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ABSTRACT. The base of the ice in the transition zone between an ice stream and an ice shelf is likely to
be well lubricated by broadly distributed water, a condition which should permit fast sliding motion. It
has been observed that motion takes place not smoothly but by localized stick-slip events that propagate
in the downstream direction towards the ice shelf and at velocities approximately that expected for
shear wave velocity of the basal till. Thus slip packets of gliding edge dislocations are likely to move at
the base. | show here that subsonic dislocations should move upstream, rather than downstream, if
frictional resistance is determined by normal traction stress change at the base. Transonic dislocations
are expected to move in the downstream direction. However, if frictional resistance is lowered by
hydrostatic pressure reduction at the base, the subsonic dislocation should move downstream.

INTRODUCTION

In the transition, ice-plain, region between Whillans Ice
Stream and the Ross Ice Shelf and Crary Ice Rise, West
Antarctica, the surface slope and basal shear stress is almost
zero (=~1kPa) (Bindschadler and others, 2003a,b). The fast
motion of the ice stream is transmitted through this region in
a series of stick—slip events that propagate at a mean velocity
of 88 ms~! (Bindschadler and others, 2003a, b). Bindschad-
ler and others observed that the transient motion events
propagated downstream at a velocity of the order expected
for a Stoneley wave traveling at the ice-basal-till interface or
a shear wave traveling within the till. (Stoneley surface
waves, which move on an interface at a velocity slightly
slower than the lower shear wave velocity, do not produce
slip across an interface. However, Stoneley waves should
not exist at the ice-till interface. (See Equation (A4) of
Appendix A.)) The magnitude of the total Burgers vector of
the localized propagating dislocations must be at least
0.1 m. Bindschadler and others (2003a,b) show that the
periodic ocean tides under the Ross Ice Shelf are in some
way triggering the slip pulses. (Tides also influence ice-
stream motion far inland (Anandakrishnan and Alley, 1997;
Anandakrishnan and others, 2003).)

An ice plain of very low basal shear stress (100 times
smaller than that of an active glacier) presents two problems.
One is to account for the stick—slip motion (the primary
concern of this paper). The other is to account for the
existence of the low basal shear stress. The latter problem
suggests either the basal till is very weak (a possibility
ignored here) or the effective friction at the till-ice interface
is small. I have argued the basal water in a transition region
should be broadly, but not uniformly, distributed (see
Appendix B and Weertman, 2003). The downstream pres-
sure gradient in the basal water is 100 times smaller than in
glaciers. Hence the average basal water thickness is at least
100 times larger than under a glacier, and the effective basal
friction should therefore be at least 100 times smaller than
under a glacier. Consider next the stick-slip problem.

Ice motion in the direction from an ice stream to an
ice shelf is produced when positive glide edge dislocations
at the ice-till interface move downstream or negative
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dislocations move upstream. The former produces down-
stream-propagating transient motion events, and the latter
upstream-propagating transient motion events. (The disloca-
tions treated here are not crystal dislocations but are
gradients in displacement. That is, the dislocation density
B(x) of a smeared-out localized group of dislocations at an
interface that move in the x direction is equal (identical) to
—dD/dx where D(x) is the displacement across the inter-
face at x. If the displacement is a step function, the step
height is the Burgers vector usually associated with a crystal
dislocation.) A localized slip pulse that travels downstream
at a till-ice interface is a localized distribution of moving
dislocations, all of the same sign. Where the dislocations
exist, the normal pressure across the interface is increased or
decreased depending on the sign of the dislocations. A
decrease in normal pressure presumably facilitates slip by
decreasing the friction stress when the slip rate is too fast to
be accounted for by ordinary, relatively slow glacier sliding
mechanisms. In the next section, the interface traction
stresses arising from a dislocation distribution of gliding
edge dislocations which move at a velocity V are presented.

DISLOCATION SOLUTION

Consider a smeared-out localized group of gliding edge
dislocations of distribution density By(x), shown schemat-
ically in Figure 1, on an interface between two media A
and B. The dislocations move at constant velocity V in the x
direction. The shear constants of the media are G4 and Gp,
the densities are ps and pg and Poisson’s ratios are va
and vg. The shear wave speeds in the two media are equal to

Gsa = /Ga/pa and Gsg = +/ Gg/pg; the longitudinal wave
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B

Fig. 1. Group of gliding edge dislocations.
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Fig. 2. Normalized plots of G, G, G* and G~, vs V.

speeds are Cia = Gsa/2(1 —va)/(1 —2v4) and G =
Gsgy/2(1 —vg)/(1 — 2vg). The traction stresses on an inter-
face produced by the dislocation distribution By are given by

the Comninou-Dundurs-type equations (Weertman 1980,
1996, 2004):

(M

The non-traction stress oy, which usually is of opposite sign
but in general is not the same magnitude on either side of the
interface, is given by

oxx(x) = {G"Bx(x), G Bx(x)}. (2)

Here G* and G~ refer respectively to the ice and till side of
the interface. Expressions for the elastic-constant-type terms
G, G, G* and G~ are given in Appendix A.

Figure 2 shows a normalized plot of G/Gg, G/Gg,
G"/Gg, and G~ /Gg vs V/Csg, where Gg is the shear
modulus estimated for till, and Csp the shear velocity of the
till (see Appendix A and the constants in Table 2). G, G, G*
and G~ are finite at V = Gsg. Note in Figure 2 that the
normal stress o, (G) is negative (compressive). The signs of
the stresses are reversed for negative gliding edge disloca-
tion. G is negative in Figure 2. Consquently, the normal
pressure is increased. If the frictional resistance to sliding is
increased by increased normal pressure, the Figure 2 data
imply that a positive gliding edge dislocation packet moves
with greater difficulty, and a negative gliding edge disloca-
tion packet moves with greater ease. The change in
hydrostatic pressure AP in the till just beneath the
dislocations is equal to AP = (=1/3)(0xx + 0y +0,,) =
(=1/3)(1 + v)(G + G7)By. From Figure 2 the hydrostatic
pressure is reduced in the till.

When a Stoneley wave exists, the terms G, G, etc., in a
Figure 2 type plot become infinite at a velocity somewhat

_ > By(x') dx’
oy (X) = GBx(x), oy (x) = E[ %

T 0

Table 2. Constants (A — ice, B — till)
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Table 1. Transonic dislocation

G/Gyg G/Gy G*/Gyg G /Gy

1.789 83.25 118.06 87.08

smaller than the Stoneley wave velocity, which itself is
slightly smaller than the slower shear wave velocity (Weert-
man, 2004). This is not seen in Figure 2, and therefore a
Stoneley wave does not exist.

TRANSONIC DISLOCATION

A gliding edge dislocation moving at the generalized
Eshelby velocity V¢ (Weertman, 2002) has traction and
non-traction stresses at the interface given by Equations (1)
and (2), but with the G terms given by Equations (A5) and
(A6) of Appendix A. The Eshelby velocity, when it exists, is
larger than the smaller shear wave velocity but smaller than
the longitudinal wave velocities. Thus the velocity V¢ is
transonic because it lies between the slowest and fastest
sound velocities. At V = V¢ the dislocation acts like a
subsonic dislocation because it does not generate the shock
waves that occur at transonic velocities when V # V.
Table 1 lists the normalized values of the terms G, G, G*
and G~ found, using constants listed in Table 2, for a
dislocation moving at the generalized Eshelby velocity. From
Equation (A7) and the Table 2 constants: Vy = 9.253Vsp =
0.816Vi 5. (When the two half-spaces are identical, the

Eshelby velocity is equal to Vi = v2V%s.)

DISCUSSION

Bindschadler and others (2003a,b) have shown that ice
motion propagates down the ice plain in front of Whillans Ice
Stream in short time movements of the order of 0.1 m with a
propagation velocity of the order expected for the shear
velocity in the underlying till. Such motion strongly implies
the motion of smeared subsonic gliding edge dislocation
packets at the ice-till interface. (Of course, it also could be
explained by deformation within the till.) Subsonic edge
glide dislocations that move in the downstream direction
produce increased normal pressure across the interface but
decreased hydrostatic pressure in the till next to the interface.
An increase in normal pressure usually is associated with
increased friction and more difficult slip. On the other hand,
if the hydrostatic pressure is lowered, a small amount of
water flow from the till to the interface could occur rapidly
and temporarily reduce, where the dislocations are, the
resistance to interface slip. This is an attractive explanation of
the downstream motion of the dislocations. The water flow

Ga Gg PA P8 VA Csa Csg Cia Cis
GPa GPa kgm™ kgm™ ms™' ms™' ms™' ms™'
3.7 0.0414 920 1840 0.33 0.496 2005.4 150 3981.3 1700
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from the till is expected to be facilitated for the following
reason. The deviatoric stress op = (1/2)(ox — 0y,) within
the till is approximately equal to 2 GgBy (from Equations (1)
and (2) and Fig. 2) Here By = slip distance (~0.1 m) divided
by width of the slip pulse. Thus op =800, 80, 8kPa
respectively for slip widths of 10, 100, 1000 m. The strength
of basal till under the West Antarctic ice streams seems to be
of the order of 2-5 kPa (Kamb, 2001). Thus, any pulse width
smaller than about 2—4 km will cause breakdown of till.

From Table 1 it is seen that if a dislocation moves at the
generalized Eshelby velocity, the normal pressure (—GB,)
across the interface as well as the hydrostatic pressure
((=1/3)(1 + vg)(G + G7)By) is reduced. Both conditions
favor downstream dislocation motion. A dislocation that
moves with this velocity (close to the longitudinal wave
velocity of the till), of course, moves too quickly to explain
the field observations. A transonic glide edge dislocation
which moves with a speed close to but faster than the till
shear wave velocity, and in the process radiates seismic
energy into the till, might also have reduced normal and
hydrostatic pressure at the interface.
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APPENDIX A
TERMS G AND G

The terms G and G of Equation (1) and G* and G~ of
Equation (2) are equal to

G= 2(GA/bX)(bSAﬂs_/g ﬂ%% + biaBia)
= 2(Gg/by)(bssBss Brss + bisBis),

G = 2(Ga/by)(bsa + biaBis )

= —2(Gg/by)(bss + bLsfisg), (A1)
G* = =2(Ga/bx)[bsa + bLa2B34 — B3s4)],
G~ =2(Gg/by)[bsg + bLs(235, 5 — B5sp)]- (A2)

Here

Bsk = /1 = V2/Cs,
B =+/T—V2/Cu,
Bask = /1= V2/2Cs,
Pak = 1= V2/2Cy,

where k = A or B and by is the Burgers vector of a discrete
gliding dislocation. The sub-dislocation Burgers vectors are
equal to

D1 (AsA; + AcAz) + Dr(As A1 — AgAs)

bsa = by D% (A] Az + A4A2)
L b DA+ A
X D% (A1A3 + A4A2) !
bii= b, AsAr + AsAs
D3 (A] Az + A4A2) !
by = b, s = Ao

*D3(A1A;3 + AsAy)’
bsg = bx — bsp — bia — byg,
where

A = Bua(Ga — Gel3sa) — Bsa(GaBisa — GalBisg) D1 /D,
Ay = Bis(Gs — Gf3sp) + Bsa (GaBisa — Golasp) D2/ Ds,
As = Gg(B3s5 — BsaBis) — (Ga+ GoPssls4 ) D2/ Ds,
Ay = (GaBisa + GaBssfBia) — (Ga + GpBsefBss ) D1/ Ds,
As = GgfBspfsa,
As = ﬁS_A1 (GAﬁ§SA - GBﬁ%SB)/
Dy =1+ Bsgbia,
D> =1 — Bsgbis,
Ds =1+ Bsg/Bsa-
If the term A;A; + A A; in the denominator of the
expressions in Equation (A3) is zero, the constants G and
G become infinite. (These equations are derived in Weert-
man (2004) and, in equivalent form, in Weertman (1980).
The presence of a thin, non-uniform water layer between the
two half-spaces A and B will not appreciably affect these
equations provided that traction stress can be transmitted
across the layer. Only if the bed were perfectly smooth
would it not be possible to transmit a shear traction stress.)
Note that the Stoneley velocity is the velocity that satisfies
the relationship (Achenbach, 1973; Weertman, 2004):
AlAs + Ay Ay = 0. (A4)
Bindschadler and others (2003a, b) point out that Blanken-
ship and others (1987) reported a shear wave velocity (Csp)

(A3)
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in till (under Whillans Ice Stream) of about 150ms™" and a
longitudinal wave speed (Cip) of about 1700ms~"'. These
velocities require the shear modulus, Poisson’s ratio and
density for till (Gg, v, pg in Fig. 1) to have the values listed
in Table 2 if the till density is assumed to be twice that of ice.
In Table 2 are also listed the values for these quantities for
ice (Hobbs, 1974, p.258), and Gsa and Ci 4 calculated from
them. The curves of Figure 2 are calculated using the
constants of Table 2. If the density of till (pg) lies between
one and three times the density of ice (pa =980 kg m™) it is
impossible, according to Equation (A4), for a Stoneley wave
to exist at the ice-till interface if till has the wave velocities
reported by Blankenship and others.

Transonic dislocation

When an Eshelby velocity Vi exists in the velocity range
Vsg < Ve < Vip, Voa, Via the terms G, G, G*, G~ are given

Y G a(Gu/bobutis,
G = —2(Gg/by)(bsg + bLssp), (A5)
G* = —=2(Ga/by)[bsa + bia2354 — F554)],
G~ =2(Gp/bx)bs(2/35, 5 — Bsp)- (A6)

The sub-dislocation Burgers vectors are
bia = by G5 /(G:D6 + Ci Ds),
big = bxCi /(G2 D6 + C1 Ds),
bsa = by — bia— big, bsg=0. (A7)

Here )
Ci = BLaGa(1 = Bys4),

G = Bip(Gg — GaBasp),
G = (Gpfisg + BsaBeGa),
Cs = Ga(Bsp — BsaBLa),
Ds = (1 + BsaBus),
De = (1 = BsaBLa)-
The Eshelby velocity is given by
GG + GG =0, (A8)
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APPENDIX B
BASAL WATER

In my review article on basal water flow (Weertman, 1972)
it was pointed out that the pressure gradient driving basal
water into or away from a Réthlisberger (R) tunnel depends
upon the power-law creep exponent n. If n> 2, water is
driven into the R tunnel. If n <2, water flows away from
the tunnel. In that article it was pointed out that if a large
shear stress exists at the bottom of the ice mass the effective
value of n is reduced from Glen’s value of n= 3 to a value
of n= 1. There is always a radial distance from an R tunnel
beyond which n~ 1 and water cannot flow to an R chan-
nel. The basal shear stress, of course, is small under the ice
plain (1kPa; Bindschadler and others, 2003b) and should
not cause R tunnels to leak the water. The longitudinal
stress oy, however, within the ice of the ice plain should be
about the same as that in a floating ice shelf of similar
thickness, that is, of order (1/2)picegH(1 — pice/Psea water)
where the terms have their usual meaning. Thus oy =~
110-180kPa for an ice thickness of H = 300-500m.
These values are high enough to make it difficult for
most R tunnels to remain in existence under an ice plain.
Thus the base of an ice plain, if it is melting, should have
a broadly distributed, lubricating water layer (of variable
thickness). (The anonymous reviewer points out that the
Whillans Ice Plain experiences longitudinal compression
and lateral extension. The argument above is not changed
provided the stress levels remain at about the same
magnitude.)

Surge mechanism

The tensile stress mechanism above might also cause
exceptional lubrication of a surging glacier. Surging glaciers
elongate at a rate of the order of 0.1a™". This strain would
require oy to have a value of the order of 140kPa. This
longitudinal stress could lead too to a water layer (film) of
variable but sufficient thickness to allow fast surge sliding
motion.
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