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STRUCTURAL PROPERTIES OF WEAK COTYPE 2 SPACES

PIOTR MANKIEWICZ AND NICOLE TOMCZAK-JAEGERMANN

ABSTRACT. Several characterizations of weak cotype 2 and weak Hilbert spaces
are given in terms of basis constants and other structural invariants of Banach spaces.
For finite-dimensional spaces, characterizations depending on subspaces of fixed pro-
portional dimension are proved.

1. Introduction. Results of this paper concern weak cotype 2 spaces and weak
Hilbert spaces. Both classes are important in the local theory of Banach spaces, by
virtue of their connection to the existence of large Euclidean subspaces. Recall that
spaces of weak cotype 2 have been introduced by V. D. Milman and G. Pisier in [M-P]
as spaces such that every finite dimensional subspace contains a further subspace of a
fixed proportional dimension which is well Euclidean. This class has numerous other
characterizations, either by geometric invariants combined with linear structure, or by
inequalities between various ideal norms of related operators and their s-numbers (see
e.g., [P.3] and references therein).

On the other hand, recent results of the authors ((M-T.1], [M-T.3]) relate certain
structural invariants of proportional dimensional quotients of a finite-dimensional space
to volumetric invariants of the space; thus, via the well developed theory, to the existence
of Euclidean subspaces or quotients. For example, finite-dimensional results in [M-T.3]
imply, although it is not explicitly stated in the paper, that if a Banach space has the
property that its all subspaces have a basis with a uniform upper bound for the basis
constant, then the space is of weak cotype 2. This property is obviously much too strong to
characterize Banach spaces of weak cotype 2; for instance, spaces L, (with p # 2) contain
subspaces without approximation property, hence without basis. A natural question then
arises whether a weaker condition involving structural invariants of the same type can in
fact characterize spaces of weak cotype 2. To put it more precisely, whether it is possible
to replace in the original weak cotype 2 definition, the property of being “well Euclidean”
by (much weaker) properties of having some structural invariants “well bounded”.

One of the results of the present paper (Theorem 4.1 and the remark after Theorem 4.2)
shows that this is indeed possible. There exists o > 0 such that a Banach space X is of
weak cotype 2 if and only if every finite dimensional subspace E contains a a subspace
Ey C E with dimEy > 6o dim E such that certain structural invariants (of Ey) have
a uniform upper bound. The invariants considered here are the basis constants or the
complexification constants (for Banach spaces over reals only) or the symmetry constants
or in fact some other related parameters.
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In the theory of proportional-dimensional subspaces of finite-dimensional spaces it
is sometimes of interest to deduce properties of a fixed n-dimensional space X from an
information on its all an-dimensional subspaces, with a fixed proportion 0 < o < 1. A
fundamental example is well known and follows from the theory of type and cotype: if all
an-dimensional subspaces of X are C-Euclidean than X itself is f(C)-Euclidean (cf,, e.g.,
[T]). A recent more difficult example can be found in [B] and [M-T.1]. In Section S we
study n-dimensional spaces X such that the basis constant of an arbitrary an-dimensional
subspace E C X satisfies bc(E) < C. This leads to proportional dimensional versions
of a result mentioned above which follows from [M-T.3]. In particular we show that
the bound be(E), be(F) < C for all an-dimensional subspaces £ and all an-dimensional
quotients ' of X implies that X is a weak Hilbert space, with the constant bounded above
by a function of C.

The arguments in the paper are based on two related ideas. The first one is a technique
developed in [M-T.1] and [M-T.3] of finding rather strange finite dimensional subspaces
in spaces which fail to have weak cotype 2. In the dual setting, which is more convenient
to use, it can be described as follows. First, for a finite dimensional Banach space E,
using deep facts from the local theory of Banach spaces, we find a quotient F which can
be placed in a special position in RY; and next we use a random (probabilistic) argument
in order to prove that majority of quotients of F enjoys relative lack of well bounded
operators. The second idea comes from [M-T.2], where the authors have proved that a
random proportional-dimensional quotient F* of /{ cannot be embedded into a Banach
space F'; with a nice Schauder basis and dim F; < (1 +¢)dim E for some small fixed é.

The paper is organized as follows. In Section 2 we collect a background material
related to geometry and local theory of Banach spaces. In Section 3 we discuss spaces
with few well bounded operators and related volumetric lower estimates. The main
results of the paper are proved in Sections 4 and 5. Section 6 contains a proof of a
random result which generalizes the result from [M-T.2] to arbitrary finite-dimensional
Banach spaces.

We shall consider only Banach spaces over reals. The complex case can be dealt with
in an analogous manner. Our notation will follow [P.3] and [T]. We also refer the reader
to [P.3] for more details on Banach spaces of weak cotype 2.

2. Preliminaries. We will use the following geometric definition of the weak co-
type 2 spaces. A Banach space X is of weak cotype 2 whenever there exist 0 < §p < 1
and Dy > 1 such that every finite-dimensional subspace E of X contains a subspace
E C E with dimE = k > 6§, dimE and with the Banach-Mazur distance satisfying
d(E, %) < Dy. This definition is equivalent to the one most commonly used at present;
in fact, it is shown in [P.3], Theorem 10.2, that the weak cotype 2 constant of X satisfies

2.1) wCs(X) < C8;5" Do,

where C is a universal constant.
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Recall that a Banach space X is of weak type 2 whenever X* is of weak cotype 2 and
X is K-convex. In particular, the weak type 2 constant satisfies

22) wh(X) < KXwC(X™).

A Banach space X is a weak Hilbert space if X is of weak type 2 and of weak cotype 2.
We have no use of the technical definition of the weak Hilbert constant, let us just recall
that this constant is controlled from above by wT,(X) and wC,(X). Finally, the following
inequality is an easy consequence of the result of Pisier from [P.2], Corollary 9, which
in turn are related to Pisier’s deep K-convexity theorem. If X is a weak Hilbert space,
then the K-convexity constant of X satisfies, forany 0 < 6 < 1,

23) K(X) < CO(wTmC()"

Let (] - ||) be an n-dimensional Banach space. For the Banach-Mazur distance
d(E,L}) from E to the Euclidean space /5 we will use a shorter notation of dg. Fix a
Euclidean norm || - ||, on E and identify E with R” in such a way that || - ||, becomes the
natural /,-norm on R". Let us recall that the volume ratio of E, vi(E), is defined by

vr(E) = (vol Bg/vol Zmax)l/n,

where L C Bg is the ellipsoid of maximal volume contained in Bg.

More generally, for any ellipsoid E C Bg, let | - |, be the associated Euclidean norm,
and let p = (vol Bg/vol E)'/". Szarek’s volume ratio result (cf, e.g., [P.3] Theorem 6.1)
says that for any 1 < k < n, there exists a subspace H C E with dim H = k such that

24) cp P, < |lxf| < |2 forx € H,

where ¢ > 0 is a universal constant. It should be mentioned that some other volumetric
invariants allow estimates with much better asymptotic dependence on A = k/n, as
A — 1 (cf, eg., [P.3]). However application of these more delicate methods would
complicate proofs without making essential improvements to final inequalities.

For k < n set

Vi(E) = Vi(Br) = sup{(vol Pr(Bi)/vol Pe(B}))"* | F C E, dim F = k).

This invariant is related to the notion of volume numbers of operators (cf- [P.3] Chapter 9).
In particular, Vi(E) < V(E)for 1 <I<k<n.

The relevance of this invariant to the problem of finding Euclidean quotients of £ is
described by the following standard lemma. Its proof is based on Santalo inequality and
the volume ratio method (2.4) used in the dual space E*. We leave further details to the
reader.

LEMMA 2.1. Let0 < 3 < 1. LetE = (R", || - ||) be a Banach space such that By C B
and let a > 0 satisfies Vg,(E) > a. For every o > 0 there is a quotient G of E such that
dim G > Bo(1 + 0)"'n and dg < Ca=(*%), where C > 1 is a universal constant.
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The following fact is an easy consequence of [P.3], Lemma 8.8. Let E be an ellipsoid
on E with E C B¢ and let F be a quotient of E with dim F = \n and with the quotient
map Q: E — F. Then

1/An

2.5) (vol 0(Br) /vol Q(E))' ™" < a(x)(vol Be/vol E)' /™",

where a(\) > 1 depends on X only. In particular, vr(F) < a(\) vr(E)'/*.

The next lemma shows that given a finite-dimensional Banach space one can dramati-
cally improve geometric properties of its unit ball by passing to quotients of proportional
dimensions. The argument is based on several deep results in the local theory of Banach
spaces ([Mi], [B-S], ¢f also [P.3]). The lemma implicitly uses the ellipsoid of minimal
volume containing the unit ball Bg of a given n-dimensional space E; in fact it is con-
cerned with the following property of a Euclidean norm | - |, on E: there exists ¢ > 0
such that every rank k orthogonal projection P in (E, | - |,) satisfies

2.6) IP:E — (E, | - || > c(k/n)'/?.

The norm ||| - ||| associated to the minimal volume ellipsoid satisfies (2.6) with ¢ = 1 (cf,,
e.g., [T] Proposition 3.2.10).

Note that if E is a finite-dimensional Banach space and | - |, is an Euclidean norm on
E then each quotient map Q: F — F induces on F in a natural way an Euclidean norm
| - |o.r- Namely, we set B, r = Q(B, ), where B, r and B, r stand for Euclidean balls in
F and E respectively.

LEMMA 2.2. Forevery0 < )\ <1 thereis p= p(\) > 1 and for every ¢ > 0 there is
R = R(\,¢) > 1, such that the following conditions hold for any n-dimensional Banach
space E:

(i) There exists a Euclidean norm | - |2 on E, with the unit ball By, such that

(2.7) (2'/2dg)"'B, C B C B,

and it satisfies (2.6) with ¢ =271/2;

(ii) there exists a An-dimensional quotient F of E satisfying vi(F) < p;

(iii) if |- |2 is a Euclidean norm on E satisfying (2.6) for some ¢ > 0, then there exists
a \n-dimensional quotient F of E and an orthonormal basis {x;} in (F,| - |2) such that

(2.3) max ||x;||z < &.
1

PROOF. The proof of (ii) and (iii) was already given in [M-T.1], Proposition 3.5. As
for (i), the Euclidean norm described in this condition combines properties of the norm
I - Il associated with the ellipsoid of minimal volume and a norm which determines the
Euclidean distance dg. Indeed, let ||| - |||’ be a norm satisfying

Il < lixll < delixlll”  forx € E.
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Then for x € E set
Ixl2 = 27 2(llel> + il )2,

Clearly, |x|, < ||x|| < 2!/2dg|x|,, for x € E, hence (2.7) holds. To prove that | - |, satisfies
(2.6), observe that for every x € E and every rank k orthogonal projection P in (E, | - |,)
one has

IPxl2 = 27 (PP + 1P|/

272Ipxl > 27 2Py P = 2721l

v

where P; is the orthogonal projection in (E, ||| - |||) with ker P; = ker P and next apply
(2.6) in the space (E, || - I} "

If F is a finite-dimensional space and B; is a Euclidean ball on F, then, for a fixed
orthonormal basis {x;} in F, by B; we shall denote abs conv{x;}.

COROLLARY 2.3. Forevery0 < A < 1thereisp=p(A) > land k = k()\) < 1, such
that an arbitrary n-dimensional Banach space E satisfies:

(i) there exist a An-dimensional quotient F of E and a Euclidean ball B, on F such
that vi(F) < p and

kB) C By and (2'*dp)"'B, C B C B,.

(ii) there exist a An/2-dimensional quotient F of E and a Euclidean ball B, on F
such that for some (2"/2dg)™! < a < 1 we have

KB\ C Bp, aBy C BrC By, (volBr/vol(aBy))”™ < p

PROOF. Condition (i) follows directly from Lemma 2.2 by chosing a Euclidean norm
on E satisfying (2.7) and then passing twice to quotient spaces satisfying the conclusions
of Lemma 2.2(ii) and (iii). Notice that a Euclidean ball B; on E determines the natural
Euclidean ball on every quotient F on E, and if B; satisfies (2.6) and dim F'is proportional
to dim £ then the ball on F satisfies (2.6) as well, with the constant depending on the
proportion \. The estimate for volume ratio follows from Lemma 2.2 (ii) by using (2.5).
Note, however, that the resulting function p()\) is a power, depending on )\, of the upper
bound from Lemma 2.2(ii).

To get (ii), fix 0 < ) < 1 to be determined later. First pass to a \'n-dimensional
quotient ' of E satisfying Lemma 2.2(i) and (ii). Let E be the maximal volume ellipsoid
on F’; there exists a quotient F of F' with dim F”" = dim F’ /2 and the quotient map
Q:F — F" such that on F’ we have Q(E) = aQ(B,), for some a. Clearly, a < 1 and
(i) implies that @ > (2!/2dg)~!. Passing to a quotient F of F” with dim F = )\’ dim F”,
and using Lemma 2.2(iii), we get all required inclusions; the bound for the ratio of
volumes follows from (2.5). Given 1/2 < X < 1 choose X’ such that dim F = An, then
all constants involved will depend on \. Again, the function p(}) is a power of the upper
bound from Lemma 2.2(ii). u
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Volumetric techniques for finding Euclidean sections provide Euclidean subspaces
of small proportional dimensions. The next lemma describes a method from [M-P] of
constructing Euclidean subspaces of large proportional dimensions in spaces saturated
with small Euclidean ones. The proof of the statement below can be found in [M-T.1]
Theorem 4.2.

LEMMA 2.4. Let 0 < 6 < £ < 1. Let Z be an N-dimensional space such that every
EN-dimensional subspace Z, of Z contains a subspace H with dim H > (§ — 6)N such
that dy < D, for some D > 1. Then for every 0 < n < 1 — § there exists a subspace H
of Z with diim H > (1 — § — )N such that d;; < cD, where ¢ = c(£,6, 7).

Let E be an n-dimensional Banach space and let || - ||> be a Euclidean norm on E.
Recall that an operator T: E — E is said to be (k, 3)-mixing for k, 3 > 0, if and only if
there is a subspace F C E with dimF' > k such that | Pz Tx|, > S|x|, for every x € F,
where Pr. denotes the the orthogonal projection onto F*-. If this is the case then we write
T € Mix,(k, 3). The fact whether a fixed operator 7 is in Mix,(k, 3) may depend on the
choice of the Euclidean structure on E. Clearly, if £ > £, then Mix,(k, 3) C Mix,(¢, 3).
The following proposition is a folklore one (c¢f, e.g., [Sz.2] Lemma 3.4A, [Ma.2)).

PROPOSITION 2.5. Let E be an n-dimensional Banach space. For an arbitrary Eu-
clidean norm | - |, on E one has
(i) for every projection P of rank k < n/2, we have 2P € Mix,(k, 1);
(i) ifthe basis constantbc(E) < M then for every k € N thereis an operator T:E — E
with |T|| < 2M and T € Mix,(k, 1),
(iii) letT:E— E,k € Nand3 > 0. Then T € Mix,(k, 3) ifand only if T* € Mix,(k, 3)
(with respect to the dual Euclidean norm | - |3).

3. Volumetric estimates. Technical result which this paper is based upon yields the
existence, for a given finite-dimensional Banach space, of a quotient space, say F, of
proportional dimension which admits relatively few well bounded operators. Moreover
the same property is satisfied in any further quotient Fy of F and in any space ¥ which
admits F as its quotient, provided that the dimension of the new spaces is close enough
to the dimension of F.

In this section we shall work with an N-dimensional Banach space E = (RY, || - ||),
on which we always consider the (natural) Euclidean norm || - ||, and the associated
Euclidean ball BY. If F is a quotient of E, with the quotient map Q: E — F, then the
natural Euclidean norm on F has the unit ball Q(B)). Unless otherwise stated, these
natural Euclidean norms are used for all geometric invariants.

First we discuss quotients which admit lower estimates for norms of mixing operators.
The main analytic estimate is stated in the following theorem; the proofinvolves arandom
construction and it is postponed until Section 6.

THEOREM 3.1. For an arbitrary 0 < § < 1,0 <1 < 3/8and 0 < & < 277, set
Y = 2738en, and for n € N set N = (1 +¢)n. Let E = (RV, || - ||) be an N-dimensional
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Banach space such that Bg C B’2V .Letp>1,0<k <1and0<a <1 satisfy
(3.1) vi(E) < p, kBY C Bg, aB) C Bg.

Then E admits an n-dimensional quotient F such that for every operator T: F — F with
T € Mix,(nn, 1), and every quotient map Q: F — Q(F) with rank Q > (1 — Y)n, one has

(32) “QTF—" Q(F)II > CVnn/4(E)—la69
where c = c(e, 1, k, p) > 0.

REMARK. Theorem 3.1 remains valid also for § = 0. In this case we have Y = 0 (note
that the constant ¢ does not depend on Y) and the theorem reduces to Theorem 2.2 from
[M-T.3].

Formula 3.2 implies that the space F"as well as its further quotients 7y admit relatively
few well bounded operators. Indeed, one can formally deduce from it well bounded
operators on these spaces are small perturbations of a multiple of the identity operator.

PROPOSITION 3.2. With the same notation as used in Theorem 3.1 ifE= RV, || - ||) is
an N-dimensional Banach space such that By C BY and satisfying (3.1), then E admits
an n-dimensional quotient F which satisfies the following two conditions:

(i) for every quotient Fy of F with dimFy = k > (1 — Y)n and every operator
T:Foy — Fy, with T € Mix(nok, 1), where o = 1 /(1 —7), we have

(3.3) 1T > cVpualB) ',

(ii) every Banach space F with dimF = | < (1 +Y)n such that F is a quotient of
F admits a Euclidean norm such that every operator T: F — F, which is (ijl, 1)-mixing
with respect to this norm, where i) = (n + 27), satisfies

(3.4) TN > cVypnja(E) .
Here c = c(e,n, K, p) > 0.

PROOF. Let F be the quotient of E satisfying Theorem 3.1. In particular, F admits the
natural Euclidean norm inherited from E. Set

K= iréfinf{HQT:F——» Q)| | T: F — F, T € Mixu(nn, 1)},

where the first infimum runs over all quotient maps Q: F — Q(F) withrank Q > (1—Y)n.
To prove (i), pick a quotient Fo = F/ Gy, with dim Fp = k > (1 — 7)n. Identify F, with
the linear subspace GE,L C F, under the norm whose unit ball is QOg,(BF); here Qg, is
the orthogonal projection with ker Og, = Gy. Fix an arbitrary (n'k, 1)-mixing operator
T:Fy — Fy. Pick any T:F — F such that Qg,T = TQg,. Since for x € G we
have Tx = Tx + z, for some z € Gy, then T € Mix,(n'k, 1). Since 7’k > nn, then
T € Mix,(nn, 1). Thus, by the definition of K we have

|1 T: Fo — Foll =11Q6,TQa,: F — Fol| = [|Qa, T: F — Foll > K,
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and (i) by the estimate (3.2).

The proof of (ii) is very similar. Fix an /-dimensional space F" with [ < (1 +Y)n
such that gz: F — F is the quotient map. Consider an arbitrary Euclidean norm on F,
with the unit ball B,, such that gz(B,) is the natural Euclidean ball on F. Let T: F — F
be (7j/, 1)-mixing. If T: F — F satisfies Tqr = grT then clearly, | 7|| > ||g-T]| = ||T]|.
Moreover, since dimkergr < Yn, then T € Mix,(ij/ — 2vn, 1) C Mix,(nn, 1). Thus
||| > K and the lower estimate for || 7]| follows. "

It is well known that if for a space F all mixing operators have large norms, then F
itself and other related spaces have several structural invariants, such as basis constant or
symmetry constant or complexification constant, also bounded below (cf., e.g., [M-T.3]
Section 6). We give an example of an estimate of this type.

COROLLARY 3.3. For an arbitrary 0 < ¢ < 27 B and 0 < § < 1, set ¥ = 273¢b,
and for n € N set m = (1 + 2¢)n. Let E be an m-dimensional Banach space and let
dg = d(E, ). There exists an n-dimensional quotient F of E such that for any further
quotient Fy of F with dim Fy > (1 —Y)n, and for any space F with dim F' < (1 +7)n, for
whose F is a quotient, denoting by F' either Fy or F, we have

(3.5) be(F') > cVamn,(E) 1 d52.

Moreover, for any Banach space Z such that every n-dimensional subspace of Z is
D-Euclidean we have

(3.6) be(F' @2 2) > D™ Vymon (B 2d02.

Here c = c(g,6) > 0.

The choice of n = 27% made below when applying Proposition 3.2 was done for
convenience of past references. With appropriate modifications the same argument would
work for an arbitrary 0 < n < 3/8.

PROOF. By Corollary 2.3(i), there exists a (1 + )n-dimensional quotient £ of E and
a Euclidean ball on E, B, D By, such that (3.1) holds, with some p = p(e), & = k(e) and
a=Q"2dg)".

Fix n = 278 Then operators on F’ which are (5 - 27° dim F’, 1)-mixing are also
(7’ dim F’, 1)-mixing, where ' = 1o or ' = f, depending on the choice of F’ being
Fy or F. Therefore, by Proposition 3.2, these operators have norms bounded below by
K = cVy-10,(E)~'dz°. Thus the conclusion follows from Theorem 2.1 in [M-T.3]. =

REMARK. The quotient space F itself satisfies (3.5) and (3.6) as well, with § = 0.
This was the content of Theorem 2.4 in [M-T.3], and it followed from the construction
in [M-T.3], Theorem 2.2, which preceded the present construction.

It is of independent interest to study a relationship between various s-numbers of
operators acting in spaces discussed in Theorem 3.1. The advantage of this approach lies
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in the fact that resulting estimates are valid for all operators, and not only for mixing
ones.

Let us recall relevant definitions. Let X and Y be Banach spaces and let T: X — Y be
a bounded operator. Let k be a positive integer. The k-th Kolmogorov number di(T) is
defined by

d(T) = inf sup inf || Tx —
W(T) ;2@;5;22” x =y,

where the infimum on Z runs over all subspaces Z of Y with dim Z < k. The dual concept
is that of Gelfand numbers which are defined by

eoT) = inf{||T|z|l | Z C X, codimZ < k}.

We have cx(T) = dy(T*) for arbitrary X and Y and T.
As a consequence of Theorem 3.1 we get.

PROPOSITION 3.4. For an arbitrary0 < e <27 1%and 0 < § < 1 sety =27'%¢, and
forn € N set N =2(1+2¢)n. Let E = RY, || - ||) be an N-dimensional Banach space.
Then E admits an n-dimensional quotient F such that for every operator T: F — F we
have

dy(T) > cVyrn(E) ' dg° inf ¢,/ 4(T — Aldp),
where ¢ = c(e) > 0.

PROOF. Let Fy be a (1 + ¢)n-dimensional quotient of E satisfying condition (ii) of
Corollary 2.3, for a Euclidean ball B, and some 0 < k = k(e) < 1, p = p(¢) and
0 < a < 1. Let F be a quotient of Fy satisfying (3.2) of Theorem 3.1, with = 273,
Let O: Fy — F be the quotient map. Let be the Euclidean norm on F corresponding to
Q(By); in particular, ||x|| < a~!||x|), for x € F. Then (2.5) implies that

(vol B /vol Q(aB)) /" < C(e)p™™.
By the volume ratio argument, pick a 15n/16-dimensional subspace H of F such that
3.7) Aa”|Ixll2 < x| < a”'ixll2 forx € A,

with 4 = A(e) = (C(e)p'**)'®.
Fix an arbitrary T: F — F satisfying

inf{)|(T— Md)|gl» | A € R,G C F,dimG =Tn/8} = 1.

Pick Gy C F with dim Gy = 7n/8 and Ao such that ||[(T — Ao Id)|g, || < 2. Set G, =
{x € HN Gy | Tx € H}. Then dim G| > 3n/4. By (3.7) one has

(T — Xold)x|| < 24||x|| forx € Gi.
Hence ||(T — Mo Id)|g, || < 24, which means

. ~ <od
(3.8) inf ¢,/4(T — Mdp) < 24
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On the other hand, the normalization condition for 7 and Lemma 2.1 in [Ma.3] imply
that 8 T is (2~3n, 1)-mixing. Denoting the right hand side of (3.2) by K, we get

inf|QT: F — Q(F)| > K/8,

with the infimum taken over all quotient maps Q: F' — Q(F) with rank Q > (1 —Y)n. By
the definition of Kolmogorov numbers this means that d,,(7) > K /8. Combining this
estimate with (3.8) we conclude the proof. n

4. Characterizations of infinite-dimensional spaces. As mentioned in the intro-
duction, if a Banach space X has the property that its all subspaces have a basis with a
uniform upper bound for the basis constant, then X is of weak cotype 2. In fact, if there
exists M < oo such that be(E) < M for every subspace E of X, then wC,(X) admits
an upper estimate by a function of M. Indeed, let F be an arbitrary finite-dimensional
quotient of X* and consider the Euclidean structure of F' determined by the ellipsoid of
minimal volume containing the unit ball Br. Then the dual version of Theorem 2.4 in
[M-T.3] implies that V,(F) > ¢ / M, for some universal constants 3 > 0 and ¢ > 0.
Then the conclusion follows immediately from Lemma 2.1, by passing back to the space
X.

A similar general line of argument is used to prove characterizations of weak cotype 2
spaces in terms of the basis constant; we also obtain related characterizations in terms of
an existence of uniformly bounded projections and mixing operators.

THEOREM 4.1. There exists a constant Yo > 0 such that a Banach space X is of weak
cotype 2 if and only if there exist a constant M > 1 such that every finite-dimensional
subspace E of X contains a subspace Ey C E with k = dim Ey > (1 —"¢) dim E satisfying
one of the following conditions:

(i) be(Eo) <M,

(ii) there exists a projection Q: Ey — Eo of rank k /8 such that || Q|| < M,
(iii) for every Euclidean norm on E, there exists an operator T-Ey — Ey which is
(k/ 8, 1)-mixing with respect to this norm, such that ||T|| < M.
Moreover, if one of the conditions (i)—(iii) holds then wCy(X) < CM*, where C is a
universal constant.

The counterpart of this result for superspaces is less satisfactory, as it gives implication
in one direction only.

THEOREM 4.2. There exists a constant Yo > 0 such that whenever X is a Banach
space for which there exist a constant M > 1 such that for every finite-dimensional
subspace E of X there is a Banach space E O E with k = dimE < (1 +7Yo)dimE
satisfying one of the following conditions

(i) be(E) <M,

(ii) there exists a projection Q: E — E of rank k /8 such that || Q|| < M,
(iii) for every Euclidean norm on E there exists an operator T:E — E which is
(k/8, 1)-mixing with respect to this norm, such that ||T|| < M,
then X is of weak cotype 2 and wCy(X) < CM?*, where C is a universal constant.
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REMARK. Beside conditions (i) and (ii) of the above theorem there is a number of
other invariants whose uniform boundedness implies condition (iii). They are symmetry
constant (¢f- [Ma.1], [Ma.2]), complexification constant (for real Banach spaces) or the
Banach-Mazur distance from the space to its complex conjugate (for complex Banach
spaces) (cf. [Sz.2]). All these and other invariants could be used for versions of all
theorems of this section (cf. also [M-T.3], Section 6).

REMARK. Note that there is an essential difference between the Euclidean case in
the definition of weak cotype 2 and the results above. Namely, we do not know whether
analogous characterizations are valid for an arbitrary proportion§ € (0, 1) (not necessary
6 > 1 —"y). Recall that it is so in the Euclidean case: if for a Banach space X there
exists 6o > 0 such that every finite dimensional subspace E of X contains a Cp-Euclidean
subspace Ey C E with dim Ey > &y dim E, then an analogous condition holds for every
6 € (0,1), with the constant C depending on é. It seems that the present difficulty
is connected with a problem of Pelczynski in [Pe.1] whether every finite dimensional
Banach space E can be embedded into a Banach space F with dim F < 2 dim E having
a nice Schauder basis. For dim F close enough to dim £, this question was answered in
[M-T.2} in the negative.

PROOF OF THEOREM 4.1. Clearly, the weak cotype 2 assumption implies property (i),
which implies (ii), which implies (iii). We shall prove that conversely, property (iii)
implies that X is of weak cotype 2. Set Yo = 272°. Under our assumptions we have the
following.

CLAIM. For every finite-dimensional subspace E C X there exists a subspace H C E
with dimH > 279 dimE and dy < eM2dY! 2, where c is a universal constant.

PROOF OF THE CLAIM. Lete =279 5 =27* § =272 and 7 = . Fix an arbitrary
finite-dimensional £ C X and let n € N be such that dim E = (1 + 2¢)n.

Set Z = E*. Let Z; be a quotient of Z with dim Z, = (1 +¢)n satisfying condition (i) of
Corollary 2.3. We also fix the Euclidean structure on Z; introduced in this condition. Let
Z,, with dim Z; = n, be a quotient of Z; constructed in Proposition 3.2. Now we use (iii)
in the dual form valid for every finite-dimensional quotient of X* (cf. Proposition 2.5(iii)).
It follows that there exists a Banach space Z3, with dim Z3 = k < (1 +7)n, such that Z, is
a quotient of Z3 and such that Z3 admits a (k/8, 1)-mixing operator Sy with ||So|| < M.
On the other hand, by the choice of Z,, every (n'k, 1)-mixing operator T on Z; satisfies

ITI| > ey, (Z1)d7’,

where ' = /(1 —"). Since )’ < 1/8, the same estimate holds for So. Thus V,-,(Z) >
cd;*M~!. Applying Lemma 2.1 with 3 = 27% and o = 1, we obtain a quotient Z; of Z;
with dimZ; > 27k > 272 dimE and dz, < Cd%‘SMZ. Since dz = dg, the proof of the
Claim is concluded by setting H = Zj.

Passing to the proof of the theorem, fix an arbitrary finite-dimensional subspace
Xo C X. Denote by D the smallest number such that every subspace X, of X; contains a
subspace G C X; with dim G > dim X; /2 and dg < D. Clearly, D is finite.
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We then know that for any m and any subspace X; of X with dim X; = m there is a
subspace H C X; with dim H > 2~'%m such that dy < cM?D'/?. Indeed, first pick E C
X, with dimE > m/2 such that dz < D, and then apply Claim to obtain H. Specifying
m = (1/2)dim X, we can use Lemma 2.4 with £ =1/2,6 = (1 —27'%)¢ and n = 2710,
to get a subspace H C X, satisfying dim & > (1/2)dim Xp and d;; < ¢'M?D'/?, where
¢ is a universal constant. By the definition of D, this implies D < ¢’M?D'/?, hence
D < ¢"M*. By (2.1), this completes the proof. ]

Theorem 4.2 has almost identical proof, with condition (ii) of Proposition 3.2 replacing
(i). We shall omit further details.

REMARK. Using Lemma 2.1 in a more delicate way and choosing é sufficiently small
one can get in the theorems above wCy(X) < C(o)M'*°, for every o > 0.
We now pass to characterizations of weak Hilbert spaces.

THEOREM 4.3. There exists a constant Yo > 0 such that a Banach space X is a weak
Hilbert space if and only if there exists a constant M > 1 such that one of the following
conditions is satisfied for every subspace Y C X:

(i) every finite-dimensional subspace E of Y contains a subspace Ey with dim Ey >
(1 — Yo)dim E which admits a projection Q: Eqy — Eo with rank Q = dimE,/8 and
IOl € M, and every finite-dimensional quotient F of Y admits a quotient Fy with
dim Fy > (1 — 7o) dim F which admits a projection R: Fy — Fy with rank R = dim Fy, /8
and ||Q|| <M,

(ii) for every finite-dimensional subspace E of Y there is a Banach space E containing
E with dimE < (1 +7o)dim E which admits a projection Q:E — E with rankQ =
dimE/8 and ||Q|| < M, and for every finite-dimensional quotient F of Y there is a
Banach space F which has F as a a quotient and dim F < (1 + o) dim F which admits
a projection R: F — F with rank R = dim F/8 and |R|| < M.

PROOF. Clearly, if X is a weak Hilbert space then both (i) and (ii) are satisfied.
Conversely, assuming that one of conditions (i) or (ii) is satisfied, by Theorem 1 in
[M-T.2], X does not contain /] ’s uniformly. Hence, by Pisier’s result, [P.1], (cf also [P.3],
Theorem 11.3), X is K-convex.

If (i) holds, by Theorem 4.1 we infer that both X and X* are of weak cotype 2. Thus
X is a weak Hilbert space. In case of (ii), we use Theorem 4.2. [

REMARK. If X has the approximation property, the above theorem remains valid if
we restrict ourselves to the case Y = X only. This can be easily seen by using for example
[P.2], Theorem 2.

REMARK. In Theorem 4.3, the assumption on the existence of uniformly bounded
rank k/8 projections can be replaced by the existence of uniformly bounded (k/8, 1)-
mixing operators or by a uniform bound for basis constants.
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5. Subspaces and quotients of proportional dimension. The main result of this
section is concerned with subspaces and quotients of a fixed proportional dimension.

THEOREM 5.1. Let 0 < a < (1+27%) ! and let M > 1. Let G be an n-dimensional
Banach space. If every an-dimensional subspace E and every an-dimensional quotient
F of G have the basis constants bc(E) < M and be(F) < M, then G is a weak Hilbert
space and the weak type 2 and the weak cotype 2 constants satisfy the estimates

wl(G) < C(a)M3]-23/ll and wCy(G) < C(a)M31'2'/”.

The proof of the theorem requires several steps. To begin with we consider only one-
sided assumptions on G, that is, the assumptions on its subspaces. In such a situation,
the following proposition establishes a weak cotype 2 property, provided that the space
admits a nice direct sum decomposition.

PROPOSITION 5.2. Let 0 < a < 1, M > 1 and let G be an n-dimensional Banach
space. Assume that G = Z @, Gy, with dimZ > an. If every an-dimensional subspace
E of G has the basis constant be(E) < M, then the weak cotype 2 constant of Gy
satisfies wC(Go) < C(a)(M infy dyy)*, where the infimum runs over all an-dimensional
subspaces H C Z.

PROOF. Let H C Z be an an-dimensional subspace. We shall show that every sub-
space G, of Gy contains a subspace £, with dim £ > 22 min(dim G,, an) such that
d; < C(Mdg)*. By (2.1), this will imply wC»(Go) < C(a)(Mdg)*, hence the conclusion
will follow by passing to the infimum over H. Obviously it is enough to consider the
case dim G| < an only.

Fix an arbitrary subspace G| of Gy with k = dimG; < on and let F = G}. By the
remark following Corollary 3.3 there exists a quotient F; of F with ¥’ = dimF; >
(1+2712)" g satisfying (3.6) with § = 0. Fix an arbitrary H, C H with dimH; = an—k'.
We have dH; =dy, <dp and Hj is a quotient of Z. Thus

be(Fy @2 HY) > cdyy' Vaymrop (F) /2.

Observe that (Fy @, H})* is an an-dimensional subspace of G. Hence be(Fy @, Hy) =
bc((F 1 D> H’{)*) < M. Combining the last two estimates we get

Va-top(F) > ' (Mdp) 2.
By Lemma 2.1 (with o = 1) we obtain a Euclidean quotient of F of dimension 27"k’ >
2712k and so we complete the proof by passing to the dual. .

Let us note that the one-sided boundedness assumption alone still yields the existence
of some Euclidean subspaces, but this time on a proportional level only.

LEMMA 5.3. Let 0 < o < (1 +27'2)"V and let M > 1. Let G be an n-dimensional
Banach space such that every an-dimensional subspace E of G has the basis constant
be(E) < M. Then for every (1 +272)a < X < 1, every An-dimensional subspace Gy of
G contains a subspace H with dim H = (\ — a)n > 273 \n such that dy < C(a, \)M>.

https://doi.org/10.4153/CJM-1996-032-5 Published online by Cambridge University Press


file:///n-dimensional
https://doi.org/10.4153/CJM-1996-032-5

620 P. MANKIEWICZ AND N. TOMCZAK-JAEGERMANN

PROOF. A similar argument as in the proposition above, in which the use of (3.6) is re-
placed by (3.5), shows that every subspace G; of Gy with dimG, = &n =
(1+27'2)an contains a CM?-Euclidean subspace of dimension 2~ !! an, where C is a uni-
versal constant. The proofiis then concluded by applying Lemma 2.4, with§ = (1—27?)«
and 7 = 27 2@, to any An-dimensional subspace Gy of G. .

An a priori argument which we are going to use is based on a finite-dimensional
version of one of properties characterizing weak type 2 spaces. A known argument
(cf. [P.3], Chapter 11), localized to a fixed proportional-dimensional level, gives the
following lemma. Recall that for a Banach space G, K(G) stands for the K-convexity
constant of G.

LEMMA 54. Let 0 < 6 < 8 < 1, D > 1, and let G be an n-dimensional Banach
space. Assume that every (n-dimensional subspace F of G* contains a subspace F)
with dimFy; = 6n and dr, < D. Then for every (n-dimensional subspace E of G
there exist a subspace H with dim H = én/2 and a projection O:G — H such that
ol < C8,8K(G)Ddg.

PROOF. Let E be a Bn-dimensional subspace of G and let w: E — lg" be an iso-
morphism such that ||w|| |[w™!|| = dz. We will show that there exist an orthogonal
rank (6/2)n projection P in lg" and an operator W: G — %", such that w = Pw and
%] < C(8,8)DK(G)||w||. Then H = w~' P(I") and Q = w~"' P will satisfy the require-
ments of the lemma.

The argument requires the definition of the /-norm of an operator u: /4 — Y, for any
Banach space Y, which is provided e.g. in [P.3], Chapter 3. Similarly as in the proof of
Theorem 11.6 in [P.3], consider the operator w*: lg" — G*/E*. By Lemma 11.7 in [P.3],
there exists ¥: lg" — G* such that g = w*, where ¢: G* — G* /E* it the quotient map,
and that [(v) < 2K(G)I(w*) < 2(Bn)'/2K(G)||w*||. Note that ¥ is one-to-one. Choose a
subspace F} of f/(lg”) with dim 7y = énanddr, < Dandlet F, = ¥~ !(F}). By well-known
properties of operators acting in Hilbert spaces (cf., e.g., [P.3] Proposition 3.13), there
is a (6 /2)n-dimensional subspace F3 C F, and an orthogonal projection P onto F3 such
that

9P| < (6n/2)~'/2DI(w) < 2°/%(8 /6 2K(G)D||w]|.
Therefore the required operator is w = Pv*. n
We are finally ready for the proof of the theorem.

PROOF OF THEOREM 5.1. Fix 0 < a < 1/4 andset o = (1+27'?)a. By Lemma 5.3
with \ = 1, pick a subspace H of G with dimH > (1 — a)n and dy < C(a)M?. Since
all an-dimensional quotients F of G satisfy bc(F) < M, applying the same lemma for
G*and X = (1 — @) > o, it follows that G* satisfies the assumptions of Lemma 5.4 for
B=1—a,6=1—2aand D = C(a)M?. Therefore there exist a subspace Hy of H and a
projection Q from G onto Hy such that dim Hy = (1/2 — a)n and || Q|| < C'()K(G)M*.
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Notice that dim Hy > an. Setting Gy = ker Q we get that G is isomorphic, up to 2||Q||,
to the space Hy @, Gy. In particular, the basis constant of any an-dimensional subspace
of Hy @, Gy does not exceed 2||Q|| M. Therefore, Proposition 5.2 yields

wCy(Go) < C"()(2||Ql|Mdy,)* < C"()K(G)' M.

Itis obvious from any of the definitions discussed in [P.3], Chapter 10, that wC, (X, Y) <
c(wCz(X) + wCz(Y)) , for arbitrary weak cotype 2 spaces X and Y, where c is a numerical
constant. Thus we finally get

(.1) wCy(G) < 2||Q|lwCa(Ho @2 Go) < C()K(GY’ M.

Since the assumption of the theorem hold for G* as well, wC,(G*) also admits the
same upper bound as in (5.1). This in turn, by (2.2), yields

(5.2 wl(G) < K(GWCy(G*) < C"()K(G)° M.
Now we use the result of Pisier stated in (2.3), for e.g., 6 = 1/22, to get K(G) <
C"(a)K(G)'/>*M>3'/"' Thus
K(G) < Co(a)M®/ M,

The proof is then concluded by combining this inequality with (5.1) and (5.2). (]

REMARK. Applying Lemma 5.3 with A arbitrarily close to 1 and Corollary 3.3 with
¢ efficiently small, and using (2.3) more carefully, yield more civilized powers of M.

6. Random quotients. Fix a probability space (Q2, P)andletg, ..., g., be indepen-
dent standard Gaussian vectors in R” with the density (n/27)"/2e~"I"2/2, with respect
to the standard Lebesgue measure in R”.

For w € Q, define a Gaussian projection Q,: RY — R” by

e fori=1,2,...,n
gi-n(w) fori=n+1,n+2,...,N.

Qu(e) =

In the theorem below, we denote by Gy, the set of all Ya-dimensional subspaces of
R". For H € Gy,, we denote by Oy the orthogonal projection with ker Qi = H.

THEOREM 6.1. For an arbitrary0 < § < 1,0 <1 < 3/8and 0 < £ < 275, set
¥ =2736en, and forn € Nset N =(1+¢)n. Let E = (RV,|| - ||) be an N-dimensional
Banach space such that Bg C BY. Let p > 1 and 0 < a < 1 satisfy

vi(E) < p aBQ’ C Bg.
There exists 0 < ¢ = c(e,n, p) < 1 such that if Q denotes the set

Q={w € Q| 0nT: Qo)) = QuQuE)|| 2 ¥y /a(E)'d,
for every T € Mix,(nn, 1) and every H € Gypp},

then P(Q) >1- c’,’z, where 0 < ¢y < 1 is an absolute constant.
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To deduce Theorem 3.1 pick w € Q and set F = Q,,(E). Now it is enough to observe
that since kBY C B, then

|OuT: QuE) — OrQLE)|| > k|| QuT: Qu(l) — OHQLE)||.

For E = 1’,\' , Theorem 6.1 was proved recently in [M-T.2] Theorem 4. In the general
case the argument follows the steps from [M-T.2] blended with a technique which
enables to pass from quotients of 7}’ to quotients of arbitrary Banach spaces, as presented
in [M-T.3], Section 5. Therefore we shall only briefly discuss the main points, referring
the reader to [M-T.2] and [M-T.3] for the details.

Passing to the description of the proof of Theorem 6.1, we require additional notation.
For every w € Q let H,, = span[g;(w), g2(w), . . . , Zn(W)]. If H € Gy, , let O,y be the
orthogonal projection in R” with ker O,y = H+ H,,.

Let

Q={weQ|1/2<|g(w)|l2 <2foralli=1,...,en}.

Fix T € Mix,(2nn/3,1). By the definition of the mixing class, there is G C R”,
dim G = 2nn /3 such that || P;. Tx||> > ||x||, for every x € G. The well-known argument
on half-dimensional circular sections of an ellipsoid yields that there exists Gy C G with
dim Gy = nn/3 and A > 1 such that ||Pg.Tx||> = A||x]||, for every x € Gy. For every
w € Qand H € Gy, , fix an orthogonal projection O, 1., in R* with

ker QutiGo D Ho+ H+ G+ P TPg1(HL),

and rank Q,, .6, = nn /4.
Set

Qrp={we Q| Qunc,TPsg € 4/\a\/ﬁa5 V,;,l/4Qw,H,Gon(BE)
6.1) forj=1,2,...,¢en}.

LEMMA 6.2. Let H € Gy, . Then

2
PQrp) < (Coory/na’)™ ",
where Cy > 1 is an absolute constant.

PROOF. Set O, = Qung, for w € Q. Forj = 1,2,...,en define g = PG,g and

g = Pg.g;. Similarly as in [M-T.2], Lemma 7, 0., is independent of the g;’s. For every
fixedj=1,2,...,en we have

{we Q| QuTPGg € 4ray/ndV,),0.0.(BE)}
={weQ|Q.Tg € Maynd’V,,),0.0.(Br)}.

Since G C ker Q,, the definition of X implies that A~'Q, T is a contraction in the
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Euclidean norm on R". Moreover, it has £ s-numbers equal to 1, with & > nn/3 —vn —
2en > nn/4. Hence, using Claim 6.2 in [Sz.1] (with n/3 replaced by nn/4), and the
fact that \/?;ﬁgj’ is a standard Gaussian variable in Gy, (note that3 /n = n/ dim Gy ), cf,
e.g., [Sz.1] (3.3), we have, by the definition of V7, 4,

P({we Q| Q.Tg € 4ray/nd’V,,},0.0.(BE)})
<P({w € Q| A\ QD3 /ng)) € 4V3adV;,},0.0.(Bs)})
< (c'43ad Yy,

where ¢’ is an absolute constant. Hence
PQr ) < (c'ad )™/,
which concludes the proof of the lemma. n

The next lemma is a restatement of Lemma 7.3 in [Sz.1].

LEMMA 6.3. Forevery0 < o < 1, the set
Pin = {P:R" — R" | P an orthogonal projection with rank P =n — k}

admits a o-net M in the operator norm in I} with the cardinality |M| < C”o ™ where
C > 1 is an absolute constant.

Using Lemma 6.2 and Lemma 6.3 with o = aa'* /4 and k = Yn, the same argument
as in the proof of Proposition S in [M-T.2] yields.

PROPOSITION 6.4. Let 0 < a,6 < 1 and 0 < 1 < 3/8. For an operator T €
Mix,(2nn/3, 1) set

Qr={w € Qo | |QunT: Qull)) = QuuQAE)| < 20y/nd V), for some H € Gypp}.
(6.2)

Then for every T € Mixn(2nn/3, 1) one has

€ n2
6.3) PQ)) < C"(4/aa)™ (Coary/iia) ™ %,
where C > 1 and Cy < 1 are absolute constants.

The rest of the proof of Theorem 6.1 is essentially the same as of Theorem 4
in [M-T.2]. One has to replace Proposition 6 there by Lemma 5.3 from [M-T.3],
with 4 = 2aﬁa5 V;n‘/4 and choosing o > 0 sufficiently small as to ensure that

(4e(0)) ™ CCM (@118 < 1/2.
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