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STRUCTURAL PROPERTIES OF WEAK COTYPE 2 SPACES 

PIOTR MANKIEWICZ AND NICOLE TOMCZAK-JAEGERMANN 

ABSTRACT. Several characterizations of weak cotype 2 and weak Hilbert spaces 
are given in terms of basis constants and other structural invariants of Banach spaces. 
For finite-dimensional spaces, characterizations depending on subspaces of fixed pro­
portional dimension are proved. 

1. Introduction. Results of this paper concern weak cotype 2 spaces and weak 
Hilbert spaces. Both classes are important in the local theory of Banach spaces, by 
virtue of their connection to the existence of large Euclidean subspaces. Recall that 
spaces of weak cotype 2 have been introduced by V. D. Milman and G. Pisier in [M-P] 
as spaces such that every finite dimensional subspace contains a further subspace of a 
fixed proportional dimension which is well Euclidean. This class has numerous other 
characterizations, either by geometric invariants combined with linear structure, or by 
inequalities between various ideal norms of related operators and their ^-numbers (see 
e.g., [P.3] and references therein). 

On the other hand, recent results of the authors ([M-T.l], [M-T.3]) relate certain 
structural invariants of proportional dimensional quotients of a finite-dimensional space 
to volumetric invariants of the space; thus, via the well developed theory, to the existence 
of Euclidean subspaces or quotients. For example, finite-dimensional results in [M-T.3] 
imply, although it is not explicitly stated in the paper, that if a Banach space has the 
property that its all subspaces have a basis with a uniform upper bound for the basis 
constant, then the space is of weak cotype 2. This property is obviously much too strong to 
characterize Banach spaces of weak cotype 2; for instance, spacesZ^ (with/? f 2) contain 
subspaces without approximation property, hence without basis. A natural question then 
arises whether a weaker condition involving structural invariants of the same type can in 
fact characterize spaces of weak cotype 2. To put it more precisely, whether it is possible 
to replace in the original weak cotype 2 definition, the property of being "well Euclidean" 
by (much weaker) properties of having some structural invariants "well bounded". 

One of the results of the present paper (Theorem 4.1 and the remark after Theorem 4.2) 
shows that this is indeed possible. There exists <$o > 0 such that a Banach space X is of 
weak cotype 2 if and only if every finite dimensional subspace E contains a a subspace 
Eo C E with dim£o > ^odimi: such that certain structural invariants (of Eo) have 
a uniform upper bound. The invariants considered here are the basis constants or the 
complexification constants (for Banach spaces over reals only) or the symmetry constants 
or in fact some other related parameters. 
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In the theory of proportional-dimensional subspaces of finite-dimensional spaces it 
is sometimes of interest to deduce properties of a fixed ^-dimensional space X from an 
information on its all an -dimensional subspaces, with a fixed proportion 0 < a < 1. A 
fundamental example is well known and follows from the theory of type and cotype: if all 
an -dimensional subspaces of X are C-Euclidean than X itself is/(Q-Euclidean (cf, e.g., 
[T]). A recent more difficult example can be found in [B] and [M-T.l]. In Section 5 we 
study ^-dimensional spaces X such that the basis constant of an arbitrary aw-dimensional 
subspace E C X satisfies bc(E) < C. This leads to proportional dimensional versions 
of a result mentioned above which follows from [M-T.3]. In particular we show that 
the bound bc(£), bc(F) < C for all a«-dimensional subspaces E and all aw-dimensional 
quotients F of X implies that X is a weak Hilbert space, with the constant bounded above 
by a function of C. 

The arguments in the paper are based on two related ideas. The first one is a technique 
developed in [M-T.l] and [M-T.3] of finding rather strange finite dimensional subspaces 
in spaces which fail to have weak cotype 2. In the dual setting, which is more convenient 
to use, it can be described as follows. First, for a finite dimensional Banach space E, 
using deep facts from the local theory of Banach spaces, we find a quotient F which can 
be placed in a special position in RN; and next we use a random (probabilistic) argument 
in order to prove that majority of quotients of F enjoys relative lack of well bounded 
operators. The second idea comes from [M-T.2], where the authors have proved that a 
random proportional-dimensional quotient F of Y[ cannot be embedded into a Banach 
space F\ with a nice Schauder basis and dim F\ < (1 + <5) dim E for some small fixed S. 

The paper is organized as follows. In Section 2 we collect a background material 
related to geometry and local theory of Banach spaces. In Section 3 we discuss spaces 
with few well bounded operators and related volumetric lower estimates. The main 
results of the paper are proved in Sections 4 and 5. Section 6 contains a proof of a 
random result which generalizes the result from [M-T.2] to arbitrary finite-dimensional 
Banach spaces. 

We shall consider only Banach spaces over reals. The complex case can be dealt with 
in an analogous manner. Our notation will follow [P.3] and [T]. We also refer the reader 
to [P.3] for more details on Banach spaces of weak cotype 2. 

2. Preliminaries. We will use the following geometric definition of the weak co-
type 2 spaces. A Banach space X is of weak cotype 2 whenever there exist 0 < 80 < 1 
and Do > 1 such that every finite-dimensional subspace E of X contains a subspace 
E C E with dim £ = k > ^odimF and with the Banach-Mazur distance satisfying 
d(£, l\) < Do. This definition is equivalent to the one most commonly used at present; 
in fact, it is shown in [P.3], Theorem 10.2, that the weak cotype 2 constant of X satisfies 

(2.1) wC2(X)<C6olD0, 

where C is a universal constant. 
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STRUCTURAL PROPERTIES OF WEAK COTYPE 2 SPACES 609 

Recall that a Banach space X is of weak type 2 whenever Jf* is of weak cotype 2 and 
X is /C-convex. In particular, the weak type 2 constant satisfies 

(2.2) wT2(X) < K(X)wC2(X*). 

A Banach space X is a weak Hilbert space if X is of weak type 2 and of weak cotype 2. 
We have no use of the technical definition of the weak Hilbert constant, let us just recall 
that this constant is controlled from above by wT2(X) and wC2(X). Finally, the following 
inequality is an easy consequence of the result of Pisier from [P.2], Corollary 9, which 
in turn are related to Pisier's deep /C-convexity theorem. If X is a weak Hilbert space, 
then the AT-convexity constant of X satisfies, for any 0 < 0 < 1, 

(2.3) K(X) < C(Q)(wT2(X)wC2(Xjf. 

Let (is, || • ||) be an ^-dimensional Banach space. For the Banach-Mazur distance 
d(is, I") fr°m E t 0 t n e Euclidean space f{ w e w i ^ u s e a shorter notation of d#. Fix a 
Euclidean norm || • ||2 on E and identify E with Rn in such a way that || • ||2 becomes the 
natural /2-norm on Rn. Let us recall that the volume ratio of E, vr(E), is defined by 

vr(^) = (vol^/vol '£m a x)1 / n
7 

where 'Emax C BE is the ellipsoid of maximal volume contained in BE. 
More generally, for any ellipsoid £ C BE, let | • \2 be the associated Euclidean norm, 

and let p = (vo l^ /vo l E)1/". Szarek's volume ratio result (cf., e.g., [P.3] Theorem 6.1) 
says that for any 1 <k<n, there exists a subspace H C E with dim// = k such that 

(2.4) cp-nl{n-k)\x\i < \\A\ < \x\2 forx G //, 

where c > 0 is a universal constant. It should be mentioned that some other volumetric 
invariants allow estimates with much better asymptotic dependence on A = k/n, as 
A —> 1 (cf, e.g., [P.3]). However application of these more delicate methods would 
complicate proofs without making essential improvements to final inequalities. 

For k < n set 

Vk(E) = Vk(BE) = sup{(volPF(^)/volPF(^2)) l A I F C £,dimF = * } . 

This invariant is related to the notion of volume numbers of operators (cf. [P.3] Chapter 9). 
In particular, Vk(E) < VX(E) for 1 < / < k < n. 

The relevance of this invariant to the problem of finding Euclidean quotients of E is 
described by the following standard lemma. Its proof is based on Santalo inequality and 
the volume ratio method (2.4) used in the dual space E*. We leave further details to the 
reader. 

LEMMA 2.1. Let0<(3< l.LetE = (Rn,\\ • ||) be a Banach space such that BE dBn
2 

and let a >0 satisfies Vpn(E) > a. For every a > 0 there is a quotient G ofE such that 
dimG > /3cr(l + a)~ln and do < Ca~~^l+CT\ where C > 1 is a universal constant. 
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The following fact is an easy consequence of [P.3], Lemma 8.8. Let £ be an ellipsoid 
on E with E C S - E and let F be a quotient of E with dimF = Xn and with the quotient 
map Q\E —> F. Then 

(2.5) (vol 0 ( ^ ) / v o l 0(E))1 / A" < a(\)(vo\BE/vol<E)l/Xn, 

where a(X) > 1 depends on A only. In particular, vr(F) < a(X) vr(£)1/A. 
The next lemma shows that given a finite-dimensional Banach space one can dramati­

cally improve geometric properties of its unit ball by passing to quotients of proportional 
dimensions. The argument is based on several deep results in the local theory of Banach 
spaces ([Mi], [B-S], cf also [P.3]). The lemma implicitly uses the ellipsoid of minimal 
volume containing the unit ball BE of a given ^-dimensional space E\ in fact it is con­
cerned with the following property of a Euclidean norm | • I2 on E: there exists c > 0 
such that every rank k orthogonal projection P in (£, | • I2) satisfies 

(2.6) \\P:E-+(E,\.\2)\\>c(k/n)1'2. 

The norm ||| • ||| associated to the minimal volume ellipsoid satisfies (2.6) with c = 1 (cf, 
e.g., [T] Proposition 3.2.10). 

Note that if E is a finite-dimensional Banach space and | • I2 is an Euclidean norm on 
E then each quotient map Q:E —» F induces on F in a natural way an Euclidean norm 
I • \2j?. Namely, we set B2,F - Q(B2,E\ where BI,F and B2,F stand for Euclidean balls in 
F and E respectively. 

LEMMA 2.2. For every 0 < A < 1 there is p = p(A) > 1 and for every c > 0 there is 
K = &(A, c) > 1, such that the following conditions hold for any n-dimensional Banach 
space E: 

(i) There exists a Euclidean norm \ • (2 on E, with the unit ball B2, such that 

(2.7) (2l'2dEylB2CBECB2 

and it satisfies (2.6) with c = 2~1/2; 
(ii) there exists a Xn-dimensional quotient F ofE satisfying vr(F) < p; 
(Hi) if\-\i is a Euclidean norm on E satisfying (2.6) for some c > 0, then there exists 

a Xn-dimensional quotient F of E and an orthonormal basis {XJ} in (F, | • I2) such that 

(2.8) max||x/||/j. < K. 
i 

PROOF. The proof of (ii) and (iii) was already given in [M-T.l], Proposition 3.5. As 
for (i), the Euclidean norm described in this condition combines properties of the norm 
HI • I associated with the ellipsoid of minimal volume and a norm which determines the 
Euclidean distance d#. Indeed, let ||| • HI' be a norm satisfying 

wr<iwi<d£H/ ioxxeE. 
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Then for x £ is set 

|x|2 = 2-I/2(||x||p + B |xr ) I / 2 . 

Clearly, |JC|2 < ||x|| < 21/2d£|x|2,forx <E E, hence (2.7) holds. To prove that | • I2 satisfies 
(2.6), observe that for every x £E and every rank k orthogonal projection P in (F, | • I2) 
one has 

\Px\2 = 2-'l\lPxf+ %Px\t)xl2 

>2-1/2|| |ftc | | |>r'/2|| |/»1/>«|||=2-1/2 | | |P1*|||, 

where Pi is the orthogonal projection in (F, ||| • |||) with kerPi = kerF and next apply 
(2.6) in the space (F, ||| • |||). • 

If F is a finite-dimensional space and B2 is a Euclidean ball on F, then, for a fixed 
orthonormal basis {JC,} in F, by B\ we shall denote abs conv{x/}. 

COROLLARY 2.3. For every 0 < A < 1 there is p = p(X) > 1 and K, = «(A) < 1, such 
that an arbitrary n-dimensional Banach space E satisfies: 

(i) there exist a \n-dimensional quotient F ofE and a Euclidean ball B2 on F such 
that vr(F) < p and 

KBX C BF and {2xl2dEyxB2 C BF C B2. 

(ii) there exist a Xn / 2-dimensional quotient FofE and a Euclidean ball B2 on F 
such that for some (21/2d£)_1 <a<lwe have 

KBX C BF, aB2 CBFC B2, (\o\BF/vo\(aB2))
2,Xn < p. 

PROOF. Condition (i) follows directly from Lemma 2.2 by chosing a Euclidean norm 
on E satisfying (2.7) and then passing twice to quotient spaces satisfying the conclusions 
of Lemma 2.2(h) and (iii). Notice that a Euclidean ball B2 on E determines the natural 
Euclidean ball on every quotient F on F, and if B2 satisfies (2.6) and dimF is proportional 
to dimF then the ball on F satisfies (2.6) as well, with the constant depending on the 
proportion A. The estimate for volume ratio follows from Lemma 2.2 (ii) by using (2.5). 
Note, however, that the resulting function p(A) is a power, depending on A, of the upper 
bound from Lemma 2.2(h). 

To get (ii), fix 0 < A' < 1 to be determined later. First pass to a A'w-dimensional 
quotient Fl of E satisfying Lemma 2.2(i) and (ii). Let £ be the maximal volume ellipsoid 
on F'; there exists a quotient F" of F' with dimF" = dimF'/2 and the quotient map 
Q\F' —> F" such that on F" we have g (£) = aQ(B2\ for some a. Clearly, a < 1 and 
(i) implies that a > (2l/2dE)~x. Passing to a quotient F of F" with dimF = X' dimF", 
and using Lemma 2.2(iii), we get all required inclusions; the bound for the ratio of 
volumes follows from (2.5). Given 1/2 < A < 1 choose A7 such that dimF = Xn, then 
all constants involved will depend on A. Again, the function p(A) is a power of the upper 
bound from Lemma 2.2(H). • 
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Volumetric techniques for finding Euclidean sections provide Euclidean subspaces 
of small proportional dimensions. The next lemma describes a method from [M-P] of 
constructing Euclidean subspaces of large proportional dimensions in spaces saturated 
with small Euclidean ones. The proof of the statement below can be found in [M-T.l] 
Theorem 4.2. 

LEMMA 2.4. Let 0 < <5 < £ < 1. Let Z be an N-dimensional space such that every 
£AJ-dimensionalsubspace Z\ ofZ contains a subspaceH with dim// > (£ — S)N such 
that AH < A for some D > 1. Then for every 0 < r\ < 1 — S there exists a subspace H 
ofZ with dimH > (1 — 5 — r])N such that d# < cD, where c = c(£, 6,77). 

Let E be an ^-dimensional Banach space and let || • H2 be a Euclidean norm on E. 
Recall that an operator T: E —> E is said to be (&, (3)-mixing for &, f3 > 0, if and only if 
there is a subspace F C E with dim/7 > k such that \PF±Tx\2 > f3\x\2 for every x G F9 

where PF± denotes the the orthogonal projection onto F1. If this is the case then we write 
T G Mixw(&, /?). The fact whether a fixed operator T is in Mixw(&, /3) may depend on the 
choice of the Euclidean structure on E. Clearly, if A: > £, then Mix„(A:, (3) C Mix„(£, /3). 
The following proposition is a folklore one (cf, e.g., [Sz.2] Lemma 3.4A, [Ma.2]). 

PROPOSITION 2.5. Let E be an n-dimensional Banach space. For an arbitrary Eu­
clidean norm \ • \i on E one has 

(i) for every projection P of rank k < n/2, we have 2P G Mixw(&? 1); 
(ii) if the basis constantbc(E) < Mthen for every k € N there is an operator T:E —> E 

with \\T\\ < 2MandTE Mixn(k, 1); 
(Hi) letT:E-*E,keN and/3 > 0. Then T G Mixw(&, f3) if and only ifT G Mix„(A;, /3) 

(with respect to the dual Euclidean norm \ • \^). 

3. Volumetric estimates. Technical result which this paper is based upon yields the 
existence, for a given finite-dimensional Banach space, of a quotient space, say F, of 
proportional dimension which admits relatively few well bounded operators. Moreover 
the same property is satisfied in any further quotient Fo of F and in any space F which 
admits F as its quotient, provided that the dimension of the new spaces is close enough 
to the dimension of F. 

In this section we shall work with an TV-dimensional Banach space E = (R^, || • ||), 
on which we always consider the (natural) Euclidean norm || • ||2 and the associated 
Euclidean ball B^. If F is a quotient of E, with the quotient map Q: E —> F, then the 
natural Euclidean norm on F has the unit ball Q{B^). Unless otherwise stated, these 
natural Euclidean norms are used for all geometric invariants. 

First we discuss quotients which admit lower estimates for norms of mixing operators. 
The main analytic estimate is stated in the following theorem; the proof involves a random 
construction and it is postponed until Section 6. 

THEOREM 3.1. For an arbitrary 0 < 5 < 1, 0 < 77 < 3/8 and 0 < e < 2~5r/, set 
7 = 2~58£T]f and for n G N set N = (1 + e)n. Let E = (RN, \\ • ||) be an N-dimensional 
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Banach space such that BE C B%. Let p > 1, 0 < n < 1 and 0 < a < 1 satisfy 

(3.1) vr(F)<p, KBN
XCBE, aB%cBE. 

Then E admits an n-dimensional quotient F such that for every operator T:F—*F with 
T G Mix„(77tf, 1), and every quotient map Q:F—> Q(F) with rank Q > (1 — l)n, one has 

(3-2) \\QT:F-> Q(F)\\ > cVmlA{E)-'a\ 

where c = c(£, 77,«:, p) > 0. 

REMARK. Theorem 3.1 remains valid also for 8 = 0. In this case we have 7 = 0 (note 
that the constant c does not depend on 7) and the theorem reduces to Theorem 2.2 from 
[M-T.3]. 

Formula 3.2 implies that the space F as well as its further quotients Fo admit relatively 
few well bounded operators. Indeed, one can formally deduce from it well bounded 
operators on these spaces are small perturbations of a multiple of the identity operator. 

PROPOSITION 3.2. With the same notation as used in Theorem 3.1 ifE = (R^, || • ||) is 
an N-dimensional Banach space such that BE C #^ and satisfying (3.1), then E admits 
an n-dimensional quotient F which satisfies the following two conditions: 

(i) for every quotient Fo of F with dimFo = k > (1 — l)n and every operator 
T: Fo —> FQ, with T E Mix^rjok, 1), where r\o = 77/(1 — 7), we have 

(3.3) ||r|| > cFW4(£)-V, 

(ii) every Banach space F with dimF = / < (1 + 7)« such that F is a quotient of 
F admits a Euclidean norm such that every operator T:F —> F, which is (f//, \)-mixing 
with respect to this norm, where fj = (77 + 27), satisfies 

(3.4) \\f\\>cVml,{E)-'a6. 

Here c = c(e, 77,«:, p) > 0. 

PROOF. Let F be the quotient of E satisfying Theorem 3.1. In particular, F admits the 
natural Euclidean norm inherited from E. Set 

K = infmf{\\QT:F-*Q(F)\\ \ f : F - > F , f G Mixn(ryw, 1)}, 

where the first infimum runs over all quotient maps Q: F —•* Q(F) with rank Q > (1 — 7)n. 
To prove (i), pick a quotient Fo = F/Go, with dimF0 = k > (1 — l)n. Identify Fo with 
the linear subspace GQ C F, under the norm whose unit ball is QG0(BF)\ here QG0 is 
the orthogonal projection with kerg^o = Go. Fix an arbitrary (77^, l)-mixing operator 
T:F0 —> F0. Pick any t:F -> F such that QGJ = TQGo. Since for JC G ^ we 
have tx = Tx + z, for some z £ Go, then T G Mix„(77/A:, 1). Since r\'k > rjn, then 
T G Mix„(77«, 1). Thus, by the definition of K we have 

| | r : F 0 ^ F o | | = 1 1 6 ^ 6 ^ ^ - . F o | | = 1 ^ 7 - ^ - ^ F o | | > ^ , 

https://doi.org/10.4153/CJM-1996-032-5 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1996-032-5


614 P. MANKIEWICZ AND N. TOMCZAK-JAEGERMANN 

and (i) by the estimate (3.2). 
The proof of (ii) is very similar. Fix an /-dimensional space F with / < (1 + l)n 

such that qF:F —> F is the quotient map. Consider an arbitrary Euclidean norm on F, 
with the unit ball B2, such that qF(B2) is the natural Euclidean ball on F. Let T:F—+F 
be (f)/, l)-mixing. If T:F -> Fsatisfies TqF = qFTthen clearly, ||f|| > \\qFT\\ = \\T\\. 
Moreover, since d\mkevqF < 7«, then T G M\xn(f]l — 27«, 1) C Mix„(r/«, 1). Thus 
|| r | | > K and the lower estimate for || F|| follows. • 

It is well known that if for a space F all mixing operators have large norms, then F 
itself and other related spaces have several structural invariants, such as basis constant or 
symmetry constant or complexification constant, also bounded below (cf, e.g., [M-T.3] 
Section 6). We give an example of an estimate of this type. 

COROLLARY 3.3. For an arbitrary 0 < e < 2~13 and 0 < 8 < 1, set 7 = 2~ue8, 
and for n G N set m = (1 + 2s)n. Let E be an m-dimensional Banach space and let 
dF = d(F, /^). There exists an n-dimensional quotient FofE such that for any further 
quotient FQ of F with dimFo > (1 — l)n, and for any space F with dimF < (1 +l)n,for 
whose F is a quotient, denoting by F' either FQ or F, we have 

(3.5) bc(F')>cF2- I.J,(£)-1di*. 

Moreover, for any Banach space Z such that every n-dimensional subspace of Z is 
D-Euclidean we have 

(3.6) bc(F/ 02 Z) > cD~l V2-wn(E)-l'2d~6/2. 

Here c = c(e, 8) > 0. 

The choice of r\ = 2~8 made below when applying Proposition 3.2 was done for 
convenience of past references. With appropriate modifications the same argument would 
work for an arbitrary 0 < 77 < 3/8. 

PROOF. By Corollary 2.3(i), there exists a (1 + £)«-dimensional quotient E of E and 
a Euclidean ball on E, B2 D Bg, such that (3.1) holds, with some p = p(e), K = K(S) and 
a = (21/2d£)-1. 

Fix 7] = 2~8. Then operators on F' which are (5 • 2~9dimF /, l)-mixing are also 
(77'dimF7, l)-mixing, where 7/ = r/o or 77' = 7), depending on the choice of F' being 
Fo or F Therefore, by Proposition 3.2, these operators have norms bounded below by 
K = cV2-\on(E)~ldg6. Thus the conclusion follows from Theorem 2.1 in [M-T.3]. • 

REMARK. The quotient space F itself satisfies (3.5) and (3.6) as well, with 8 = 0. 
This was the content of Theorem 2.4 in [M-T.3], and it followed from the construction 
in [M-T.3], Theorem 2.2, which preceded the present construction. 

It is of independent interest to study a relationship between various ^-numbers of 
operators acting in spaces discussed in Theorem 3.1. The advantage of this approach lies 
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in the fact that resulting estimates are valid for all operators, and not only for mixing 
ones. 

Let us recall relevant definitions. Let X and Y be Banach spaces and let T: X —> Y be 
a bounded operator. Let A: be a positive integer. The A>th Kolmogorov number dk(T) is 
defined by 

dk(T)=mfsuVM\\Tx-yl 
z^YxeBxy

eZ 

where the infimum on Z runs over all subspaces Z of Y with dim Z < k. The dual concept 
is that of Gelfand numbers which are defined by 

ck(T) = inf{||7|z|| | Z C Jf,codimZ < * } . 

We have ck(T) = dk(r) for arbitrary X and Y and T. 
As a consequence of Theorem 3.1 we get. 

PROPOSITION 3.4. For an arbitrary 0 < e < 2 - 1 0 andO < <5 < 1 sen = 2~108E, and 
for n G N set N = 2(1 + 2e)n. Let E = (R^, || • ||) be an AJ-dimensional Banach space. 
Then E admits an n-dimensional quotient F such that for every operator T:F -^ F we 
have 

dln{T) > cV2-ln{E)-xdTE
b inf cn/4(T- AIdF), 

where c = c(s) > 0. 

PROOF. Let FQ be a (1 + £)«-dimensional quotient of E satisfying condition (ii) of 
Corollary 2.3, for a Euclidean ball Bj. and some 0 < K = /c(e) < 1, p = p(e) and 
0 < a < 1. Let F be a quotient of FQ satisfying (3.2) of Theorem 3.1, with r\ = 2~5. 
Let Q.FQ —* F be the quotient map. Let be the Euclidean norm on F corresponding to 
0O&2); in particular, ||x|| < «—1 ll-̂ IU for* G F. Then (2.5) implies that 

(vo\BF/vo\Q(aB»))l/n < C(e)pl+£. 

By the volume ratio argument, pick a \5n/ 16-dimensional subspace HofF such that 

(3.7) ^ _ 1 |Wl2 < |W| <tf_1|W|2 forxG// , 

v/ithA=A(e) = (C(e)pl+£)16. 
Fix an arbitrary T:F-^F satisfying 

inf{| |(r-AId)|G | |2 I A G R , G c F , d i m G = 7«/8}= 1. 

Pick Go C F with dimG0 = 7«/8 and A0 such that | | ( r - AoId)|Go||2 < 2. Set Gx = 
{x G HH Go I Tx G H}. Then dimGi > 3n/4. By (3.7) one has 

\\(T- A0Id)x|| < 2i4||jc|| forx G d . 

Hence | |(r - A0 Id)|Gl || < 2A, which means 

(3.8) mfcn/A(T-XldF)<2A. 
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On the other hand, the normalization condition for T and Lemma 2.1 in [Ma.3] imply 
that 8 T is (2~5n, l)-mixing. Denoting the right hand side of (3.2) by K, we get 

M\\QT:F->Q(F)\\>K/S, 

with the infimum taken over all quotient maps Q:F—> Q(F) with rank Q > (1 — l)n. By 
the definition of Kolmogorov numbers this means that dln{T) > K/%. Combining this 
estimate with (3.8) we conclude the proof. • 

4. Characterizations of infinite-dimensional spaces. As mentioned in the intro­
duction, if a Banach space X has the property that its all subspaces have a basis with a 
uniform upper bound for the basis constant, then X is of weak cotype 2. In fact, if there 
exists M < oo such that bc(£) < M for every subspace E of X, then wCi{X) admits 
an upper estimate by a function of M. Indeed, let F b e an arbitrary finite-dimensional 
quotient of X* and consider the Euclidean structure of F determined by the ellipsoid of 
minimal volume containing the unit ball BF. Then the dual version of Theorem 2.4 in 
[M-T.3] implies that Vpn(F) > c/M, for some universal constants /? > 0 and c > 0. 
Then the conclusion follows immediately from Lemma 2.1, by passing back to the space 
X. 

A similar general line of argument is used to prove characterizations of weak cotype 2 
spaces in terms of the basis constant; we also obtain related characterizations in terms of 
an existence of uniformly bounded projections and mixing operators. 

THEOREM 4.1. There exists a constant 7o > 0 such that a Banach space X is of weak 
cotype 2 if and only if there exist a constant M > 1 such that every finite-dimensional 
subspaceE ofXcontains a subspaceE0 C E with k = dim£o > (1 — 1 o) dimEsatisfying 
one of the following conditions: 

(i) bc(£0) < M, 
(ii) there exists a projection Q: E$ —> EQ ofrankk/S such that \\Q\\ <M, 

(Hi) for every Euclidean norm on EQ there exists an operator T\ EQ —> EQ which is 
(k/8, \)-mixing with respect to this norm, such that \\T\\ <M. 

Moreover, if one of the conditions (i)—(iii) holds then wCiiX) < CM4, where C is a 
universal constant. 

The counterpart of this result for superspaces is less satisfactory, as it gives implication 
in one direction only. 

THEOREM 4.2. There exists a constant 7o > 0 such that whenever X is a Banach 
space for which there exist a constant M > 1 such that for every finite-dimensional 
subspace E of X there is a Banach space E D E with k = dimE < (1 + 7o)dim£' 
satisfying one of the following conditions 

(i) bc(£) < M, 
(ii) there exists a projection Q:E—>E of rank kj 8 such that || Q\ <M, 

(Hi) for every Euclidean norm on E there exists an operator T:E —> E which is 
{kj 8, \)-mixing with respect to this norm, such that \\T\\ <M, 

then X is of weak cotype 2 andwC2(X) < CM4, where C is a universal constant. 
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REMARK. Beside conditions (i) and (ii) of the above theorem there is a number of 
other invariants whose uniform boundedness implies condition (iii). They are symmetry 
constant (cf [Ma.l], [Ma.2]), complexification constant (for real Banach spaces) or the 
Banach-Mazur distance from the space to its complex conjugate (for complex Banach 
spaces) (cf. [Sz.2]). All these and other invariants could be used for versions of all 
theorems of this section (cf. also [M-T.3], Section 6). 

REMARK. Note that there is an essential difference between the Euclidean case in 
the definition of weak cotype 2 and the results above. Namely, we do not know whether 
analogous characterizations are valid for an arbitrary proportion S G (0,1) (not necessary 
8 > 1 — 7o). Recall that it is so in the Euclidean case: if for a Banach space X there 
exists So > 0 such that every finite dimensional subspace F of Xcontains a Co-Euclidean 
subspace Fo C F with dimFo > <5o dimF, then an analogous condition holds for every 
8 G (0,1), with the constant C depending on 6. It seems that the present difficulty 
is connected with a problem of Petczynski in [Pe.l] whether every finite dimensional 
Banach space E can be embedded into a Banach space F with dimF < 2 dim is having 
a nice Schauder basis. For dimF close enough to dimF, this question was answered in 
[M-T.2] in the negative. 

PROOF OF THEOREM 4.1. Clearly, the weak cotype 2 assumption implies property (i), 
which implies (ii), which implies (iii). We shall prove that conversely, property (iii) 
implies that X is of weak cotype 2. Set 7o = 2 - 2 0 . Under our assumptions we have the 
following. 

CLAIM. For every finite-dimensional subspace E C X there exists a subspace H C E 
with dim// > 2 - 9 dimF and d# < cM2dJ , where c is a universal constant. 

PROOF OF THE CLAIM. Let e = 2~9,77 = 2 - 4 , S = 2 - 2 , and 7 = 7o- Fix an arbitrary 

finite-dimensional F C Xand let n G N be such that dimF = (1 + 2e)n. 
Set Z = F*. Let Z\ be a quotient of Z with dim Z\ = (1 + e)n satisfying condition (i) of 

Corollary 2.3. We also fix the Euclidean structure on Z\ introduced in this condition. Let 
Z2, with dimZ2 = n, be a quotient of Z\ constructed in Proposition 3.2. Now we use (iii) 
in the dual form valid for every finite-dimensional quotient of X* (cf Proposition 2.5(iii)). 
It follows that there exists a Banach space Z3, with dimZ3 = k < (1 +7)n, such that Z2 is 
a quotient of Z3 and such that Z3 admits a (k/ 8, l)-mixing operator £0 with ||So|| <M. 
On the other hand, by the choice of Z2, every (r/A:, l)-mixing operator T on Z3 satisfies 

\\T\\>cV^n(Z^6, 

where 7/ = 77/(1 — 7). Since r\' < 1 /8 , the same estimate holds for So- Thus F2-6„(Zi) > 
cd^M - 1 . Applying Lemma 2.1 with /3 = 2~6 and a = 1, we obtain a quotient Z4 of Z3 
with dimZ4 > 2'7k > 2~9dimF and dZ4 < CdfM2. Since dz = dE, the proof of the 
Claim is concluded by setting H = Z^. 

Passing to the proof of the theorem, fix an arbitrary finite-dimensional subspace 
Xo C X. Denote by D the smallest number such that every subspace X\ of XQ contains a 
subspace G CX\ with dim G > dimXi /2 and dc < D. Clearly, D is finite. 
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We then know that for any m and any subspace X\ of XQ with dimXj = m there is a 
subspace H C X\ with dim// > 2~wm such that dH < cM2Dxl2. Indeed, first pick E C 
X\ with dim£ > m/2 such that d# < D, and then apply Claim to obtain H. Specifying 
m = (1/2) dimAb we can use Lemma 2.4 with £ = 1/2,8 = (1 - 2~10)£ and rj = 2 " % 
to get a subspace H C Xo satisfying dim// > (l/2)dimXo and d^ < c'M2Dll2, where 
c' is a universal constant. By the definition of D, this implies D < c'M2Dxl2, hence 
D < c"M*. By (2.1), this completes the proof. • 

Theorem 4.2 has almost identical proof, with condition (ii) of Proposition 3.2 replacing 
(i). We shall omit further details. 

REMARK. Using Lemma 2.1 in a more delicate way and choosing 5 sufficiently small 

one can get in the theorems above wC2(X) < C(a)Ml+(J, for every a > 0. 

We now pass to characterizations of weak Hilbert spaces. 

THEOREM 4.3. There exists a constant1Q > 0 such that a Banach space X is a weak 
Hilbert space if and only if there exists a constant M > 1 such that one of the following 
conditions is satisfied for every subspace Y C X: 

(i) every finite-dimensional subspace EofY contains a subspace E$ with dim/so > 
(1 — 7o)dim£ which admits a projection Q:EQ —» E$ with rankg = dim£o/8 and 
II Gil — ̂  and every finite-dimensional quotient F of Y admits a quotient Fo with 
dimFo > (1 — 1o) dimF which admits a projection R:FQ-^ FQ with rank/? = dimFo/8 
and\\Q\\<M, 

(ii) for every finite-dimensional subspace E of Y there is a Banach space E containing 
E with dim£ < (1 + 7o)dim£ which admits a projection Q\E —> E with rankG = 

dimE/S and \\Q\\ < M, and for every finite-dimensional quotient F ofY there is a 
Banach space F which has F as a a quotient and dimF < (1 + 7o) dim F which admits 
a projection R: F —> F with rankR = dimF/8 and \\R\\ <M. 

PROOF. Clearly, if X i s a weak Hilbert space then both (i) and (ii) are satisfied. 
Conversely, assuming that one of conditions (i) or (ii) is satisfied, by Theorem 1 in 
[M-T.2], Xdoes not contain V[ 's uniformly. Hence, by Pisier's result, [P. 1 ], (cf also [P.3], 
Theorem 11.3), X is A'-convex. 

If (i) holds, by Theorem 4.1 we infer that both X and X* are of weak cotype 2. Thus 
X is a weak Hilbert space. In case of (ii), we use Theorem 4.2. • 

REMARK. If X has the approximation property, the above theorem remains valid if 
we restrict ourselves to the case Y = X only. This can be easily seen by using for example 
[P.2], Theorem 2. 

REMARK. In Theorem 4.3, the assumption on the existence of uniformly bounded 
rank k/ 8 projections can be replaced by the existence of uniformly bounded (&/8,1)-
mixing operators or by a uniform bound for basis constants. 
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5. Subspaces and quotients of proportional dimension. The main result of this 
section is concerned with subspaces and quotients of a fixed proportional dimension. 

THEOREM 5.1. Let 0 < a < (1 + 2~8) -1 and letM > 1. Let G be an n-dimensional 
Banach space. If every ocn-dimensional subspace E and every ocn-dimensional quotient 
FofG have the basis constants bc(£) < M and bc(F) < M, then G is a weak Hilbert 
space and the weak type 2 and the weak cotype 2 constants satisfy the estimates 

wT2(G) < C(a)M3h2^n and wC2(G) < C(a)M3 1 2 1 /n . 

The proof of the theorem requires several steps. To begin with we consider only one­
sided assumptions on G, that is, the assumptions on its subspaces. In such a situation, 
the following proposition establishes a weak cotype 2 property, provided that the space 
admits a nice direct sum decomposition. 

PROPOSITION 5.2. Let 0 < a < 1, M > 1 and let G be an n-dimensional Banach 
space. Assume that G-Z^2 Go, with dimZ > an. If every an-dimensional subspace 
E of G has the basis constant bc(E) < M, then the weak cotype 2 constant of Go 
satisfies wC2(Go) < C(a)(M inf# d//)4, where the infimum runs over all an-dimensional 
subspaces H C Z. 

PROOF. Let H C Z be an aw-dimensional subspace. We shall show that every sub-
space G\ of Go contains a subspace E, with dim!? > 2_12min(dimGi, an) such that 
d^ < C(Md„)4. By (2.1), this will imply wC2(G0) < C(a)(MdH)4, hence the conclusion 
will follow by passing to the infimum over H. Obviously it is enough to consider the 
case dim G\ < an only. 

Fix an arbitrary subspace G\ of Go with k = dimGi < an and let F = G\. By the 
remark following Corollary 3.3 there exists a quotient F\ of F with k! = dimFi > 
(1+2"12)_1A: satisfying (3.6) with £ = 0. Fix an arbitrary H\ C //withdim//i =an-k/. 
We have dn* = d//, < d// and H\ is a quotient of Z. Thus 

bc(F! ©2 H\) > cd„x F2-io,,(FT1/2. 

Observe that (F\ 02 H\T is an aw-dimensional subspace of G. Hence bc(Fi 0 2 H{) = 
bc((Fi 02 HI)*) <M. Combining the last two estimates we get 

V2-uk,(F) > c'(M&H)-\ 

By Lemma 2.1 (with a = 1) we obtain a Euclidean quotient of F of dimension 2~11&/ > 
2~nk and so we complete the proof by passing to the dual. • 

Let us note that the one-sided boundedness assumption alone still yields the existence 
of some Euclidean subspaces, but this time on a proportional level only. 

LEMMA 5.3. Let 0 < a < (1 + 2"12) -1 and let M > 1. Let G be an n-dimensional 
Banach space such that every an-dimensional subspace EofG has the basis constant 
bc(E) < M. Then for every (1 + 2~12)a < A < 1, every \n-dimensional subspace Go of 
G contains a subspaceH with dim// = (A — a)n > 2~nXn such that d// < C(a, X)M2. 
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PROOF. A similar argument as in the proposition above, in which the use of (3.6) is re­
placed by (3.5), shows that every subspace G\ of Go with dimGi = £« = 
(1 +2~12)OT2 contains a CM2 -Euclidean subspace of dimension 2~n an, where C is a uni­
versal constant. The proof is then concluded by applying Lemma 2.4, with^ = (1 — 2~l2)a 
and r/ = 2~l2a, to any A«-dimensional subspace Go of G. • 

An a priori argument which we are going to use is based on a finite-dimensional 
version of one of properties characterizing weak type 2 spaces. A known argument 
(cf [P.3], Chapter 11), localized to a fixed proportional-dimensional level, gives the 
following lemma. Recall that for a Banach space G, K(G) stands for the /T-convexity 
constant of G. 

LEMMA 5.4. Let 0 < 8 < (3 < 1, D > 1, and let G be an n-dimensional Banach 
space. Assume that every fin-dimensional subspace F of G* contains a subspace F\ 
with dimFj = 8n and dyr, < D. Then for every fin-dimensional subspace E of G 
there exist a subspace H with dim// = 8n/2 and a projection Q:G —> H such that 
\\Q\\<C(fi,8)K(G)DdE. 

PROOF. Let E be a /3«-dimensional subspace of G and let w: E —• f2 be an iso­
morphism such that ||w|| ||w-1 | | = d#. We will show that there exist an orthogonal 
rank (8/2)n projection P in t2 and an operator w: G —> l2", such that w = Pw and 
IIw|| < C(fi,8)DK(G)\\w\\. Then H = w~lP(l^) and Q = w~lPw will satisfy the require­
ments of the lemma. 

The argument requires the definition of the /-norm of an operator u: l\ —> Y, for any 
Banach space 7, which is provided e.g. in [P.3], Chapter 3. Similarly as in the proof of 
Theorem 11.6 in [P.3], consider the operator w*: f2

n —> G* /E±. By Lemma 11.7 in [P.3], 
there exists v: t2 —•» G* such that qv = w*, where q: G* —+ G* jEL it the quotient map, 
and that /(v) < 2/C(G)/(w*) < 2(/3«)1/2^(G)||w*||. Note that v is one-to-one. Choose a 
subspaceFi of v(l^n) with dimFi = 8n and d ,̂ < D and let Fj = v~l (F\). By well-known 
properties of operators acting in Hilbert spaces (cf, e.g., [P.3] Proposition 3.13), there 
is a (8/2)n-dimensional subspace F3 C F2 and an orthogonal projection P onto F3 such 
that 

||vP|| < (8n/2)-^2Dl(v) < 23/2{fi/8)-^2K(G)D\\w\\. 

Therefore the required operator is w = Pv*. m 

We are finally ready for the proof of the theorem. 

PROOF OF THEOREM 5.1. Fix 0 < a < 1 / 4 and set a7 = (1+ 2~l2)a. By Lemma 5.3 
with A = 1, pick a subspace H of G with dim// > (1 — a)n and d// < C(a)M2. Since 
all aw-dimensional quotients F of G satisfy bc(F) < M, applying the same lemma for 
G* and A = (1 — a) > a7, it follows that G* satisfies the assumptions of Lemma 5.4 for 
fi = I — a, 8 = 1— 2a and D = C(a)M2. Therefore there exist a subspace Ho of// and a 
projection Q from G onto H0 such that dim//0 = (1 /2 - a)« and ||g|| < C(a)K(G)Kf. 
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Notice that dim HQ > an. Setting Go =ke rg we get that G is isomorphic, up to 2 ||g||, 
to the space Ho ©2 Go- In particular, the basis constant of any an-dimensional subspace 
of Ho ®2 Go does not exceed 2||g||M. Therefore, Proposition 5.2 yields 

wC2(G0) < C,,(a)(2||e||Md//o)4 < C'"(a)K(G)4M21. 

It is obvious from any of the definitions discussed in [P.3], Chapter 10, that wC2(X(B2 Y) < 
c(wC2(X) + wC2(Yf), for arbitrary weak cotype 2 spacesXand Y, where c is a numerical 
constant. Thus we finally get 

(5.1) wC2(G) < 2\\Q\\wC2(Ho ®2 G0) < C(a)K(G)5M31. 

Since the assumption of the theorem hold for G* as well, wC2(G*) also admits the 
same upper bound as in (5.1). This in turn, by (2.2), yields 

(5.2) wT2(G) < K(G)wC2(G*) < C"(a)K(G)6M3{. 

Now we use the result of Pisier stated in (2.3), for e.g., 9 = 1/22, to get K(G) < 
C'"(a)K(G)xl2M3xln. Thus 

K(G)<C0(a)M62/n. 

The proof is then concluded by combining this inequality with (5.1) and (5.2). • 

REMARK. Applying Lemma 5.3 with A arbitrarily close to 1 and Corollary 3.3 with 
e efficiently small, and using (2.3) more carefully, yield more civilized powers of M. 

6. Random quotients. Fix a probability space (Q, P) and let g\,..., g£n be indepen­
dent standard Gaussian vectors in Rn with the density («/27r)n/2e-n"x^/2

9 with respect 
to the standard Lebesgue measure in Rn. 

For u £Q, define a Gaussian projection Q^: RN —> Rn by 

Quiet) = 
ei for i= 1,2,...,« 

( gi-n((J) for / = n + 1, n + 2 , . . . , N. 

In the theorem below, we denote by G7w,„ the set of all 7«-dimensional subspaces of 
Rn. For H E G7w,„ we denote by QH the orthogonal projection with ker QH - H. 

THEOREM 6.1. For an arbitrary 0 < < S < 1 , 0 < r\ < 3/8 and 0 < e < 2~5r], set 
7 = 2~5<5£77, and for n G N setN = (1 + e)n. Let E = (RN, \\ • ||) be an N-dimensional 
Banach space such that BE C B^. Let p > 1 and 0 < a < 1 satisfy 

vr(£) < p aB^C BE. 

There exists 0 < c = c(£, 77, p) < 1 such that ifCl denotes the set 

Q = {a; G Q I \\QHT: QM") - QHQM\ > cV^E)'1^ 
for every T G Mixn(r^«, 1) and every H G G7„5„}, 

then P(Q) > 1 — c\ , where 0 < C\ < 1 is an absolute constant. 
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To deduce Theorem 3.1 pick u G Cl and set F = QU{E). Now it is enough to observe 
that since KB1^ C BE then 

\\QHT: QJE) - QHQ«(E)\\ > *\\QHT: Qjfi) - QHQJM-

For E = /^, Theorem 6.1 was proved recently in [M-T.2] Theorem 4. In the general 
case the argument follows the steps from [M-T.2] blended with a technique which 
enables to pass from quotients of/^ to quotients of arbitrary Banach spaces, as presented 
in [M-T.3], Section 5. Therefore we shall only briefly discuss the main points, referring 
the reader to [M-T.2] and [M-T.3] for the details. 

Passing to the description of the proof of Theorem 6.1, we require additional notation. 
For every u G Q let Hu = span[gi(a;),g2(a;),... ,gew(a;)]. If He G7„,„, let Q^H be the 
orthogonal projection in W with ker QuH = H + Hu. 

Let 

Q.0 = {ueQ\ 1/2 < ||g,-(u;)||2 < 2 for all 1= l , . . . , e / i } . 

Fix T G Mixw(2ry«/3,1). By the definition of the mixing class, there is G C W1, 
dimG = 2r]n/3 such that ||.PG±7x||2 > ||JC||2 for every x G G. The well-known argument 
on half-dimensional circular sections of an ellipsoid yields that there exists Go C G with 
dim Go = T]n/3 and A > 1 such that H^ITJCI^ = A||JC||2 for every x G Go- For every 
w G Q and H G G7w?„ fix an orthogonal projection QUJ,H,G0 *n ^" with 

ker0,//,Go D / f w + / / + G + P G i T P ^ H ^ 

and rank g^/z^o = W 4 -
Set 

TPGogj e 4\a^V-n
l
/4Q^H,GoQu(BE) 

(6.1) fory = l , 2 , . . . , e i i } . 

LEMMA 6.2. LetH e G7„,„. Then 

P("r,//) < (Coa^ja6)6""2'4, 

where Co > 1 is an absolute constant 

PROOF. Set Qu = Q^HlGQ for u; e Q. Fory = 1,2,. . . , en define g£ = PG0& and 
gj' = Pc^g/- Similarly as in [M-T.2], Lemma 7, Qui is independent of the gj's. For every 
fixedy = 1,2, . . . , £« we have 

{UJ G Q | & ^ G o & G 4 A a ^ K - w
1

/ 4 a e . ( ^ ) } 

= {a; G Q | 2 J g ; G 4 A a v V ^ / 4 & , a , ( £ £ ) } . 

Since G C kerg^, the definition of A implies that \~XQ^T is a contraction in the 
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Euclidean norm on W1. Moreover, it has k ^-numbers equal to 1, with k > r\nj3 — in — 
2en > rjn/4. Hence, using Claim 6.2 in [Sz.l] (with n/3 replaced by rjn/4), and the 
fact that ^3/rjgj is a standard Gaussian variable in Go, (note that 3/77 = nj dim Go), cf., 
e.g., [Sz.l] (3.3), we have, by the definition of K^/4, 

P({o; e O I QuTg; G 4\a^ja6Vm)4QMBE)}) 

< {c'4y/l>ocabfnl\ 

where c' is an absolute constant. Hence 

n^H) < (c'ctJr"2'*, 

which concludes the proof of the lemma. • 

The next lemma is a restatement of Lemma 7.3 in [Sz.l]. 

LEMMA 6.3. For every 0 < a < 1, the set 

&k,n = {P: Rn —+W1 \ Pan orthogonal projection with rankP = n — k} 

admits a cr-net 9A in the operator norm in 1% with the cardinality |fW| < C1 a~nk, where 
C> 1 is an absolute constant. 

Using Lemma 6.2 and Lemma 6.3 with a = aa1+<5/4 and k - In, the same argument 
as in the proof of Proposition 5 in [M-T.2] yields. 

PROPOSITION 6.4. Let 0 < a,<5 < 1 and 0 < 77 < 3/8. For an operator T £ 

Mix„(2r^«/3,1) set 

&T = {uea*\\\Q^HT:QMNx)^Q^HQ«(m<2a^ 
(6.2) 
Then for every T G Mix„(277n/3,1) one has 

(6.3) P(Qr) < C 2 (4/a V 2 ( C o a ^ ) ^ 4 , 

where C>\ and Co < 1 are absolute constants. 

The rest of the proof of Theorem 6.1 is essentially the same as of Theorem 4 
in [M-T.2]. One has to replace Proposition 6 there by Lemma 5.3 from [M-T.3], 
with A = 2ay/rja8V~\4 and choosing a > 0 sufficiently small as to ensure that 

(4c(p)y+e2CC%{\ari/* < 1/2. 
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