliminaries

A real Lévy process X is characterized by its generating triplet (γ, σ 2, ν), where (γ, σ ) ∈
R × R

+ and ν is a Radon measure on R \ {0} satisfying∫
R

(1 ∧ x2)ν(dx) < ∞.

By the Lévy–Itô decomposition, X can be written in the form

Xt = γ t + σBt + Xl
t + lim

ε↓0
X̃ε

t , (1)

with

Xl
t =

∫
|x|>1, s∈[0,t]

xJX(dx × ds) ≡
|�Xs |≥1∑
0≤s≤t

�Xs,

X̃ε
t =

∫
ε≤|x|≤1, s∈[0,t]

xJ̃X(dx × ds) ≡
ε≤|�Xs |<1∑

0≤s≤t

�Xs − t

∫
ε≤|x|≤1

xν(dx).

Here J is a Poisson measure on R × [0, ∞) with intensity ν(dx) dt , J̃X(dx × ds) = JX(dx ×
ds) − ν(dx) ds, and B is a standard Brownian motion. We also have the Lévy–Khinchine
formula for the characteristic function of Xt . Namely,

E eiuXt = etϕ(u), u ∈ R,

where ϕ is given by

ϕ(u) = iγ u − σ 2u2

2
+

∫
R

(eiux − 1 − iux 1{|x|≤1})ν(dx).

We say that X has finite activity if the Lévy measure ν is finite (ν(R) < ∞). We then have

Xt = γ0t + σBt +
Nt∑
i=1

Yi, (2)

where N is a Poisson process with rate λ = ν(R), (Yi)i≥1 are i.i.d. random variables with
common distribution ν(dx)/ν(R), and

γ0 = γ −
∫

|x|≤1
xν(dx). (3)

This is a jump diffusion process. If the jump part of X has finite variation (which is equivalent
to

∫
|x|≤1 |x|ν(dx) < ∞) then

Xt = γ0t + σBt +
∫

x∈R, s∈[0,t]
xJX(dx × ds), (4)

with γ0 given by (3). Note that X is a finite variation Lévy process if and only if σ = 0 and∫
|x|≤1 |x|ν(dx) < ∞. Moreover, X is integrable if and only if

∫
|x|>1 |x|ν(dx) < ∞.
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3. Spitzer’s identity and applications

In this section we will first state Spitzer’s identity for Lévy processes (we refer the reader
to [1, Proposition 4.5, p. 177] for the classical form of Spitzer’s identity). Then we will use
this result to derive expansions for the error between the continuous and discrete supremums
of Lévy processes.

Definition 1. We define

MX
t = sup

0≤s≤t

Xs, M
X,n
t = max

0≤k≤n
Xkt/n.

When there is no ambiguity, we can remove the superscript X.

Remark 1. Note that Mt is integrable for all t > 0 if and only if
∫
x>1 xν(dx) is finite. We

also have, for all α > 0, E eαMt < ∞ if and only if
∫
x>1 eαxν(dx) is finite, as can be seen by

classical arguments (see [12, Section 25]).

In the setting of Lévy processes, we have the following version of Spitzer’s identity.

Proposition 1. If X is a Lévy process with generating triplet (γ, σ 2, ν) satisfying∫
x>1

xν(dx) < ∞

then

E Mn
t =

n∑
k=1

E X+
kt/n

k
, E Mt =

∫ t

0

E X+
s

s
ds.

For the proof of the above result, we need some estimates for E Mt with respect to t .

Proposition 2. Let X be a Lévy process with generating triplet (γ, σ 2, ν) satisfying∫
x>1

xν(dx) < ∞.

Then

E Mt ≤
(

γ + +
∫

x>1
xν(dx)

)
t +

(
σ

√
2

π
+ 2

√∫
|x|≤1

x2ν(dx)

)√
t .

If, in addition,
∫
|x|≤1 |x|ν(dx) < ∞ then

E Mt ≤
(

γ +
0 +

∫
R+

xν(dx)

)
t + σ

√
2

π

√
t .

Proof. We will first prove the second result of the proposition. We have (see (4))

sup
0≤s≤t

Xs = sup
0≤s≤t

(
γ0s + σBs +

∫
x∈R, τ∈[0,s]

xJX(dx × dτ)

)
≤ γ +

0 t + σ sup
0≤s≤t

Bs +
∫

x∈R+, τ∈[0,t]
xJX(dx × dτ).

So

E sup
0≤s≤t

Xs ≤ γ +
0 t + σ E sup

0≤s≤t

Bs + t

∫
R+

xν(dx).
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By the reflection theorem we know that sup0≤s≤t Bs has the same distribution as |Bt |. Therefore,

E sup
0≤s≤t

Bs = E |Bt | =
√

2

π

√
t .

Hence,

E
(

sup
0≤s≤t

Xs

)
≤

(
γ +

0 +
∫

R+
xν(dx)

)
t + σ

√
2

π

√
t .

Consider now the general case. We define the process (Rt )t≥0 by

Rt = lim
ε↓0

X̃ε
t = lim

ε↓0

∫
ε≤|x|≤1, s∈[0,t]

xJ̃X(dx × ds).

We have, using (1),

E
(

sup
0≤s≤t

Xs

)
≤ E sup

0≤s≤t

(γ s + σBs + Xl
s) + E sup

0≤s≤t

(Rs).

The process (γ s + σBs + Xl
s)t≥0 has finite activity and the support of its Lévy measure does

not intersect [−1, 1], so

E sup
0≤s≤t

(γ s + σBs + Xl
s) ≤

(
γ + +

∫
x>1

xν(dx)

)
t + σ

√
2

π

√
t .

Besides, using the Cauchy–Schwarz and Doob inequalities (note that R is a martingale), we
obtain

E sup
0≤s≤t

(Rs) ≤ 2

√
t

∫
|x|≤1

x2ν(dx).

Hence,

E
(

sup
0≤s≤t

Xs

)
≤

(
γ + +

∫
x>1

xν(dx)

)
t +

(
σ

√
2

π
+ 2

√∫
|x|≤1

x2ν(dx)

)√
t .

Proof of Proposition 1. By Proposition 2, there exist c1, c2 > 0 such that, for all t ≥ 0,

E sup
0≤s≤t

Xs ≤ c1t + c2
√

t .

Thus,
E X+

s

s
≤ E sup0≤τ≤s Xτ

s
≤ c1 + c2√

s
.

Since s → 1/
√

s is integrable on [0, t], so is s → E X+
s /s. For s ∈ (0, t], define

f (s) = E X+
s

s
, fn(s) =

n∑
k=1

1((k−1)t/n,kt/n](s)f
(

kt

n

)
,

so that
n∑

k=1

E X+
kt/n

k
= t

n

n∑
k=1

f

(
kt

n

)
=

∫ t

0
fn(s) ds.
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We can prove that f is continuous on (0, t]. We deduce that limn→+∞ fn = f almost
everywhere (a.e.). We also have, for any s ∈ (0, t],

|fn(s)| ≤
n∑

k=1

1((k−1)t/n,kt/n](s)
∣∣∣∣f (

kt

n

)∣∣∣∣
≤

n∑
k=1

1((k−1)t/n,kt/n](s)
(

c1 + c2√
kt/n

)
≤ c1 + c2√

s
.

So by dominated convergence we have limn→+∞
∑n

k=1 E X+
kt/n/k = ∫ t

0 (E X+
s /s) ds. On the

other hand,

max
k=0,...,n

Xkt/n = max(0, Xt/n, X2t/n, . . . , Xt ) = max(X+
t/n, X

+
2t/n, . . . , X

+
t ).

Note that, for k ≥ 1, we have Xkt/n = ∑k
j=1(Xjt/n − X(j−1)t/n) and the random variables

(Xjt/n − X(j−1)t/n)j≥1 are i.i.d. So by Spitzer’s identity we have

E max
k=0,...,n

Xkt/n =
n∑

k=1

1

k
E X+

kt/n.

The sequence (maxk=0,...,n Xkt/n)n≥0 is dominated by sup0≤s≤t Xs , so by using the dominated
convergence theorem we obtain

E sup
0≤s≤t

Xs = E lim
n→+∞ max

k=0,...,n
Xkt/n

= lim
n→+∞ E max

k=0,...,n
Xkt/n

= lim
n→+∞

n∑
k=1

1

k
E X+

kt/n

=
∫ t

0

E X+
s

s
ds.

3.1. Case of finite activity Lévy processes

The use of Proposition 1 in the finite activity case leads to the following theorem.

Theorem 1. Let X be a finite activity Lévy process satisfying
∫
x>1 xν(dx) < ∞, t > 0, and

n ∈ N.

1. If σ > 0, we have, for n → +∞,

E(Mt − Mn
t ) = 1

2n

(
γ0t

2
+ λt E Y+

1 − σ
√

t E φ

(
γ0

σ

√
t +

∑Nt

i=1 Yi

σ
√

t

))

− 1

2n
E

(
γ0t +

Nt∑
i=1

Yi

)
�

(
γ0

σ

√
t +

∑Nt

i=1 Yi

σ
√

t

)

− σ
√

tζ(1/2)√
2πn

+ o

(
1

n

)
.
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Here, ζ is the Riemann zeta function, and φ and � are the probability density function
and the cumulative distribution function of the standard normal distribution.

2. If σ = 0 then s → E X+
s /s is absolutely continuous on [0, t] and we have

E(Mt − Mn
t ) = 1

2n
(γ +

0 t + λt E Y+
1 − E X+

t ) + o

(
1

n

)
when n → +∞.

Recall that in the case of Brownian motion, Broadie et al. [5] proved (cf. Lemma 3) a result
similar to the first point of the above theorem. In the case σ = 0, if Y1 has a continuous density
function or γ0 = 0, the error o(1/n) is in fact O(1/n2) (see [7]). To prove Theorem 1, we need
the following more or less elementary lemmas.

Lemma 1. Let f ∈ C2[0, t]. Then∫ t

0

1√
x

f (
√

x) dx = t

n

n∑
k=1

1√
kt/n

f

(√
kt

n

)
−

√
tζ(1/2)f (0)√

n

−
√

tf (
√

t) − tf ′(0)

2n
+ o

(
1

n

)
.

Lemma 2. Let f be an absolutely continuous function on [0, t]. Then we have∫ t

0
f (s) ds − t

n

n∑
k=1

f

(
kt

n

)
= t

2n
(f (0) − f (t)) + o

(
1

n

)
.

The proof of the previous lemma is based on the following result.

Lemma 3. Let h ∈ L1([0, t]). We define the sequence (Im(h))m≥1 by

Im(h) =
m∑

k=1

∫ kt/m

(k−1)t/m

h(u)

(
u − (k − 1)

t

m

)
du.

Then we have

lim
m→ +∞ mIm(h) = t

2

∫ t

0
h(u) du.

Proof. Consider first the case where h ∈ C([0, t]). By the variable substitutions v =
u − (k − 1)t/m, then w = mv, we obtain

Im(h) =
m∑

k=1

∫ t/m

0
h

(
v + (k − 1)

t

m

)
v dv

=
m∑

k=1

∫ t

0
h

(
w

m
+ (k − 1)

t

m

)
w

m

dw

m

= 1

m

∫ t

0

1

m

m∑
k=1

h

(
w

m
+ (k − 1)

t

m

)
w dw.
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But h is continuous and, for w ∈ [0, t], we have w/m + (k − 1)t/m ∈ [(k − 1)t/m, kt/m], so

lim
m→+∞

t

m

m∑
k=1

h

(
w

m
+ (k − 1)

t

m

)
=

∫ t

0
h(s) ds.

Hence,

lim
m→+∞ mIm(h) =

∫ t

0

(
1

t

∫ t

0
h(s) ds

)
w dw = t

2

∫ t

0
h(s) ds.

Consider now the case where h is integrable on [0, t]. Then there exists a sequence of functions
(hn)n≥0 in C([0, t]) such that

lim
n→+∞

∫ t

0
|h(u) − hn(u)| du = 0.

So we have

un
m :=

∣∣∣∣mIm(hn) − m

m∑
k=1

∫ kt/m

(k−1)t/m

h(u)

(
u − (k − 1)

t

m

)
du

∣∣∣∣
=

∣∣∣∣m m∑
k=1

∫ kt/m

(k−1)t/m

(hn(u) − h(u))

(
u − (k − 1)

t

m

)
du

∣∣∣∣
≤ m

m∑
k=1

∫ kt/m

(k−1)t/m

|hn(u) − h(u)|
∣∣∣∣u − (k − 1)

t

m

∣∣∣∣ du

≤ t

m∑
k=1

∫ kt/m

(k−1)t/m

|hn(u) − h(u)| du

≤ t

∫ t

0
|hn(u) − h(u)| du.

The convergence (with respect to m) of mIm(hn) is uniform. Hence, by the limits inversion
theorem,

lim
m→+∞ lim

n→+∞ mIm(hn) = lim
n→+∞ lim

m→+∞ mIm(hn)

�⇒ lim
m→+∞ mIm(h) = lim

n→+∞
t

2

∫ t

0
hn(u) du

�⇒ lim
m→+∞ mIm(h) = t

2

∫ t

0
h(u) du.

Proof of Lemma 2. Let h be the a.e. derivative of f . We have∫ t

0
f (s) ds − t

n

n∑
k=1

f

(
kt

n

)
=

n∑
k=1

∫ kt/n

(k−1)t/n

(
f (s) − f

(
kt

n

))
ds

= −
n∑

k=1

∫ kt/n

(k−1)t/n

∫ kt/n

s

h(u) du ds

= −
n∑

k=1

∫ kt/n

(k−1)t/n

∫ u

(k−1)t/n

h(u) ds du (by Fubini).
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Thus, ∫ t

0
f (s) ds − t

n

n∑
k=1

f

(
kt

n

)
= −

n∑
k=1

∫ kt/n

(k−1)t/n

h(u)

(
u − (k − 1)

t

n

)
du

= − t

2n

∫ t

0
h(u) du + o

(
1

n

)
(by Lemma 3)

= − t

2n
(f (t) − f (0)) + o

(
1

n

)
= t

2n
(f (0) − f (t)) + o

(
1

n

)
.

Proof of Lemma 1. We consider first the case t = 1. The case t �= 1 will be deduced by a
variable substitution. We have

1√
x

f (
√

x) = f (0)√
x

+ f (
√

x) − f (0)√
x

.

Set

g(x) = f (
√

x) − f (0)√
x

.

The function g can be extended to a continuous function on [0, 1], and limx→0 g(x) = f ′(0).
Furthermore, g is differentiable on (0, 1] and

g′(x) = f (0) − f (
√

x) + √
xf ′(

√
x)

2x3/2 .

The function g′ is integrable on [0, 1], so g is absolutely continuous. Thus,

εn(f ) =
∫ 1

0

f (0)√
x

dx +
∫ 1

0
g(x) dx − 1

n

n∑
k=1

f (0)√
k/n

− 1

n

n∑
k=1

g

(
k

n

)

= f (0)

(∫ 1

0

1√
x

dx − 1

n

n∑
k=1

1√
k/n

)
+

(∫ 1

0
g(x) dx − 1

n

n∑
k=1

g

(
k

n

))
;

from [11] (see page 538) and using Lemma 2, we obtain

εn(f ) = f (0)

(
−ζ(1/2)√

n
− 1

2n
+ O

(
1

n2

))
+ g(0)

2n
− g(1)

2n
+ o

(
1

n

)
= −ζ(1/2)√

n
f (0) − f (0)

2n
− f (1) − f ′(0) − f (0)

2n
+ o

(
1

n

)
= −ζ(1/2)f (0)√

n
− f (1) − f ′(0)

2n
+ o

(
1

n

)
.

Proof of Theorem 1. We know from Proposition 1 that

E
(

sup
0≤s≤t

Xs − max
k=0,...,n

Xkt/n

)
=

∫ t

0

E X+
s

s
ds − t

n

n∑
k=1

E X+
kt/n

kt/n
.
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So we need to study the smoothness of the function s �→ E X+
s /s, and conclude with Lemma 1

and Lemma 2.
Case 1: σ > 0 and E Y+

1 < ∞. Let U be a normal random variable with mean γ and
variance σ 2. By an easy computation we obtain

E U+ = σφ

(
γ

σ

)
+ γ�

(
γ

σ

)
.

So, for any s > 0, we have, by conditioning with respect to the jump part of the process X,

E
X+

s

s
= E

σ√
s

φ

(
γ0

σ

√
s +

∑Ns

i=1 Yi

σ
√

s

)
+ E

(
γ0 +

∑Ns

i=1 Yi

s

)
�

(
γ0

σ

√
s +

∑Ns

i=1 Yi

σ
√

s

)
.

Let f and g be the functions defined by

f (s) = E φ

(
γ0

σ
s +

∑N
s2

i=1 Yi

σ s

)
, g(s) = E

(
γ0

σ
s +

∑N
s2

i=1 Yi

σ s

)
�

(
γ0

σ
s +

∑N
s2

i=1 Yi

σ s

)
,

so that

E
X+

s

s
= σ√

s
f (

√
s) + σ√

s
g(

√
s).

If f and g can be extended as C2 functions on [0, t] then, using Lemma 1, we obtain the first
part of the theorem. By [6, Proposition 9.5] we have

f (s) = E s2N1 e−λ(s2−1)φ

(
γ0

σ
s +

∑N1
i=1 Yi

σ s

)
.

So, the function f has the same regularity as f̃ defined by

f̃ (s) = E s2N1φ

(
µs +

∑N1
i=1 Yi

σ s

)
,

where µ = γ0/σ . For x ∈ R, we define the function

s �→ h(s, x) = φ

(
µs + x

s

)
.

We then have

f̃ (s) = E s2N1h

(
s,

∑N1
i=1 Yi

σ

)
.

Note that

0 ≤ h(s, x) ≤ 1√
2π

,

and

h(s, x) = 1√
2π

exp

(
−1

2

(
µs + x

s

)2)
= 1√

2π
exp

(
−µ2s2

2

)
exp

(
−µx − x2

2s2

)
.
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Using the inequality −µx ≤ µ2s2 + x2/4s2, we obtain

h(s, x) ≤ 1√
2π

(eµ2s2/2e−x2/4s2 ∧ 1). (5)

Moreover, we have
∂

∂s
h(s, x) =

(
x2

s3 − µ2s

)
h(s, x)

and

∂2

∂s2 h(s, x) =
(

−3x2

s4 − µ2
)

φ

(
µs + x

s

)
+

(
x2

s3 − µ2s

)2

φ

(
µ

√
s + x√

s

)
.

Using (5), we obtain∣∣∣∣ ∂

∂s
h(s, x)

∣∣∣∣ ≤ µ2s√
2π

+ x2

s3
√

2π
eµ2s2/2e−x2/4s2 ≤ µ2s√

2π
+ C1 1{x �=0}

s
eµ2s2/2,

where C1 = supy>0(y
2e−y2/4/

√
2π). Using (5) again and the fact that (x2/s3 − µ2s)2 ≤

2(x4/s6 + µ4s2), we obtain∣∣∣∣ ∂2

∂s2 h(s, x)

∣∣∣∣ ≤ (µ2 + 2µ4s2)h(s, x) +
(

3x2

s4 + 2
x4

s6

)
h(s, x)

≤ µ2 + 2µ4s2

√
2π

+ C2 1{x �=0}
s2 eµ2s2/2,

where C2 = supy>0((3y2 + 2y4)e−y2/4/
√

2π). Hence,

∂

∂s

(
s2N1h

(
s,

∑N1
i=1 Yi

σ

))
= 2N1s

2N1−1h

(
s,

∑N1
i=1 Yi

σ

)
+ s2N1

∂

∂s
h

(
s,

∑N1
i=1 Yi

σ

)
.

Thus,∣∣∣∣ ∂

∂s

(
s2N1h

(
s,

∑N1
i=1 Yi

σ

))∣∣∣∣ ≤ 2N1s
2N1−1

√
2π

+ µ2s2N1−1

√
2π

+ C1 1{N1>0} s2N1−1eµ2s2/2.

We deduce that f̃ is continuously differentiable, and

f̃ ′(s) = E

(
2N1s

2N1−1h

(
s,

∑N1
i=1 Yi

σ

)
+ s2N1

∂

∂s
h

(
s,

∑N1
i=1 Yi

σ

))
.

Similarly,

∂2

∂s2

(
s2N1h

(
s,

∑N1
i=1 Yi

σ

))
= 2N1(2N1 − 1)s2N1−2h

(
s,

∑N1
i=1 Yi

σ

)
+ 4N1s

2N1−1 ∂

∂s
h

(
s,

∑N1
i=1 Yi

σ

)
+ s2N1

∂2

∂s2 h

(
s,

∑N1
i=1 Yi

σ

)
.
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But ∣∣∣∣2N1(2N1 − 1)s2N1−2h

(
s,

∑N1
i=1 Yi

σ

)∣∣∣∣ ≤ 2N1(2N1 − 1)s2N1−2

√
2π

,∣∣∣∣42N1s
2N1−1 ∂

∂s

(
s,

∑N1
i=1 Yi

σ

)∣∣∣∣ ≤ 4N1(2N1 − 1)sN1

√
2π

+ 4N1(2N1 − 1)s2N1−2C1 1{N1>0} eµ2s2/2,∣∣∣∣s2N1
∂2

∂s2 h

(
s,

∑N1
i=1 Yi

σ

)∣∣∣∣ ≤ µ2 + 2µ4s2

√
2π

s2N1 + C2 1{N1>0} s2N1−2eµ2s2/2.

We deduce that f̃ is twice differentiable on [0, t] and

f̃ ′′(s) = E

(
2N1(2N1 − 1)s2N1−2h

(
s,

∑N1
i=1 Yi

σ

)
+ 4N1s

2N1−1 ∂

∂s
h

(
s,

∑N1
i=1 Yi

σ

))
+ E

(
s2N1

∂2

∂s2 h

(
s,

∑N1
i=1 Yi

σ

))
.

Hence, f is in C2[0, t], and we verify that f (0) = 1/
√

2π and f ′(0) = 0. On the other hand,
the function g can be written in the following form (see [6, Proposition 9.5]):

g(s) = E s2N1 e−λ(s2−1)

(
γ0

σ
s +

∑N1
i=1 Yi

σ s

)
�

(
γ0

σ
s +

∑N1
i=1 Yi

σ s

)
.

With the same reasoning we can prove that g is in C2[0, t], and satisfies g(0) = 0 and
g′(0) = λ E Y+

1 /σ + γ0/2σ . This proves the first part of the theorem.
Case 2: σ = 0 and E Y+

1 < ∞. We have

E X+
s

s
= γ +

0 e−λs + e−λs
+∞∑
n=1

λnsn−1

n! E

(
γ0s +

n∑
i=1

Yi

)+
.

Observe that, for any positive integer n, the function s �→ E(γ0s + ∑n
i=1 Yi)

+ is absolutely
continuous. So is s �→ λnsn−1 E(γ0s + ∑n

i=1 Yi)
+/n!. If we call hn its a.e. derivative then,

for any n ≥ 2,

hn(s) = γ0
λnsn−1

n! P

[
γ0s +

n∑
i=1

Yi ≥ 0

]
+ n − 1

n! λnsn−2 E

(
γ0s +

n∑
i=1

Yi

)+
,

so that, for s ∈ [0, t],

|hn(s)| ≤ |γ0|λ
ntn−1

n! + n − 1

n! λntn−2(|γ0|t + n E Y+
1 ).

Hence, the normal convergence of
∑

hn on [0, t], and, thus, the absolute continuity of E X+
s /s
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on [0, t]. So, by Proposition 1 and Lemma 2,

E
(

sup
0≤s≤t

Xs − max
k=0,...,n

Xkt/n

)
=

∫ t

0

E X+
s

s
ds − t

n

n∑
k=1

E X+
kt/n

kt/n

= t

2n

(
lim

s→0+
E X+

s

s
− E X+

t

t

)
+ o

(
1

n

)
= 1

2n
((γ +

0 + λ E Y+
1 )t − E X+

t ) + o

(
1

n

)
= 1

2n
(γ +

0 t + λt E Y+
1 − E X+

t ) + o

(
1

n

)
.

3.2. Case of infinite activity Lévy processes

In the case of Lévy processes with infinite activity, we cannot use (2). So the method used
in Theorem 1 does not work anymore and we must use another approach.

Theorem 2. Let X be an integrable Lévy process with generating triplet (γ, σ 2, ν). Then

1. if σ > 0,

E(Mt − Mn
t ) = O

(
1√
n

)
,

2. if σ = 0,

E(Mt − Mn
t ) = o

(
1√
n

)
,

3. if σ = 0 and
∫
|x|≤1 |x|ν(dx) < ∞,

E(Mt − Mn
t ) = O

(
log(n)

n

)
.

To prove result 2 of Theorem 2, we will use the lemma below.

Lemma 4. Let X be an integrable Lévy process with generating triplet (γ, 0, ν). Then we have

E X+
t = o(

√
t)

when t → 0.

The proof of this lemma is quite standard, and is left to the reader. For more details, see [7].

Proof of Theorem 2. With the notation δ = t/n, we have, using Proposition 1,

E(Mt − Mn
t ) =

∫ t

0

E X+
s

s
ds −

n∑
k=1

E X+
kδ

k

=
n∑

k=1

∫ kδ

(k−1)δ

E X+
s

s
ds −

n∑
k=1

∫ kδ

(k−1)δ

E X+
kδ

kδ
ds

=
∫ δ

0

(
E X+

s

s
− E X+

δ

δ

)
ds +

n∑
k=2

∫ kδ

(k−1)δ

(
E X+

s

s
− E X+

kδ

kδ

)
ds.
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We respectively denote by u(δ) and v(δ) the first and second terms on the right-hand side of
the last equality. We easily deduce from Proposition 2 that, if σ > 0, u(δ) = O(

√
δ) and, if

σ = 0 and
∫
|x|≤1 |x|ν(dx) < ∞, u(δ) = O(δ). We also have

u(δ)√
δ

=
∫ δ

0

E X+
s

s
√

δ
ds − E X+

δ√
δ

=
∫ 1

0

1√
s

E X+
sδ√

sδ
ds − E X+

δ√
δ

,

and we easily deduce from Lemma 4 that, if σ = 0, u(δ) = o(
√

δ).

We now study v(δ). For s ≥ 0, let X̃s = Xs − αs, where α = E X1. Then, X̃ is a martingale
and, for a fixed s ≥ 0, (X̃τ + αs)+τ≥0 is a submartingale, because x → x+ is a convex function.
So, for s ∈ [(k − 1)δ, δ],

E X+
s = E(X̃s + αs)+ ≤ E(X̃kδ + αs)+.

Hence,

v(δ) =
n∑

k=2

∫ kδ

(k−1)δ

(
E X+

s

s
− E X+

kδ

kδ

)
ds

≤
n∑

k=2

∫ kδ

(k−1)δ

(
E(X̃kδ + αs)+

s
− E(X̃kδ + αkδ)+

kδ

)
ds

=
n∑

k=2

∫ kδ

(k−1)δ

E(X̃kδ + αkδ)+
(

1

s
− 1

kδ

)
ds

+
n∑

k=2

∫ kδ

(k−1)δ

E(X̃kδ + αs)+ − E(X̃kδ + αkδ)+

s
ds.

Using the inequality |x+ − y+| ≤ |x − y|, we obtain

v(δ) ≤
n∑

k=2

E X+
kδ

(
log

(
k

k − 1

)
− 1

k

)
+

n∑
k=2

∫ kδ

(k−1)δ

|α|(kδ − s)

s
ds

=
n∑

k=2

E X+
kδ

(
log

(
1 + 1

k − 1

)
− 1

k

)
+

n∑
k=2

∫ kδ

(k−1)δ

|α|
(

kδ

s
− 1

)
ds

≤
n∑

k=2

E X+
kδ

(
1

k − 1
− 1

k

)
+

n∑
k=2

|α|δ
(

k log

(
k

k − 1

)
− 1

)

≤
n∑

k=2

E X+
kδ

1

k(k − 1)
+ |α|δ

n∑
k=2

(
k

k − 1
− 1

)

=
n∑

k=2

E X+
kδ

1

k(k − 1)
+ |α|δ

n∑
k=2

1

k − 1
.

Now, if σ = 0 and
∫
|x|≤1 |x|ν(dx) < ∞, we know from Proposition 2 that E X+

kδ ≤ Ckδ for
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some C > 0, so that

v(δ) ≤ Cδ

n∑
k=2

1

k − 1
+ |α|δ

n∑
k=2

1

k − 1

≤ (Cδ + |α|)(1 + log(n − 1))

= O

(
log(n)

n

)
,

completing the proof of statement 3 of the theorem.
For the other cases, let f (s) = E(X+

s )/
√

s, so that

n∑
k=2

E X+
kδ

1

k(k − 1)
= √

δ

n∑
k=2

f (kδ)
1√

k(k − 1)
.

We know from Proposition 2 that f is bounded on [0, t], so the first statement of Theorem 2
now follows from the convergence of the series

∑
1/k3/2.

In order to prove the second statement (i.e. the case σ = 0), we observe that

n∑
k=2

f (kδ)
1√

k(k − 1)
→ 0 as n → ∞,

as follows easily from lims→0 f (s) = 0 (cf. Lemma 4).

Remark 2. The second result of Theorem 2 is optimal in the following sense: for any ε > 0,
there exists a Lévy process X satisfying σ = 0, such that

lim
n→+∞ n1/2+ε E(Mt − Mn

t ) = +∞.

More precisely, if X is a stable process of order α, with α ∈ (1, 2), we have

lim
n→∞ n1/α E(Mt − Mn

t ) = −t1/αζ

(
1 − 1

α

)
E X+

1 .

The proof can be found in [7].

We extend the results obtained in the previous section for the case of compound Poisson
processes to the case of Lévy processes with infinite activity and finite variation.

Theorem 3. Let X be an integrable Lévy process with generating triplet (γ, 0, ν). Suppose
that

∫
|x|≤1 |x||log(|x|)|ν(dx) < ∞ and ν(R) = +∞. Then

E(Mt − Mn
t ) =

((
γ +

0 +
∫

R

x+ν(dx)

)
t − E X+

t

)
1

2n
+ o

(
1

n

)
.

Lemma 5. If X is a finite variation Lévy process with infinite activity and γ0 �= 0, then∫ t

0
ds

∫ 1

0
du

1

s
|P[Xs ≥ 0] − P[Xsu ≥ 0]| < ∞.
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Proof. We first consider the case γ0 < 0. Recall that, since X has finite variation, we have,
with probability 1, limt→0 Xt/t = γ0; therefore, P(R0 > 0) = 1, where

R0 = inf{t > 0 | Xt > 0}
and

∫ t

0 s−1P(Xs > 0) ds < ∞ (see [12, Section 47], especially Theorem 47.2). Set

I =
∫ t

0
ds

∫ 1

0
du

1

s
|P[Xs ≥ 0] − P[Xsu ≥ 0]|

Note that, since X has infinite activity, we have P[Xs = 0] = 0 for all s > 0 (see [12,
Theorem 27.4]), so that

I ≤
∫ t

0

1

s
P[Xs ≥ 0] ds +

∫ t

0
ds

∫ 1

0
du

1

s
P[Xsu ≥ 0]

=
∫ t

0

1

s
P[Xs > 0] ds +

∫ t

0
ds

∫ 1

0
du

1

s
P[Xsu > 0].

So, we need to prove that
∫ t

0 ds
∫ 1

0 dus−1 P[Xsu > 0] < ∞. We have∫ t

0
ds

∫ 1

0
du

1

s
P[Xsu > 0] =

∫ t

0
ds

∫ s

0
du

1

s2 P[Xu > 0]

=
∫ t

0

1

s2

(∫ s

0
P[Xu > 0] du

)
ds

=
[
−1

s

(∫ s

0
P[Xu > 0] du

)]t

0
+

∫ t

0

1

s
P[Xs > 0] ds.

But, for any s > 0, ∣∣∣∣1

s

(∫ s

0
P[Xu ≥ 0] du

)∣∣∣∣ ≤ 1.

So, again using
∫ t

0 s−1P[Xs > 0] ds < ∞, we conclude that∫ t

0
ds

∫ 1

0
du

1

s
P[Xsu ≥ 0] < ∞.

Consider now γ0 > 0. Let X̃ be the dual process of X (e.g. X̃ = −X). Then γ X̃
0 = −γ0, and

so γ X̃
0 < 0. Thus,

I =
∫ t

0
ds

∫ 1

0
du

1

s
|P[Xs < 0] − P[Xsu < 0]|

=
∫ t

0
ds

∫ 1

0
du

1

s
|P[X̃s ≥ 0] − P[X̃su ≥ 0]|

< ∞.

Proof of Theorem 3. By Proposition 1 we have

E(Mt − Mn
t ) =

∫ t

0

E X+
s

s
ds −

n∑
k=1

E X+
kδ

k
.
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Define

h(s) = E X+
s

s
, s ∈ [0, t].

In order to prove the theorem, we need to show that h is absolutely continuous (cf. Lemma 2).
We will first show that the derivative (in the sense of distributions) of s �→ E X+

s is given by
the function

d

ds
E(Xs)

+ = γ0 P[Xs ≥ 0] +
∫

R

E((Xs + y)+ − (Xs)
+)ν(dy), s ∈ (0, t).

We first consider a continuously differentiable function f with bounded derivative. Since X is
a finite variation process, Itô’s formula reduces to

f (Xs) = f (0) + γ0

∫ s

0
f ′(Xτ ) dτ +

∑
0≤τ≤s

(f (Xτ ) − f (Xτ−)),

so that

E f (Xs) = f (0) + γ0 E
∫ s

0
f ′(Xτ ) dτ + E

∑
0≤τ≤s

(f (Xτ ) − f (Xτ−)).

It follows from the compensation formula (see the preliminaries of [3]) that if

E

(∫ s

0
dτ

∫
R

|f (Xτ + y) − f (Xτ )|ν(dy)

)
< ∞ (6)

then

E
∑

0≤τ≤s

(f (Xτ ) − f (Xτ−)) = E

(∫ s

0
dτ

∫
R

(f (Xτ + y) − f (Xτ ))ν(dy)

)
.

Since f is a Lipschitz function and X is integrable, condition (6) is satisfied and we have

E f (Xs) = f (0) + γ0 E
∫ s

0
f ′(Xτ )dτ + E

(∫ s

0
dτ

∫
R

(f (Xτ + y) − f (Xτ ))ν(dy)

)
= f (0) + E

(
γ0

∫ s

0
f ′(Xτ )dτ +

∫ s

0
dτ

∫
R

(f (Xτ + y) − f (Xτ ))ν(dy)

)
.

Now, for ε > 0, define

fε(x) = x

2
+

√
ε + x2

2
, x ∈ R.

Note that fε is continuously differentiable and

f ′
ε(x) = 1

2
+ x

2
√

ε + x2
, x ∈ R,

so that ‖f ′
ε‖∞ ≤ 1. We can write

E fε(Xs) =
√

ε

2
+ E

(
γ0

∫ s

0
f ′

ε(Xτ ) dτ +
∫ s

0
dτ

∫
R

(fε(Xτ + y) − fε(Xτ ))ν(dy)

)
.

Note that the function fε converges uniformly to x → x+ when ε goes to 0. Also, for any
x �= 0,

lim
ε→0

f ′
ε(x) = 1{x≥0}.
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Moreover, for any τ > 0, P[Xτ �= 0] = 1 (because X has infinite activity), and, for any x ∈ R,

x+ ≤ fε(x) ≤ x

2
+

√
ε + |x|

2
≤ x+ +

√
ε

2
.

By dominated convergence, we obtain

E(Xs)
+ = E

(
γ0

∫ s

0
1{Xτ ≥0} dτ +

∫ s

0
dτ

∫
R

((Xτ + y)+ − (Xτ ))
+ν(dy)

)
= γ0

∫ s

0
P[Xτ ≥ 0] dτ +

∫ s

0
dτ

∫
R

E((Xτ + y)+ − (Xτ )
+)ν(dy).

Hence,
d

ds
E(Xs)

+ = γ0 P[Xs ≥ 0] +
∫

R

E((Xs + y)+ − (Xs)
+)ν(dy).

Now, we have

h(s) −
∫

R

y+ν(dy)

= E(Xs)
+

s
−

∫
R

y+ν(dy)

= 1

s

∫ s

0

(
γ0 P[Xu ≥ 0] +

∫
R

E((Xu + y)+ − X+
u )ν(dy)

)
du −

∫
R

y+ν(dy)

= γ0

s

∫ s

0
P[Xu ≥ 0] du + 1

s

∫ s

0

∫
R

E((Xu + y)+ − X+
u − y+)ν(dy) du.

But
(Xu + y)+ − X+

u − y+ = (Xu + y) 1{Xu+y>0} −Xu 1{Xu>0} −y 1{y>0}
= Xu(1{Xu+y>0} − 1{Xu>0}) + y(1{Xu+y>0} − 1{y>0})
= −|Xu| 1{yXu<0, |y|>|Xu|} −|y| 1{yXu<0, |y|≤|Xu|}
= −|Xu| ∧ |y|1{yXu<0}.

So

h(s) −
∫

R

y+ν(dy) = γ0

s

∫ s

0
P[Xu ≥ 0] du − 1

s

∫ s

0

∫
R

E((|Xu| ∧ |y|) 1{yXu<0})ν(dy) du.

It is now clear that h is continuous on (0, +∞), and that its derivative is given by

h′(s) = us + vs + ws,

where

us = γ0

s
P[Xs ≥ 0] − γ0

s2

∫ s

0
P[Xu ≥ 0] du,

vs = −1

s

∫
R

E(|Xs | ∧ |y| 1{yXs<0})ν(dy),

ws = 1

s2

∫ s

0

∫
R

E(|Xu| ∧ |y| 1{yXu<0})ν(dy) du.
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We will now show that ∫ t

0
|h′(s)| ds < ∞.

We have us = 0 if γ0 = 0, and, for γ0 �= 0, we can write

|us | =
∣∣∣∣γ0

s
P[Xs ≥ 0] − γ0

s2

∫ s

0
P[Xu ≥ 0] du

∣∣∣∣
≤ |γ0|

s

∫ 1

0
|P[Xs ≥ 0] − P[Xsu ≥ 0]| du.

Hence, by Lemma 5, ∫ t

0
|us | ds < ∞.

Besides, using the concavity of the function x ∈ R
+ → x ∧ |y| and Proposition 2, we obtain

|vs | ≤ 1

s

∫
R

E(|Xs | ∧ |y|) 1{yXs<0} ν(dy)

≤ 1

s

∫
R

E(|Xs | ∧ |y|)ν(dy)

≤ 1

s

∫
R

(E |Xs |) ∧ |y|ν(dy)

≤ 1

s

∫
R

(cs) ∧ |y|ν(dy),

where the positive constant c comes from Proposition 2. Now, let v̂s = (1/s)
∫

R
(cs) ∧ |y|ν(dy).

Using Fubini’s theorem, we have∫ t

0
|v̂s | ds =

∫
R

ν(dy)

∫ t

0

ds

s
(cs) ∧ |y|

≤ c

∫
R

∫ |y|/c

0
dsν(dy) +

∫
R

∫ t

|y|/c
1

s
|y| 1{|y|≤ct} dsν(dy)

=
∫

R

|y|ν(dy) +
∫

R

log

(
ct

|y|
)

|y| 1{|y|≤ct} ν(dy)

=
∫

R

|y|ν(dy) +
∫

|y|≤ct

log

(
ct

|y|
)

|y|ν(dy)

< ∞.

Note that the last integral is finite, owing to the assumption on the Lévy measure. For the term
ws , we have

|ws | ≤ 1

s2

∫ s

0

∫
R

(cu) ∧ |y|ν(dy) du

≤ 1

s2

∫ s

0

∫
R

(cs) ∧ |y|ν(dy) du

= 1

s

∫
R

(cs) ∧ |y|ν(dy)

= v̂s .
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We deduce that ∫ t

0
|ws | ds < ∞.

Therefore, we have proved that h is absolutely continuous. Using Lemma 2 and Proposition 1,
we complete the proof.

4. Extension of the Asmussen–Glynn–Pitman theorem

The continuity correction results of Broadie et al. [5] for lookback options within the Black–
Scholes model are based on a result due to Asmussen et al. [2] about the weak convergence of
the normalized difference between the continuous and discrete maximums of Brownian motion
(see [2, Theorem 1]). In this section we extend this result to Lévy processes with finite activity
and a nontrivial Brownian component, i.e. a Lévy process with generating triplet (γ, σ 2, ν),
where σ 2 > 0 and ν is a finite measure.

The following statement is a reformulation of the Asmussen–Glynn–Pitman theorem. It can
be deduced from a careful reading of the proof of Theorem 1 of [2] (see, in particular, pages
879–883 and Remark 2).

Theorem 4. Consider four real numbers a, b, x, and y, with 0 ≤ a < b. Let β = (βt )a≤t≤b be
a Brownian bridge from x to y over the time interval [a, b] (so that βa = x and βb = y), and
let t be a fixed positive number. Denote by M the supremum of β and, for any positive integer
n, by Mn the discrete supremum associated with a mesh of size t/n, so that

M = sup
a≤t≤b

βt and Mn = sup
k∈In

βkt/n,

where

In =
{
k ∈ N

∣∣∣∣ kt

n
∈ [a, b]

}
.

Then, as n goes to ∞, the pair (
√

n(M − Mn), β) converges in distribution to the pair
(
√

tW, β), where W is independent of β and can be written as

W = min
j∈Z

Ř(U + j). (7)

Here (Ř(t))t∈R is a two-sided three-dimensional Bessel process (i.e. Ř(t) = R1(t) for t ≥ 0
and Ř(t) = R2(−t) for t < 0, where R1 and R2 are independent copies of the usual three-
dimensional Bessel process, starting from 0), and U is uniformly distributed on [0, 1] and
independent of Ř.

We can now state and prove the main result of this section.

Theorem 5. Let X = (Xt )t≥0 be a finite activity Lévy process with generating triplet (γ, σ 2, ν)

satisfying σ 2 > 0. For a fixed positive real number t , consider the continuous supremum of
X over [0, t] and, for any positive integer n, the discrete supremum associated with a mesh of
size t/n, that is,

Mt = sup
0≤s≤t

Xs and Mn
t = sup

k=0,1,...,n

Xkt/n.

Then, as n goes to ∞, the pair (
√

n(Mt − Mn
t ), X(t) = (Xs)0≤s≤t ) converges in distribution

to the pair (σ
√

tW, X(t)), where W is independent of X(t) and given by (7).
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Note that, in the above statement, X(t) is viewed as a random variable with values in the space
of càdlàg functions defined on the interval [0, t], which can be endowed with the Skorokhod
topology.

Remark 3. Theorem 5 might be true in the infinite activity case, as long as the Lévy process has
a Brownian part (i.e. σ 2 > 0). However, our method, based on conditioning with respect to the
jump times, cannot be easily extended to this setting. Such an extension would probably require
an analogue for Lévy processes of the representation of Brownian motion and its maximum in
terms of Bessel processes.

Proof of Theorem 5. We will prove that, for any bounded and continuous function f and
any bounded random variable Z which is measurable with respect to the σ -algebra generated
by the random variables Xs, 0 ≤ s ≤ t , we have

lim
n→∞ E(f (

√
n(Mt − Mn

t ))Z) = E(f (σ
√

tW)) E(Z). (8)

Since X is a finite activity process, it admits the representation

Xs = γ0s + σBs +
Ns∑
j=1

Yj , s ≥ 0,

where B is a standard Brownian motion, N is a Poisson process with intensity λ = ν(R), and
the random variables Yj are i.i.d. with distribution ν/ν(R). Note that B, N , and the Yj s are
independent.

By conditioning with respect to Nt we have

E(f (
√

n(Mt − Mn
t ))Z) =

∞∑
m=0

E(f (
√

n(Mt − Mn
t ))Z | Nt = m) P[Nt = m].

Note that, conditionally on {Nt = 0, Xt = y}, the process X(t)/σ is a Brownian bridge from
0 to y/σ so that, using Theorem 4,

lim
n→+∞ E(f (

√
n(Mt − Mn

t ))Z | Nt = 0) = E(f (σ
√

tW)) E(Z | Nt = 0).

For the conditional expectation given {Nt = m}, m ≥ 1, we condition further with respect to
the jump times, to the values of X, and to the values of the left-hand limits at the jump times.
Denote by T1, T2, . . . , Tj , . . . the jump times of the Poisson process N . For any numbers
0 < t1 < t2 < · · · < tm < t , x1, . . . , xm, y1, . . . , ym, ym+1, let

Am = {Nt = m, Ti = ti , XT −
i

= xi, XTi
= yi, i = 1, . . . , m, Xt = ym+1}.

We observe that, conditionally on Am, the random processes β0, . . . , βm defined by

β
j
s =

⎧⎪⎪⎨⎪⎪⎩
1

σ
Xs if s ∈ [tj , tj+1),

1

σ
Xt−j+1

if s = tj+1,
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with t0 = 0 and tm+1 = t , are independent Brownian bridges over the intervals [tj , tj+1].
Introduce the random variables

Mj = sup
tj ≤s≤tj+1

β
j
s , Mj,n = sup

k∈I
j
n

β
j
kt/n,

where I
j
n = {k ∈ N | tj ≤ kt/n ≤ tj+1}. Conditionally on Am, the random variables Mj are

independent and each of them admits a density. Therefore, with probability 1, one of them has
to be strictly larger than the others. For j = 0, . . . , m, set

A
j
m = {Mj > Mi for i �= j}.

Conditionally on Am, we have

f (
√

n(Mt − Mn
t ))Z =

m∑
j=0

1
A

j
m

f (
√

n(σMj − Mn
t ))Gj (β

0, . . . , βm)

for some bounded Borel functions Gj defined on the space
∏m

j=0 C([tj , tj+1]). Now, on the set
A

j
m we have, for large enough n, Mn

t = σMj,n. This follows from the fact that the maximum
of βj is attained at an interior point of the interval (tj , tj+1) and the fact that, for large enough
n, some elements of I

j
n are arbitrarily close to this point. Therefore, for large enough n, we

have

f (
√

n(Mt − Mn
t ))Z =

m∑
j=0

1
A

j
m

f (σε
j
n)Gj (β

0, . . . , βm),

with ε
j
n = √

n(Mj − M
j,n
t ). We deduce from Theorem 4 and the independence of the Brownian

bridges that

lim
n→∞ E(f (

√
n(Mt − Mn

t ))Z | Am) =
m∑

j=0

lim
n→∞ E(1

A
j
m

f (σε
j
n)Gj (β

0, . . . , βm) | Am)

=
m∑

j=0

E(f (σ
√

tW)) E(1
A

j
m

Gj (β
0, . . . , βm) | Am)

= E(f (σ
√

tW)) E(Z | Am).

Hence, for all m ≥ 1,

lim
n→∞ E(f (

√
n(Mt − Mn

t ))Z | Nt = m) = E(f (σ
√

tW)) E(Z | Nt = m),

so that (8) follows easily.

In order to use the convergence in distribution above, we sometimes need to switch between
the limit and expected values. For that purpose, the following result of uniform integrability
will be useful.

Lemma 6. Let X be a finite activity Lévy process with generating triplet (γ, σ 2, ν), satisfying
σ > 0. Fix t > 0, and set εn = Mt − Mn

t . Then the sequence (
√

nεne−Mt )n≥1 is uniformly
integrable. If, in addition, E eqMt < ∞ for some q > 2 then the sequence (

√
nεneMt )n≥1 is

uniformly integrable.
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Proof. We will prove that (
√

nεneMt )n≥1 is uniformly integrable. The other case can be
easily deduced. We will use the same notation as in the proof of Theorem 5. Note that, on the
set {Nt = 0}, we have Xs = γ0s + σBs for 0 ≤ s ≤ t , so the uniform integrability of the
sequence (

√
nεneMt 1{Nt=0})n≥1 follows from Lemma 6 of [2]. On the event {Nt ≥ 1}, we will

need to rule out the case when there is no jump between two mesh points. So, we introduce the
event

�n =
{
Nt ≥ 1 and there exists a j ∈ {1, . . . , Nt } such that Tj −Tj−1 ≤ t

n

}
∪

{
t−TNt ≤ t

n

}
.

Note that

P[�n] ≤ P

[
t − TNt ≤ t

n

]
+ E

Nt∑
j=1

1{Tj −Tj−1≤t/n} ≤ E Nt(Nt + 1)

n
,

where we have used the inequalities P[t − TNt ≤ t/n | Nt = l] ≤ l/n and P[Tj − Tj−1 ≤
t/n | Nt = l] ≤ l/n (cf. [7, Proposition 5.5]). Therefore, we have, using εn ≤ Mt and Hölder’s
inequality,

E(
√

nεneMt 1�n) ≤ √
n(E M

p
t epMt )1/p(P(�n))

1−1/p

for every p > 1. Since E eqMt < ∞ for some q > 2, we can choose p > 2. Hence,

lim
n→∞ E(

√
nεneMt 1�n) = 0.

Now, we want to prove that the sequence (
√

nεneMt 1{Nt≥1}∩�c
n
)n≥1 is uniformly integrable.

Fix m ≥ 1 and t1, . . . , tm satisfying 0 < t1 < · · · < tm < t . Conditionally on {Nt = m,

T1 = t1, . . . , Tm = tm} ∩ �c
n, we have, with probability 1,

εn =
m∑

j=0

(Mj − Mn
t ) 1{Mj >maxi �=j Mi },

where Mj = suptj ≤s<tj+1
Xs , t0 = 0, and tm+1 = t . Moreover, owing to the definition of �n,

each subinterval [tj , tj+1) contains at least one mesh point. Define

kj = min

{
k ∈ {0, 1, . . . , n}

∣∣∣∣ kt

n
≥ tj

}
,

lj = max

{
k ∈ {0, 1, . . . , n}

∣∣∣∣ kt

n
≤ tj+1

}
,

and let s∗ be a point at which the supremum of Xs over [tj , tj+1) is attained. If s∗ ∈ (tj , kj t/n),
we can write

Mj − Mn
t ≤ sup

s∈(tj ,kj t/n)

(Xs − Xkj t/n).

If s∗ ∈ (lj t/n, tj+1), we have

Mj − Mn
t ≤ sup

s∈(lj t/n,tj+1)

(Xs − Xlj t/n).

Hence,
Mj − Mn

t ≤ δn,j + εn,j + ηn,j ,
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where

δn,j = sup
s∈(tj ,kj t/n)

(Xs − Xkj t/n), ηn,j = sup
s∈(lj t/n,tj+1)

(Xs − Xlj t/n),

and
εn,j = sup

kj t/n≤s≤lj t/n

Xs − max
kj ≤k≤lj

Xkt/n.

Observe that

δn,j = sup
s∈(tj ,kj t/n)

[
γ0s + σBs −

(
γ0

kj t

n
+ σBkj t/n

)]
≤ |γ0| t

n
+ σ sup

s∈(tj ,kj t/n)

|Bs − Bkj t/n|. (9)

Similarly,

ηn,j ≤ |γ0| t
n

+ σ sup
s∈(lj t/n,tj+1)

|Bs − Blj t/n|. (10)

Note that |tj − kj t/n| ≤ t/n and tj+1 − lj t/n ≤ t/n. Therefore, we easily deduce from (9)
and (10) that the conditional expectations of any power of

√
nδn,j and

√
nηn,j , respectively,

are bounded by a constant which is independent of the conditioning. We also have

εn,j = sup
0≤s≤(lj −kj )t/n

β
j
s − max

0≤k≤lj −kj

β
j
kt/n,

where β
j
s = γ0s + σ(Bs+kj t/n − Bkj t/n). Using Lemma 6 of [2], we see that the conditional

expectation of any power of
√

nεn,j is bounded by a constant which is independent of the
conditioning. We conclude from this discussion that, for any p > 1,

E((
√

nεn 1�c
n∩{Nt≥1})p | Nt) ≤ CpN

p
t ,

where Cp is a deterministic constant which depends only on p, γ0, σ , and t . The uniform
integrability of

√
nεneMt follows easily.

5. Continuity correction

In this section we extend the results of Broadie et al. [5] on lookback and hindsight options
to the jump diffusion model. Let (St )t∈[0,T ] be the price of a security modeled as a stochastic
process on a filtered probability space (�, F , (Ft )t∈[0,T ], P). The σ -algebra Ft represents the
historical information on the price until time t . Under the exponential Lévy model, the process
S behaves as the exponential of a Lévy process

St = S0 eXt ,

where X is a Lévy process with generating triplet (γ, σ 2, ν). The considered probability
is a risk-neutral probability, under which the process (e−(r−δ)tSt )t∈[0,T ] is a martingale. The
parameter r is the risk-free interest rate, and δ is the dividend rate. The options we will consider
in the sequel will have as underlying the asset with price S. We will denote by K the strike
price of the option (in the case of hindsight options). Table 1 gives the payoffs of lookback and
hindsight options. The corresponding prices are the expected values of the discounted payoffs.
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Table 1: The payoffs of lookback and hindsight options.

Option Continuous Discrete

Lookback call ST − S0emT ST − S0emn
T

Lookback put S0eMT − ST S0eMn
T − ST

Hindsight call (S0eMT − K)+ (S0eMn
T − K)+

Hindsight put (K − S0emT )+ (K − S0emn
T )+

The random variables mT and mn
T in Table 1 satisfy

mT = inf
0≤s≤T

Xs, mn
T = min

0≤k≤n
Xk�t ,

where �t = T/n. The results we are going to show depend on the assumptions made on the
process X. That is why we need to introduce the following assumptions.

(H1) X is an integrable Lévy process with finite activity, satisfying σ > 0, and there exists
q > 2 such that E eqMT < ∞. Recall that the condition E eqMT < ∞ is equivalent to∫
x>1 eqxν(dx) < ∞.

(H2) X is an integrable Lévy process with finite activity, satisfying σ > 0.

Let W be the random variable defined in Theorem 4. We set β1 = E W = −ζ(1/2)/
√

2π ,
where ζ is the Riemann zeta function.

At a given time t ∈ [0, T ), the value of the continuous lookback put is given by

V (S+) = e−r(T −t) E max
(
S+, max

t≤u≤T
Su

)
− Ste

−δ(T −T ),

where S+ = max0≤u≤t Su is the predetermined maximum. The continuous value of the
lookback call will depend similarly on S− = min0≤u≤t Su (the predetermined minimum) and
on mint≤u≤T Su. The price of the discrete lookback put at the kth fixing date is given by

Vn(S+) = e−r�(n−k) E max
(
S+, max

k≤j≤n
Sj�t

)
− Sk�te

−δ(n−k)�t ,

where S+ = max0≤j≤k Sj�t . The discrete call value will depend similarly on S− =
min0≤j≤k Sj�t and on mink≤j≤n Sj�t .

Proposition 3. The price of a discrete lookback option at the kth fixing date and the price of
the continuous lookback option at k�t satisfy

Vn(S±) = e∓β1σ
√

T/nV (S±e±β1σ
√

T/n) ± (e∓β1σ
√

T/n − 1)e−δ(T −t)St + o

(
1√
n

)
,

and

V (S±) = e±β1σ
√

T/nVn(S±e∓β1σ
√

T/n) ± (e±β1σ
√

T/n − 1)e−δ(T −t)St + o

(
1√
n

)
,

where the upper and lower signs in ‘±’and ∓’respectively apply to puts and calls. The relations
for the put are true under (H1), and those for the call are true under (H2).
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These formulae are the same as those found by Broadie et al. [5] for the Black–Scholes
model.

Remark 4. If the process X is an integrable Lévy process with generating triplet (γ, 0, ν),
satisfying ν(R) < ∞, then the price of a discrete lookback option and its continuous version
at time k�t satisfy,

1. for the call,

Vn(S−) = V (S−) + α

n
+ o

(
1

n

)
,

where the constant α can be derived explicitly,

2. for the put, if there exists β > 1 such that E eβMT < ∞ then

Vn(S+) = V (S+) + o

(
1

n(β−1)/β

)
.

The proof of these results can be found in [7].

Proof of Proposition 3. Since we have Theorem 5 and Lemma 6, the proof of the above
proposition is similar to the proof of Theorem 3 of [5]. For example, to relate discrete lookback
puts with respect to continuous lookback puts, we need to prove that, for x ∈ R,

E(eMn
T − x)+ = e−β1σ

√
T/n E(eMT − eβ1σ

√
T/nx)+ + o

(
1√
n

)
.

In fact, we have to show first that

E(eMT − x)+ = E(eMT − eMn
T ) 1{eMT >x} + E(eMn

T − x)+

+ E(eMn
T − x) 1{eMn

T ≤x<eMT }.

So
E(eMn

T − x)+ = E(eMT − x)+ − E(eMT − eMn
T ) 1{eMT >x}

− E(eMn
T − x) 1{eMn

T ≤x<eMT }.

But
E |eMn

T − x| 1{eMn
T ≤x<eMT } ≤ E(eMT − eMn

T ) 1{eMn
T ≤x<eMT }

≤ E(MT − Mn
T )eMT 1{eMn

T ≤x<eMT }.

Moreover, the sequence

(
√

n(MT − Mn
T )eMT 1{eMn

T ≤x<eMT })n≥1

is uniformly integrable (by Lemma 6). So

lim
n→+∞ E

√
n(MT − Mn

T )eMT 1{eMn
T ≤x<eMT } = 0.

On the other hand, using Theorem 5, (
√

n(eMT − eMn
T )f (MT ))n≥0 converges weakly to

σ
√

T WeMT f (MT ) for any measurable function f . So, using Lemma 6 again, we have

E(eMT − eMn
T ) 1{eMT >x} = σβ1

√
T

n
E eMT 1{eMT >x} +o

(
1√
n

)
.
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Thus,

E(eMn
T − x)+ = E(eMT − x)+ − σβ1

√
T

n
E eMT 1{eMT >x} +o

(
1√
n

)
= e−σβ1

√
T/n E(eMT − xeσβ1

√
T/n) 1{eMT >x} +o

(
1√
n

)
= e−σβ1

√
T/n E(eMT − xeσβ1

√
T/n) 1{x<eMT ≤xeσβ1

√
T/n}

+ e−σβ1
√

T/n E(eMT − xeσβ1
√

T/n)+ + o

(
1√
n

)
.

But, we can show that

E(eMT − xeσβ1
√

T/n) 1{x<eMT ≤xeσβ1
√

T/n} = o

(
1√
n

)
.

Hence,

E(eMn
T − x)+ = e−σβ1

√
T/n E(eMT − xeσβ1

√
T/n)+ + o

(
1√
n

)
.

The other cases can be derived in the same way. Detailed proofs are given in [7].

For hindsight options, we have similar results as for the lookback case. The price of a
continuous hindsight call option at time t with a predetermined maximum S+ and strike K is

V (S+, K) = e−r(T −t) E
(

max
(
S+, max

t≤u≤T
Su

)
− K

)+
.

Similarly, for the put, we have

V (S−, K) = e−r(T −t) E
(
K − min

(
S−, min

t≤u≤T
Su

))+
.

The discrete versions at the kth fixing date are

Vn(S+, K) = e−r�t(n−k) E
(

max
(
S+, max

k≤j≤n
Sj�t

)
− K

)+

and

Vn(S−, K) = e−r�t(n−k) E
(
K − min

(
S−, min

k≤j≤n
Sj�t

))+
.

Proposition 4. The prices of a discrete hindsight option at the kth fixing date and its continuous
version at k�t satisfy

Vn(S±, K) = e∓β1σ
√

T/nV (S±e±β1σ
√

T/n, Ke±β1σ
√

T/n) + o

(
1√
n

)
and

V (S±, K) = e±β1σ
√

T/nVn(S±e∓β1σ
√

T/n, Ke∓β1σ
√

T/n) + o

(
1√
n

)
,

where the upper and lower signs in ‘±’and ∓’respectively apply to calls and puts. The relations
for the call are true under (H1), and those for the put are true under (H2).

To explain the above proposition, we can say that, in order to price a continuous or discrete
hindsight option respectively using a discrete or continuous hindsight option, we must shift
the predetermined extremum and the strike. Proposition 4 can be deduced from Proposition 3,
thanks to the relations between lookback and hindsight options.
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6. Upper bounds

In the infinite activity case and if there is no Brownian part, the prices of the discrete
and continuous calls are close to each other. The following proposition is a consequence of
Theorem 2 and Theorem 3.

Proposition 5. Suppose that X is an integrable infinite activity Lévy process with generating
triplet (γ, 0, ν). Then the prices of a discrete call option at the kth fixing date and its continuous
version at k�t satisfy the following assertions.

1. We have

Vn(S−) = V (S−) + o

(
1√
n

)
.

2. If
∫
|x|≤1 |x|ν(dx) < ∞,

Vn(S−) = V (S−) + O

(
log(n)

n

)
.

3. If
∫
|x|≤1 |x| log(|x|)ν(dx) < ∞,

Vn(S−) = V (S−) + O

(
1

n

)
.

In the put case, the error between continuous and discrete prices depends on the integrability
of the exponential of the supremum of the Lévy process driving the underlying asset.

Theorem 6. Suppose that X is an infinite activity Lévy process with generating triplet (γ, 0, ν)

and that there exists β > 1 such that E eβMT < ∞. Then the price of a discrete put option at
the kth fixing date and its continuous version at k�t satisfy the following assertions.

1. For any ε > 0, we have

Vn(S+) = V (S+) + O

(
1

n(β−1)/2β−ε

)
.

2. If
∫
|x|≤1 |x|ν(dx) < ∞, for any ε > 0, we have

Vn(S+) = V (S+) + O

((
log(n)

n

)(β−1)/β−ε)
.

3. If
∫
|x|≤1 |x| log(|x|)ν(dx) < ∞, for any ε > 0, we have

Vn(S+) = V (S+) + O

(
1

n(β−1)/β−ε

)
.

The main technical difficulty with the proof of Theorem 6 consists of deducing an estimate
of E(eMT − eMn

T ) from an estimate of E(MT − Mn
T ). In fact, the theorem can be deduced from

the following lemma.

Lemma 7. Assume that X is an infinite activity Lévy process with generating triplet (γ, 0, ν)

and that there exists β > 1 such that E eβMT < ∞. Then, for any ε > 0, there exists a constant
Cε such that

E(eMT − eMn
T ) ≤ Cε(E(MT − Mn

T ))(β−1)/β−ε.
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Proof. By the convexity of the exponential function we have

eMT − eMn
T ≤ (MT − Mn

T )eMT .

So, by Hölder’s inequality,

E(eMT − eMn
T ) ≤ (E eβMT )1/β(E(MT − Mn

T )β/(β−1))(β−1)/β .

Note that E eβMT < ∞ implies that E M
q
T < ∞ for any q > 0. Let ρ ∈ (0, 1). Then we have

E(MT − Mn
T )β/(β−1) = E(MT − Mn

T )ρ(MT − Mn
T )β/(β−1)−ρ

= E(MT − Mn
T )ρ(MT − Mn

T )(β(1−ρ)+ρ)/(β−1)

≤ (E(MT − Mn
T ))ρ(E(MT − Mn

T )(β(1−ρ)+ρ)/(β−1)(1−ρ))1−ρ.

Hence, from the fact that

lim
n→+∞ E(MT − Mn

T )(β(1−ρ)+ρ)/(β−1)(1−ρ) = 0,

there exists a constant C > 0 such that

E(eMT − eMn
T ) ≤ C(E(MT − Mn

T ))ρ(β−1)/β

= C(E(MT − Mn
T ))(β−1)/β−(1−ρ)(β−1)/β .

Then, for any ε > 0, there exists a constant Cε > 0 such that

E(eMT − eMn
T ) ≤ Cε(E(MT − Mn

T ))(β−1)/β−ε.

When the Lévy process driving the underlying asset has no positive jumps, we obtain tighter
estimates.

Proposition 6. Let X be a Lévy process with generating triplet (γ, σ 2, ν). We assume that
X has no positive jump (ν(0, +∞) = 0), that

∫
−1≤x<0 |x|ν(dx) < ∞, and that there exists

β > 1 such that E eβMT < ∞. Then, the price of a discrete put lookback at the kth fixing date
and its continuous version at time k�t satisfy the following assertions.

1. If σ = 0,

Vn(S+) = V (S+) + O

(
1

n

)
.

2. If σ > 0,

Vn(S+) = V (S+) + O

(
log(n)√

n

)
.

Proposition 6 is based on the estimation of the moments of MT − Mn
T , which can be

performed when there are no positive jumps.

Lemma 8. Let X be a Lévy process with generating triplet (γ, σ 2, ν), satisfying∫
|x|≤1

|x|ν(dx) < ∞.
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We suppose that X has no positive jumps. Then, for any β > 1,

1. if σ = 0,

E(MT − Mn
T )β = O

(
1

nβ

)
,

2. if σ > 0,

E(MT − Mn
T )β = O

((
log(n)√

n

)β)
.

Proof. We have

MT − Mn
T = sup

0≤s≤T

Xs − max
0≤k≤n

XkT /n

= max
1≤k≤n

sup
(k−1)T /n≤s≤kT /n

Xs − max
0≤k≤n

XkT /n

≤ max
1≤k≤n

sup
(k−1)T /n≤s≤kT /n

Xs − max
1≤k≤n

X(k−1)T /n

≤ max
1≤k≤n

(
sup

(k−1)T /n≤s≤kT /n

Xs − X(k−1)T /n

)
,

where the random variables (sup(k−1)T /n≤s≤kT /n Xs − X(k−1)T /n)1≤k≤n are i.i.d., with the
same distribution as sup0≤s≤T/n Xs . But, since X has no positive jumps, we have (see (4))

sup
0≤s≤T/n

Xs ≤ sup
0≤s≤T/n

(γ0s + σBs) ≤ |γ0|T
n

+ σ sup
0≤s≤T/n

Bs.

We can easily deduce the first result of the lemma (σ = 0). In the case σ > 0, we have

sup
0≤s≤T/n

Xs ≤ 1√
n

( |γ0|T√
n

+ σ
√

n sup
0≤s≤T/n

Bs

)
≤ 1√

n

(
|γ0|T + σ

√
n sup

0≤s≤T/n

Bs

)
d= 1√

n

(
|γ0|T + σ sup

0≤s≤T

Bs

)
.

Let (Vk)1≤k≤n be i.i.d. random variables with the same distribution as |γ0|T + σ sup0≤s≤T Bs .
Then we have

E(MT − Mn
T )β ≤

(
1√
n

)β

E max
1≤k≤n

V
β
k .

Let g be the function defined as

g(x) = (log(x))β, x > 1.

The function g is concave and nondecreasing on the set [eβ−1, +∞). So we have

E sup
1≤k≤n

V
β
k = E sup

1≤k≤n

g(eVk )

= E g
(

sup
1≤k≤n

eVk

)
(because g is nondecreasing)
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≤ E g
(

sup
1≤k≤n

emax(Vk,β−1)
)

(because g is nondecreasing)

≤ g
(

E sup
1≤k≤n

emax(Vk,β−1)
)

(by Jensen)

≤ g

(
E

n∑
k=1

emax(Vk,β−1)

)
(because g is nondecreasing)

≤ g(n E emax(V1,β−1)).

Note that we have E emax(V1,β−1) < ∞. Hence, the second result of the lemma.

Proof of Proposition 6. To prove Proposition 6, we need to show that

E(eMT − eMn
T ) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
O

(
1

n

)
if σ = 0,

O

(
log(n)√

n

)
if σ > 0.

But, by the convexity of the exponential function, we have

eMT − eMn
T ≤ eMT (MT − Mn

T ).

So, using Hölder’s inequality, we obtain

E(eMT − eMn
T ) ≤ (E eβMT )1/β(E(MT − Mn

T )β/(β−1))(β−1)/β .

We conclude by Lemma 8.

Results for hindsight options are similar to those for lookback options. This is simply due
to the relations between lookback and hindsight options.
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