Infrared emission lines of Mg II in B stars

T. A. AARON SIGUT and J. B. LESTER Department of Astronomy, University of Toronto 60 St. George Street, Toronto, Ontario Canada M5S 1A7

1. Introduction

Recently, Chang et. al. (1992) and Carlsson, Rutten and Shchukina (1992) (CRS) demonstrated the non-LTE formation mechanism behind the 12 μ m Mg I emission lines (6g-7h, 6h-7i) observed in the solar spectrum (Murcray et. al., 1981). CRS stress the generality of this mechanism showing that it is a natural consequence of the recombination flow from the large Mg II reservoir through the Rydberg levels of Mg I. We have noted the close parallel between Mg I in the solar atmosphere and Mg II in the atmospheres of B stars (where Mg III plays the role of the reservoir) and investigated the operation of this mechanism in high- ℓ infrared transitions of Mg II. We have employed a 58 level Mg II atom including all energy levels through n = 25 and a total of 491 linearized radiative transitions. The coupled equations of radiative transfer and statistical equilibrium were solved with the MULTI code in its local operator form (Carlsson, 1992).

2. Results

Figures 1(a) and 1(b) show the 5g-6h and 6h-7i transitions of Mg II near their maximum strengths in $T_{\rm eff}$. The emission results from a population divergence $b_l < b_u$ which causes the monochromatic source function to rise with height. This also leads to strong limb brightening of the emergent intensity as shown in Figure 1(c) for 5g-6h. This sensitivity to the variation of viewing angle over the surface, coupled with a strong pressure dependence, suggests that non-spherical disk integrations should be investigated. We have incorporated the effect of rapid uniform rotation in the Roche approximation following Collins (1963). An example is shown for 5g-6h in Figure 1(d) for the case of critical rotation, $\omega_f = 1.0$. The non-spherical profile is noticeably weaker than the best fit spherical profile computed with the same M and L but $R = R_p$. The main difference is that for a star seen nearly pole on, the average value of μ over the surface will increase with ω_f . For a spherical model, $<\mu >= 2/3$ while for $\omega_f = 1.0$, $<\mu >= 0.746$ due to the absence of viewing angles $\mu < 0.5$.

L. A. Balona et al. (eds.), Pulsation, Rotation and Mass Loss in Early-Type Stars, 414–415. © 1994 IAU. Printed in the Netherlands.

Fig. 1. (a) Relative flux for the transition 5g-6h (1.86 μ m). The $T_{\rm eff}$ is indicated and the model gravities are identified by $\log(g) = 4.5$ (long dash), 4.0 (solid), 3.5 (dotted), and 3.0 (short dash). (b) same for 6h - 7i (3.09 μ m). (c) Line center limb brightening of 5g - 6h. (d) Non-spherical profile (solid) compared to the best fit spherical profile (dotted). Model parameters are given in solar units; R_p refers to the polar radius and both R_p and L were assumed unaffected by rotation. The $v \sin i$ of the spherical profile is also given.

References

Carlsson M., Rutten R.J., Shchukina N.G.: 1991, Astr. Ap. 253, 567

- Carlsson, M.: 1992, 'The MULTI non-LTE program' in M. S. Giampapa and J. A. Bookbinder, ed(s)., Cool Stars, Stellar Systems and the Sun, A.S.P. Conf. Ser. Vol. 26, 499
- Chang E.S., Avrett E.H., Mauas P.J., Noyes R.W., Loeser R.: 1991, Ap. J.(Letters) 379, L79
- Collins G.W.: 1963, Ap. J. 138, 1134
- Murcray F.J., Goldman A., Murcray F.H., Bradford C.M., Murcray D.G., Coffey M.T., Mankin W.G.: 1981, Ap. J. (Letters) 247, L97