(received December 6, 1963)

1. Introduction. A graph G is an ordered pair (V, E) where V is a set of objects called vertices, and E is a set of unordered pairs of vertices (v, v^{\prime}) in which each such pair can occur at most once in E, and if $\left(v, v^{\prime}\right) \in E$ then $v \neq v^{\prime}$. The order of G is the cardinality of the set V, and the degree $\delta(v)$ of an element $v \in V$ is the number of elements of E which contain $v . G$ is said to be regular of degree d if $\delta(v)=d$ for each $v \in V$. G is a complete graph if E contains every pair of elements of V. A graph $H=\left(V^{\prime}, E^{\prime}\right)$ is a partial graph of $G=(V, E)$ if $V^{\prime} \subseteq V$ and $E^{\prime} \subseteq E . H$ is a restriction of G if H is a partial graph of G in which $V^{\prime}=V$. Let $S=\left\{e_{1}, \ldots, e_{l}\right\}$ be a subset of E such that $e_{j}=\left\{v_{j-1}, v_{j}\right\}$ for $1 \leq j \leq \ell$. Then S is called an arc of G of length l (from v_{0} to v_{l}) in case the vertices $v_{0}, v_{1}, \ldots, v_{\ell}$ are all distinct. The two vertices v_{0} and v_{l} are said to be connected if there exists an arc from v_{0} to v_{ℓ}. In case $\ell+1$ is the order of G and S is an arc of length ℓ, then it is called a Hamilton arc of G. In case v_{0} and v_{ℓ} are the only two identical vertices of the above arc and G has order ℓ, then S is called a Hamilton circuit of G. G is connected if every pair $\left\{\mathrm{v}_{0}, \mathrm{v}_{\mathrm{l}}\right\}$ of its vertices is connected.

The connectedness relation of vertices in G is readily seen to be an equivalence relation, so that it partitions G into a set $\left\{G_{c}\right\}$ of connected graphs. Each such G_{c} is called a component of G. A k-equi-cardinal restriction of G

Canad. Math. Bull. vol. 7, no. 3, July 1964.
(designated as a ker of G) is a restriction of G in which each component of the restriction is of order k. For a graph G to have a ker, obviously the order of G must be some multiple of k. Also, only $k \geq 2$ are of interest.

The problem we consider here is to find the mirimum degree d such that every regular graph of order $n=m k$ and degree $\geq \mathrm{d}$ has a k-equi-cardinal restriction.

The concept of a ker of G is related to that of a ($k-1$)factor of G discussed by Tutte [1] and others. In particular, when $k=2$ a ker of G is identical to a 1 -factor of G, but this relationship does not carry over for general k.
2. The Problem. As stated previously, we wish to determine a minimum degree d such that every regular graph of order $\mathrm{n}=\mathrm{mk}$ and degree $\geq \mathrm{d}$ has a ker. The following properties will be useful.

Property 1: A connected graph either has a Hamilton circuit or its maximal arcs have length ℓ satisfying $\ell \geq \delta\left(v_{0}\right)+\delta\left(v_{\ell}\right)$ where v_{0} and v_{l} are vertices connected by such an arc. (Theorem 3.4.3, p. 55 of Ore [2].)

Property 2: If the order of G is a multiple of k and G contains a Hamilton arc, then G has a ker.

Proof: Let the G_{c} components of order k be subgraphs consisting of successive vertices and edges along the Hamilton arc.

Property 3: If G is a regular graph of degree $d \geq \frac{n-1}{2}$, where n is the order of G, then G contains a Hamilton arc.

Proof: Suppose G was not connected; then the largest possible degree for a regular graph would be obtained by having G consist of two complete subgraphs, each containing $\frac{n}{2}$ vertices. In this case $d=\frac{n}{2}-1=\frac{n-2}{2}$. Thus G is connected if $d \geq \frac{n-1}{2}$. Finally, from property $1 G$ has a Hamilton circuit,
and thereby a Hamilton arc, or else an arc of length $\ell \geq \frac{n-1}{2}+\frac{n-1}{2}=n-1$ which is also a Hamilton arc.

For our problem, properties 2 and 3 determine that every regular graph of degree $d \geq \frac{n-1}{2}$, where $n=m k$, has a ker. Thus we need consider only the cases with $d<\frac{n-1}{2}$.

Case 1: m even

Here $n=m k$, so that $\frac{n}{2}=\frac{m}{2} k$ is divisible by k. Thus $\frac{n}{2}-1$ and $\frac{n}{2}+1$ are not divisible by k. Let G consist of two components G_{1} and G_{2}, where G_{1} is the complete graph on $\frac{n}{2}-1$ vertices and G_{2} is obtained from the complete graph on $\frac{n}{2}+1$ vertices by deleting the edges of one Hamilton circuit. Then G is regular of degree $d=\frac{n}{2}-2$. Obviously G does not contain a ker, since the orders of G_{1} and G_{2} are not divisible by k. Thus the minimum degree d for our problem is $\frac{n}{2}-2<d \leq \frac{n}{2}$ (since for even $m, \frac{n-1}{2}$ is not an integer). We now consider the remaining case here for which $d=\frac{n}{2}-1$. We shall show that G must contain a ker.

Suppose G has degree $\frac{n}{2}-1$ but does not contain a ker. If G is not connected, then for regularity G must consist of two complete subgraphs, each of order $\frac{n}{2}$, but this graph obviously contains a ker ($\frac{n}{2}=\frac{m}{2} k$); thus G is connected. Now by property 1, G either has a Hamilton circuit (and this is impossible by property 2 under the assumption that G does not contain a ker) or else its maximal arcs are of length $\ell \geq\left(\frac{n}{2}-1\right)+\left(\frac{n}{2}-1\right)=n-2$. If $\ell=n-1$ then G has a ker so we must have $\ell=n-2$. Let v_{1}, \ldots, v_{n-1} be the successive vertices along such an arc and let v_{n} be the only remaining vertex of G.

Suppose G has an edge $\left(v_{j}, v_{n}\right)$ where $j=q k+r$, q and r are integers and $1 \leq r<k$. Then a ker of G can be formed as follows: The first q segments $\left(v_{1}, \ldots, v_{k}\right)$, $\left(v_{k+1}, \ldots, v_{2 k}\right), \ldots,\left(v_{(q-1) k+1}, \ldots, v_{q k}\right)$ of the $n-2$ length path can form components of order k; $\left(v_{q k+1}, \ldots, v_{(q+1) k-1}, v_{n}\right)$ can form a component; and successive components, starting with vertex $v_{(q+1) k} u p$ to v_{n-1} can be formed along the path of length $n-2$, giving the desired ker. Thus each edge $\left(v_{j}, v_{n}\right)$ of G must be such that j is a multiple of $k ; j=q k$. There are $\frac{n}{k}-1$ such vertices from v_{1}, \ldots, v_{n-1}, thus $\delta\left(v_{n}\right)=\frac{n}{2}-1$ can be attained only for $k=2$, and only when for each $j=2 q, 1 \leq q \leq \frac{n}{2}-1,\left(v_{j}, v_{n}\right)$ is an edge of G. It remains to show that for $k=2, d=\frac{n}{2}-1$, the graph G contains a ker. Now G cannot contain an edge $\left(v_{i}, v_{j}\right)$, $1 \leq i, j \leq n-1$, in which both i and j are odd; for if so $\left(v_{i}, v_{j}\right)$ could form a component of a ker with the other components as follows: $\left(v_{1}, v_{2}\right), \ldots,\left(v_{i-2}, v_{i-1}\right),\left(v_{i+1}, v_{i+2}\right), \ldots$, $\left(v_{j-3}, v_{j-2}\right),\left(v_{j-1}, v_{n}\right),\left(v_{j+1}, v_{j+2}\right), \ldots,\left(v_{n-2}, v_{n-1}\right)$, where we have assumed that $i<j$ with no loss in generality. Thus, in order to satisfy $\delta\left(v_{i}\right)=\frac{n}{2}-1$, each odd numbered vertex v_{i}, $1 \leq i \leq n-1$ must have an edge to each even numbered vertex. Under this assumption, however, $\delta\left(v_{p}\right) \geq \frac{n}{2}+1$, where v_{p} is any even numbered vertex since there are $\frac{n}{2}$ odd numbered vertices and v_{n} has an edge connected to each such v_{p}. By assumption of regularity of G, however, $\delta\left(v_{p}\right)=\frac{n}{2}-1$, proving that every regular G of degree $\frac{n}{2}-1$ contains a ker. Thus for m even, the minimum d for our problem is $\mathrm{d}=\frac{\mathrm{n}}{2}-1$.

Case 2: m odd

Subcase 2a: k even. Here $\frac{n}{2}$ is not divisible by k, so one can obtain a regular graph of degree $\frac{n}{2}-1$ which contains no ker by taking two replicas of the complete graph on $\frac{n}{2}$ vertices. Thus $d=\frac{n}{2}$ is the solution to our problem.

Subcase 2b: k odd.
(i) $\frac{n+1}{2}$ even. Here one can obtain a regular graph of degree $\frac{\mathrm{n}-3}{2}$ with two components by taking the complete graph on $\frac{n-1}{2}$ vertices together with the graph found by deleting the alternate edges of a Hamilton circuit from the complete graph on $\frac{n+1}{2}$ vertices. Since not both $\frac{n-1}{2}$ and $\frac{n+1}{2}$ are divisible by k, this graph does not contain a ker. Thus $\frac{n-3}{2}<d \leq \frac{n-1}{2}$ and $\mathrm{d}=\frac{\mathrm{n}-1}{2}$.
(ii) $\frac{n+1}{2}$ odd. Here one obtains a regular graph containing no ker of degree $\frac{\mathrm{n}-5}{2}$ by deleting a Hamilton circuit from the complete graph on $\frac{n+1}{2}$ vertices and deleting alternate edges of a Hamilton circuit from the complete graph on $\frac{n-1}{2}$ vertices. Thus $\frac{n-5}{2}<d \leq \frac{n-1}{2}$. Since n is odd, there is no regular graph on n nodes of odd degree, in particular of degree $\frac{n-3}{2}$. Thus $d=\frac{n-3}{2}$.

The following table summarizes the solution d to our problem where the order of G is $n=m k$.

m		d
even		$\frac{n}{2}-1$
odd	k even	$\frac{n}{2}$
	k odd	$\frac{n+1}{2}$ even
	$\frac{n-1}{2}$	

Table 1: Minimum d Such That All Regular Graphs of Degree $\geq \mathrm{d}$ Contain a Ker.

In the proofs many of the regular graphs not containing a ker were non-connected graphs. Little is known about the problem if one adds the hypothesis that the graph be connected. Regular connected graphs which do not contain kers, for $k=2$, can be formed for a degree which is somewhat less than $\frac{n}{3}$ using a structure having one central vertex. A simple example with $\mathrm{d}=3, \mathrm{n}=16$ is shown below, but it is not known whether or not $\frac{n}{3}$ is near the minimum degree for which every regular connected graph contains a 2 -equi-cardinal restriction.

Figure 1

A Connected Regular Graph Having No 2-Equi-Cardinal Restriction

REFERENCES

1. W.T. Tutte, The Factors of a Graph, Canad. J. Math. 4, 1952, pp. 314-328.
2. Oystein Ore, Theory of Graphs, AMS, 1962.
I. B. M., Yorktown Heights, N. Y.
