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Second Order Operators on a Compact
Lie Group

H. D. Fegan and B. Steer

Abstract. We describe the structure of the space of second order elliptic differential operators on a

homogenous bundle over a compact Lie group. Subject to a technical condition, these operators are

homotopic to the Laplacian. The technical condition is further investigated, with examples given where

it holds and others where it does not. Since many spectral invariants are also homotopy invariants,

these results provide information about the invariants of these operators.

1 Introduction

In this paper we shall give a description of the structure of the space of invariant,
elliptic, second order differential operators on a compact Lie group. Briefly the re-
sult is that, when a certain restrictive technical condition holds, any such operator is
homotopic through such operators to the Laplacian.

Previously, in [5], first order operators were studied. (For clarity of exposition un-
less otherwise stated the term “operator” means “invariant elliptic differential opera-
tor”.) These proved to be Dirac operators, and from this information followed results

on spectral symmetry and the η-function. The situation for second order operators
is less rigid and more complicated: invariant operators other than the Laplacian exist
[2, 7]. (To find out in general what the operators are means handling quadratic maps
from a vector space with values in a ring of endomorphisms.) Here we find con-

ditions under which the Laplacian is essentially the only such operator: for certain
special types of representations of G, which we call simple, the only invariant second
order operator turns out (eventually) to be the Laplacian in the sense that there is
no second order elliptic symbol perpendicular to that of the Laplacian. (That is, de-

composing S
2(g) into irreducible representations, no summand except the trivial one

gives rise to an elliptic operator.)

The more interesting cases are certainly when there are other elliptic operators.
It is for these that one might hope to find a non-vanishing η-invariant. (The ques-

tion of the non-vanishing of the η-invariant of second order operators was raised by
Gilkey [6]. An example of a second order operator with non-vanishing η-invariant
was given in [4], but this operator was only pseudo-differential, not differential.) As
the Laplacian has a zero η-invariant there are no invariant differential operators with

non-vanishing η-invariant in the cases we study.

Let G be a compact, semi-simple connected Lie group. Given a closed subgroup
H of G, a representation π : G → Aut E is H-simple if π | H decomposes into distinct
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irreducible representations of H. We shall also refer to such representations as having
H-simple multiplicities. We shall often just use the term simple instead of H-simple.

The main results are given in section five. Let π : G → Aut E be a T-simple repre-
sentation and E be the associated homogeneous bundle. If D is an invariant, elliptic
second order operator on E we can summarize the result as follows.

Theorem 1.1 If E is T-simple then any invariant second order elliptic operator is of the

form c∆+Q, where Q is non-elliptic and σQ is perpendicular to σ∆, σ being the symbol

and the metric is that on S2(g) induced from the Killing form.

Depending on whether c is positive or negative, c = 0 is impossible, there is a

further homotopy to either ∆ or −∆.

Theorem 1.2 The space of such operators is an open cone consisting of two convex sub-

sets: one containing ∆ and the other −∆.

Notice that Theorem 1.2 can only be stated in the case when π is a real repre-
sentation. In Section 6 we give two infinite families of representations with simple
multiplicities for the groups SU (n), n ≥ 2. There are other simple representations,
and in Section 7 we list some low dimensional examples. These examples show some

of these other simple representations and at the same time suggest they are unusual
special cases. The earlier sections contain preparatory results. Section 2 establishes
the basic notation and shows we need only consider the symbols of the operators.
Section 3 establishes the result for the torus, and in Section 4 we show how the result

on the torus for symbols passes to that on the group.

2 Second Order Operators on a Lie Group.

Let G be a compact Lie group, and π : G → Aut E be a representation. The homoge-
neous bundle associated to π is E = G ×π E and we wish to study invariant second
order linear operators D : C∞(E) → C∞(E). Since the prolongation of G is trivial,

this is equivalent to studying the symbol of

(2.1) Dσ : g → S
2(g) → End E

Here the first map g → S2(g) is given by X → X2, where S2 denotes the second

symmetric power, and the second map, σ̃ : S
2(g) → End E, is linear. The symbol

given in (2.1) is defined on a fibre of the usual expression involving bundles; the
invariance of D yields passage between this fibre expression and that on bundles.
Further, this invariance means that σ is equivariant:

(2.2) σ(g · X) = π(g)σ(X)π(g)−1,

for g ∈ G and X ∈ g. Similarly the invariance of D allows it to be given as a linear

map on the fibre of a jet bundle:

(2.3) D : J2(E) → E.
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The triviality of the prolongation of G leads to an equivalent splitting of the jet bundle
exact sequence:

(2.4) 0 → S
2(g) → J2(E) → J1(E) → 0,

which, in turn, splits D as a sum D = σ̃ + D1. Here D1 is an invariant first order

operator. The condition that D is elliptic is that σ(X) is an invertible element of
End(E) if X 6= 0. However, while σ(X) = σ̃(X, X), for X 6= 0, is invertible it does
not of course follow that σ̃(X,Y ), for X,Y 6= 0, need be invertible if X 6= Y . Such
operators are often natural [3].

3 Elliptic Operators on a Torus

Let π : T → Aut(V ) be an irreducible representation of the torus; V, the associated

homogeneous vector bundle. Since T is abelian left and right translations on T are
essentially the same, Rg = Lg−1 . However, if π is nontrivial there is a difference on V.
If we trivialize V using left translation we have:

(3.1) Lg(x, v) = (gx, v), Rg(x, v) = (xg−1, π(g)v).

Let t be the Lie algebra of T. As observed in Section two, we need only study the
second order part of D which is given by an element of S2(t)⊗End V . If {X1, . . . , Xℓ}
is a basis of t this is given by

(3.2) D = Σi , j XiX j ⊗ φi j .

Using left translation to trivialize V a section s ∈ C∞(V) is then given by s = Σkfk⊗vk

where {vk} is a basis of V and fk ∈ C∞(T). Then

(3.3) Ds = Σi, j,kXiX j fk ⊗ φi j(vk).

This is automatically left invariant. To be right invariant the condition is that
φi jπ(g) = π(g)φi j , i.e., the endomorphisms φi j commute with the action of T. The

symbol of D is the map σ : t → End V given by

(3.4) σ(ΣiξiXi) = Σi jξiξ jφi j .

Invariance of D means that this commutes with the action of T:

(3.5) σ(X)π(g) = π(g)σ(X),

where the fact that T is abelian gives a trivial action on g.
The irreducible real representation of T can be divided into two cases: dim V = 1

and dim V = 2. If dim V = 1 then σ is real quadratic form on t. If dim V = 2 then
we can decompose End V = (End V )T ⊕ (End V )⊥. Here

(3.6) (End V )T
=

{(

a −b

b a

)

: a, b ∈ R

}
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and

(3.7) (End V )⊥ =

{(

a −b

b −a

)

: a, b ∈ R

}

.

Of these, (End V )T decomposes further into two trivial representations, while
(End V )⊥ is irreducible. If A ∈ (End V )T , then Aπ(g) = π(g)A for all g. How-

ever, if g 6= 1 and B ∈ (End V )⊥, then Bπ(g) 6= π(g)B, for B 6= 0. Note further
that

(3.8)

(

a −b

b a

)

=

√
a2 + b2

(

cos θ − sin θ
sin θ cos θ

)

,

with θ = arctan(b/a) so (End V )T is made up of dilations and rotations.

The condition that D be an elliptic operator is that σ(X) is invertible if X 6= 0. If
dim V = 1 then σ(X) is real quadratic form. Hence if σ(X) is invertible for all X and
dim T ≥ 2 then σ(X) is either positive definite for all X or negative definite for all

X. In either case there is a constant c such that D = c∆, where ∆ is the Laplacian
with respect to a suitable metric. If dim V = 2 the situation is more complicated. To
ensure that t − {0} is connected, we shall only consider the case of dim T ≥ 2 and
use the following notation for a rotation matrix:

(3.9) rot(θ) =

(

cos θ − sin θ
sin θ cos θ

)

.

Now σ : t → (End V )T , by invariance, and so using the decomposition (3.8) there
are two real valued functions r, θ of t such that

(3.10) σ(X) = r(X) rot
(

θ(X)
)

.

Rescale the metric so r(x) = 1 for X ∈ Sn−1; that is so that σ(X) is a pure rotation
for unit length X. Using the fact that σ is a quadratic map yields the following.

Lemma 3.1 Let X1 and X2 be two orthogonal unit vectors in t, and set Xt = sin tX1 +
cos tX2 then θ(Xt ) is one of the three possibilities: θ(Xt ) = 0, θ(Xt ) = 2t or

θ(Xt ) = −2t.

Proof This is an explicit calculation. First normalize σ so that σ(X1) = I. Now
define r, θ1 and θ2 by

(3.11) σ(X1, X2) = r rot(θ1), σ(X2) = rot(θ2).

Let f (t) = σ(Xt ); then since σ is quadratic we have

(3.12) f (t) = sin2 tI + 2r sin t cos t rot(θ1) + cos2 t rot(θ2).
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Now set g(t) = det f (t). Since our normalization gives f (t) = rot(θ(t)) for some
θ(t), we have that g(t) = 1 for all t thus g ′(t) = 0 for all t . A computation of g ′(t)

for t = 0, π/2 and π/3 yields the following system of three equations:

(3.13) 4r cos σ1 cos σ2 + 4r sin σ1 sin σ2 = 0

−4r cos σ1 = 0

1

2

√
3 − 1

2

√
3 cos σ2 − 2r cos σ2 − r2

√
3 − 2r sin σ1 sin σ2 = 0.

There are 3 solutions to these:

(3.14) (i) r = 0, cos σ2 = 1,

(ii) r∗ = 0, cos σ1 = 0, sin σ1 = 1,

(iii) r = 1, cos σ1 = 0, sin σ1 = −1

which correspond to the three solutions θ(Xt ) = 0, 2t,−2t .

Corollary 3.2 If dim T ≥ 3 then σ(X) =‖ X ‖2, for some norm on t.

Proof The map σ : Sn−1 → S1 gives rise to a map of homotopy groups

σ∗ : π1(Sn−1) → π1(S1).

In the case θ(Xt ) = 0 this is the trivial map. If θ(Xt ) = ±2t then 2 (resp., −2) is
in the image of σ∗. However, for n ≥ 3 the fundamental group π1(Sn−1) = 0 and
this is impossible. Thus σ(X) = σ(X1) ‖ X ‖2 when the normalization used in
Theorem 3.1 is reversed. Since σ is invariant, σ(X1) commutes with the action of T.

Thus σ(X1) = cI for a constant c, which is then incorporated into the norm. Note
that the norm may be either positive definite, if c > 0, or negative definite, c < 0.

Corollary 3.3 If dim T = 2 and T has an action by a Weyl group of a rank 2 compact

semisimple Lie group induced by identifying T as the maximal torus then, for σ invariant

under this additional action, σ(X) =‖ X ‖2 for some norm on t.

Proof Since dim T = 2 we can choose {X1, X2} to be an orthonormal basis of t. We
shall show σ(Xt ) = rot(2t) is not invariant under the action of a Weyl groups. The
case σ(Xt ) = rot(−2t) is similar.

Let W be the Weyl group, then there is a matrix valued function M(W ) so that
σ(W · Xt ) = M(W )−1σ(Xt )M(W ). Thus σ(W · Xt ) and σ(Xt ) have the same eigen-
values. The eigenvalues of σ(Xt ) are:

(3.15) cos(2t) + i sin(2t), cos(2t) − i sin(2t).
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There are three compact semisimple rank 2 lie groups: SU (3), Spin(5) and G2. A
case by case check shows that the eigenvalues of (3.15) are not always constant.

(1) SU (3). The Weyl group has element sending X0 to Xπ/3.

(2) Spin(5). The Weyl group has an element sending Xt to Xπ/2−t .

(3) G2. The Weyl group has an element sending X0 to X2π/3.

4 Passage Between the Group and the Torus

Let G be a compact semisimple Lie group and T its maximal torus. Let π : G →
Aut(E) be a representation and E the associated homogenous bundle with fibre E. If
D is an invariant second order elliptic differentiable operator then its symbol σ : g →
End E satisfies

(4.1) σ(Adg ·X) = π(g)σ(X)π(g−1)

and σ(X) is invertible for X 6= 0. Now under the adjoint action of g each element of

g is congugate to an element of t. A consequence of this is:

Lemma 4.1 The symbol σ is determined by its restriction to t.

Proof Let Y ∈ g then there is g ∈ G and X ∈ t such that Y = Adg X. Thus
σ(Y ) = π(g)σ(X)π(g−1).

The converse of Lemma 4.1 is not quite true. If σ : t → End E is a Weyl group
invariant map then σ extends to an invariant map on g. However, even if σ is a
quadratic, this extension need not be.

Example 4.2 The group Spin(5) has 4 positive roots: α, β, γ and δ with γ the highest
root. For a root v let Sv be reflection in the hyperplane (in this case a line) of v. Con-
sider the representation with highest weight ρ and denote the representation space by

E. Then dim E = 16 and there are 8 weight spaces, each of dimension 2, with weights
wρ for w in the Weyl group.

Define q : t → End R
2 by q(x) =‖ X ‖2 rot(2θ), where θ is the angle X makes

with the initial line in t ≃ R
2. Then define qw by the following table.

ω 1&SαSγ Sα&Sγ Sβ&Sδ SβSα&SγSδ

qω(X) q(X) q(X)t −q(X)t −q(X)

Now let σ : t → End E by σ(X) | Ewp = qw(X). Then σ is a Weyl group invariant

quadratic map on it, but its extension to Spin(5) is not quadratic. If the extension
were quadratic it would factor through the second symmetric power: S2(g). An anal-
ysis of the weights of S2(g) as a representation space of Spin(5) shows this is not
possible.
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If we restrict π to the maximal torus it can be decomposed into isotypic spaces Ei

and irreducible spaces Vi :

(4.2) E = ⊕iEi = ⊕imiVi, where Ei = miVi.

The spaces Ei are called weight spaces and the mi are integers: the multiplicities.

Definition 4.3 The representation π has simple multiplicities if mi = 1 for all i.

If π has simple multiplicities we shall also say that the bundle E has simple multi-
plicities.

Theorem 4.4 If E has simple multiplicities and D is elliptic, then there is a constant c

and an invariant quadratic map q : g → End E such that σ(X) = c‖X‖2I + q(X),

where q is not invertible for some X 6= 0. Further, if σ(X) = c‖X‖2 + tq(X) then σt (X)
is invertible for all X 6= 0 and 0 ≤ t ≤ 1.

Proof Since σ is G-invariant, it is also T-invariant, and so preserves the T-isotypic

subspaces. These are irreducible, by simple multiplicities, and so consider each com-
ponent σi : t → End Vi .

If rank G ≥ 3, apply Corollary 3.2 to obtain σi(X) = ‖X‖2
i I. If rank G = 2

consider the action of the Weyl group. When the Weyl group acts trivially on the
weight space apply Corollary 3.3 to obtain σi(X) = ‖X‖2

i I. When the Weyl group
acts nontrivially it is generated by reflections in root lines (the root hyperplanes in the

rank 2 case) and it permutes the weight spaces. Suppose the root line of root v makes
an angle φ with the initial line. If σi(X) = ‖X‖2

i rot(2θ) then, by some elementary
plane geometry, σi(SvX) = ‖X‖2

i rot(4φ − 2θ). Now σi(SvX) = σ j(X) for some j,
thus rot(4φ−2θ) = rot(2θ) or rot(−2θ). Hence, θ is a multiple of π/4. This does not

hold for the groups SU (3) and G2, so for these groups σi(X) = ‖X‖2
i I. If the weight

space Ei corresponds to a singular weight, there is an element of the Weyl group which
leaves Ei fixed. This yields σi(X) = ‖X‖2

i I for singular weights. The symbol factors
σ : g → S2(g) → End E. Now for Spin(5) we decompose S2(g) = E2γ ⊕ Eβ ⊕ E0.

Since each of these weights is singular, σi(X) = ‖X‖2
i I for the group Spin(5).

Some of the norms ‖ ‖i may be positive-definite and some negative-definite. Let
E+

= ⊕Ei over those i such that ‖ ‖i is positive definite. Suppose that T ′ is another
maximal torus with Lie algebra t ′. We say that T ′ touches T if dim(t ∩ t ′) ≥ 1.

Notice T touches itself in all cases and only itself in the rank 1 case. Let J =
⋃

T ′

and j =
⋃

t ′, with the union over all tori T ′ that touch T.

Lemma 4.5 If rank G ≥ 2 then the span of j is g.

Proof Let g = t ⊕ Σgα be the root space decomposition and let X ∈ gα for some α.
Then there is Y ∈ t such that α(y) = 0 and [X,Y ] = 0 with Y 6= 0. Thus there is a
maximal torus Tα with Lie algebra tα such that X,Y ∈ tα. Hence TX touches T, so
gα ⊂ j which proves the lemma.
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Thus if H = {g ∈ G : dim(Adg ·j ∩ j) ≥ 1} then J ⊂ H and H generates G since j

spans g.

Let E+(X) be the span of the eigenspaces of σ(X) corresponding to positive eigen-
values. Then E+(X) = E+(Y ) for X,Y ∈ t and hence also for X,Y ∈ j. Let
E+

= E+(X) for a non-zero X. Then E+ is invariant under the action of any element
of H and hence invariant under the action of G. As E is irreducible, either E+

= 0 or

E+
= E. Replacing σ by −σ if necessary, we can suppose all ‖ ‖i are positive definite.
Now ‖ ‖i is invariant under the torus, but not necessarily under the whole group,

nor even under N(T). Thus ‖ ‖i need not to be the Killing from inner product, see
Example 5.7. However, since T is compact and ‖ ‖i is positive definite we have that

there exist ci > 0 and di > 0 such that for all X ∈ t:

(4.3) ci‖X‖2 ≤ ‖X‖2
i ≤ di‖X‖2,

with equality achieved for some values of X. Let c = min(ci) and set q(X) = σ(X) −
c‖X‖2I. Then immediately

(4.4) σ(X) = c‖X‖2I + q(X).

The non-invertibility of q(X) for some X follows from the achievement of equality
for ci‖X‖2 ≤ ‖X‖2

i in (4.3) for ci = c minimal. Just as immediately the invertibility
of σt (x) = c‖X‖2 + tq(x) for t ≥ 0 also follows from the inequality (4.3).

The space of elliptic symbols is the union of two subspaces: those with positive
eigenvalues and those with negative. We shall restrict attention to the positive case;
the negative one is similar and can be obtained from the positive one by changing

signs.

Corollary 4.6 The space of positive elliptic symbols is convex.

Proof This follows immediately from (4.3).

The space of second order symbols is

(4.5) S
2(g)∗ ⊗ End E ⊂ End(g ⊗ E),

and so has an invariant inner product. The trace is a map

(4.6) tr : End(g ⊗ E) → R,

which is a positive constant times the projection to the trivial part representing ∆,
the Laplacian. Denote the restriction of the trace to symbols on the torus by trT . The
symbol of ∆ is ‖X‖2I and tr(‖X‖2I) = l dim E. For a positive elliptic symbol σ, from

(4.3), we have

(4.7) trT σ ≥ cl dim E,

where c = min(ci) as before. Set k = trT σ/l dim E then k ≥ c > 0. Let q(X) =

σ(X) − k‖X‖2I then, by construction, trT q ′
= 0. Thus, from (4.7), q ′ is not elliptic.
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Theorem 4.7 The symbols σt (X) = k‖X‖2I + tq ′(X), 0 ≤ t < 1, form a family of

elliptic symbols with trT σt = kl dim E, independent of t joining σ and k‖X‖2I.

Proof By construction σt (X) clearly joins σ(X) and k‖X‖2I. Convexity shows that
σt is elliptic, and trT σt = kl dim E follows from trT q ′

= 0.

This result gives an orthogonal homotopy between σ and the symbol of k∆. How-

ever, the symbols σt , which are elliptic for 0 ≤ t ≤ 1, need not be elliptic for all t ≤ 0
unlike the result of Theorem 4.4. Example 5.7 illustrates this point.

5 The Structure of the Space of Second Order Operators and A Rank
2 Example

Let π : G → Aut E be an irreducible representation with simple multiplicities, and D

be an elliptic invariant second order operator on E. The symbol of D is σD and by
Theorems 4.4 and 4.7 we have

(5.1) σD(X) = c‖X‖2I + q(X) = k‖X‖2I + q ′(X).

Let Q = D − c∆ and Q ′
= D − k∆ then Q and Q ′ are invariant second order

operators with symbols q and q ′ which are non elliptic. Then if Dt = c∆ + tQ and
D ′

t = k∆ + tQ ′ the following is immediate.

Theorem 5.1 (a) The operator Dt is invariant and elliptic for all t ≥ 0 and D ′
t for

0 ≤ t ≤ 1.

(b) The eigenvalues of q(X) and q ′(X) are either all non-negative when c > 0 or all

non-positive when c < 0.

(c) Dt (respectively, D ′
t ) for 0 ≤ t ≤ 1 is a homotopy through invariant elliptic op-

erators between D and c∆ (respectively, k∆). The family D ′
t gives a homotopy

orthogonal to ∆.

We next observe that ∆ is not homotopic to −∆. If dim E is even then there
is no homotopy through invariant elliptic operators. To see this we restrict to the

maximal torus T and a weight space Eα. Then the homotopy would give rise to
a function c : [0, 1] → R such that c(t)∆ + Qt is the path form ∆ to −∆. That is
c(0) = 1, c(1) = −1 and c is a continuous non-vanishing function. This is impossible
and so there is no such homotopy between ∆ and −∆.

Proposition 5.2 The operator D is homotopic to either ∆ or −∆ but not both.

Using Propositions 5.1 and 5.2 it is straight forward to describe the space of invari-
ant elliptic second order differentials operators. Let R

+ be the positive real numbers,
then the space in question if R

+×U for a suitable U . Now the space U is not uniquely

determined by this, but one choice can be given.

Theorem 5.3 U = U + ∪ U−, where U±
= {±∆ + tQ : t ≥ 0 and Q is as in

Proposition 5.1}.
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Corollary 5.4 The space of second order, elliptic, invariant operators is the disjoint

union of two simply connected subspaces.

Remark 5.5 The space U + is a half space in the sense that if both ∆ + Q1 and ∆ + Q2

are in U + so is ∆ + (Q1 + Q2). A similar statement is true for U−.

Remark 5.6 We can say that the representation π : G → E has N(T) simple mul-
tiplicities if mi = 1 for all i where π|N(T) =

⊕

miπi is the decomposition into
irreducible representations of the normalizer of the torus, N(T). The only difference

between a T-simple and an N(T)-simple representation is in the zero-weight space,
as exemplified by the adjoint representation. The result does not extend to N(T)-
simple representations as the following rank 2 example shows

Let G be a rank 2 Lie group. Fix a maximal torus T and let e1, e2 be a basis for t.
Let

(5.2) g = t ⊕ Σgα·

Let D be an invariant operator on vector fields with symbol

(5.3) σD(v) : g → g, for v ∈ g.

Because every orbit under the adjoint map intersects t, if we know the eigenvalues
of σD(v) for v ∈ t we know them everywhere. Let D = d∗d + kdd∗ where k is a

constant; one of the operators considered in [2, 7]. We have that σd(v) = ∈(v),
exterior multiplication by v and σd∗(v) = i(v), interior multiplication by v. Thus, on
a root space gα we have σd∗(v) = 0 and σd∗d(v) = ‖v‖2, for v ∈ t .

Hence σD(v)|gα = ‖v‖2I for all k. On t the situation is different and, writing
v = (x, y), the result is

σd(v)(ae1 + be2) = (xb − ya)e1 ∧ e2

σd∗(v)(ae1 + be2) = xa + yb

σd∗d(v)(ae1 + be2) = (y2a − xyb)e1 + (x2b − xya)e2

σdd∗(v)(ae1 + be2) = (x2a + xyb)e1 + (xya + y2b)e2.

Consequently we have that, as a matrix,

σd∗d+kdd∗(v) =

(

kx2 + y2 (k − 1)xy

(k − 1)xy x2 + ky2

)

,

and this has eigenvalues k(x2 + y2) and x2 + y2. Thus the eigenvalues of σD(v) are

k‖v‖2, with multiplicity 1, and ‖v‖2, with multiplicity dim G − 1.

There is indeed an invariant elliptic operator orthogonal to the Laplacian.
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Example 5.7 Let R be the invariant first order operator defined by

(5.4) R( f ⊗ s) =

∑

i

Xi( f ) ⊗ π(Xi)s,

where {Xi} is an orthonormal basis for g. Then R is an invariant first order operator
with symbol σR(X) = π(X). Thus, except for even dimensional representations over
SU (2), R is not elliptic. Set D = ∆+R2, take π to be the adjoint representation and let

n = dim G. Then the T-isotypic spaces are the root spaces and ‖X‖2
i = ‖X‖2 +α(X)2,

where α is the ith root and ‖ ‖2 is the Killing form norm. Then the ci of (4.3) are
all 1.

Thus c = 1. On the other hand

(5.5) trT σD =

∑

X

∑

α

(1 + α(X)2) = (n + 1)1,

where the first sum is over X in an orthonormal basis of t and the second over all the
weights of the adjoint representation, including zero. Thus k = (n + 1)/n. Hence, in
Theorem 5.1

(5.6) Q = R2 and Q ′
= R2 − (1/n)∆.

So Dt = ∆ + tR2 and is elliptic for all t ≥ 0, and D ′
t = (n + 1 − t)∆/n + tR2. While

D ′
t is elliptic for 0 ≤ t ≤ 1, it is not elliptic for t = n + 1. However, D ′

t is orthogonal
to (n + 1)∆/n.

6 Representation with Simple Multiplicities.

We shall restrict ourselves to the group SU (ℓ + 1) for ℓ ≥ 2. Following [1, Planche 1]
we have t ⊂ R

ℓ+1 where t = {(x1, . . . , xℓ+1) : Σixi = 0}. Let {e1, . . . , eℓ+1} be the
standard basis for R

ℓ+1 then the Weyl group is W = Sℓ+1, the symmetric group on
ℓ + 1 letters, which acts by permuting {ei}. The positive roots are ei − e j , i < j, and

a root basis is

(6.1) αi = ei − ei+1 1 ≤ i ≤ ℓ.

The fundamental weights are

(6.2) wi =

(

(ℓ + 1 − i)
∑

i
j=1e j − i

ℓ+1
∑

j=i+1

e j

)

/(ℓ + 1).

Lemma 6.1 The representations whose highest weight is a fundamental weight have

simple multiplicities.
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Proof Let Wi be the subgroup of W which stabilizes wi . Then Wi = Si × Sℓ+1−i and
so the orbit of wi under W has

(6.3) |W wi| =
(ℓ + 1)!

i!(ℓ + 1 − i)!
=

(

ℓ + 1

i

)

elements.
Using the Weyl dimension formula we calculate that

(6.4) dim πwi =

∏

α>0

〈ρ + wi, α〉
〈ρ, α〉 =

∏

1≤r≤i≤s≤ℓ+1

(

1 +
1

s − r

)

=

i
∏

r=1

l+1−r
∏

k=i+1−r

(

1 +
1

k

)

=
(ℓ + 1)!

i!(ℓ + 1 − i)!
.

Now dim πwi
is the number (counting multiplicities) of weights of πwi

. On the
other hand each element of Wwi

is a weight of πwi
with multiplicity 1. Thus since

|Wwi
| = dimwi

the weights of πwi
are precisely the elements of Wwi

and each occurs
with multiplicity 1.

Lemma 6.2 The tensor product πw1
⊗ πnw1

decomposes into irreducible representations

as πwi
⊗ πnw1

= π(n−1)w1
⊕ π(n−1)w1+w2

.

Proof From general results and Kostant’s multiplicity formula in particular we have

(6.5) πµ ⊗ πλ = Σmνπν ,

where ν = µ + λ occurs with multiplicity 1, mµ+λ = 1, and each other ν occuring
has the form ν = α + λ, where α is a weight of πµ. Of course not all α + λ which are
dominant necessarily need occur. By inspection the dominant weights of the form
α + nw1 for α a weight of πwi are (n + 1)w1 and (n − 1)w1 + w2. Thus we have a

decomposition

(6.6) nwi
⊗ πnw1

= π(n+1)w1
⊕ mπ(n−1)w1+w2

for some multiplicity m. Using the Weyl dimension formula to compute dimensions
gives:

(6.7) dim(πwi
⊗ πnw1

) = (ℓ + 1)

(

ℓ + n

ℓ − 1

)

,

dim(π(n+1)w1
) =

(

ℓ + n + 1
ℓ

)

,

dim(π(n−1)w1+w2
) = n

(

ℓ + n

ℓ − 1

)

.

This yield m = 1.

For a representation π we denote the nth symmetric product by Sn(π).
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Lemma 6.3 Sn(πw1) = πnw1
.

Proof We proceed by induction on n. For n = 1 the result is immediate. For n = 2
we see that 2w1 is a highest weight for both S2(πw1

) and π2w1
furthermore these both

have dimension 1
2
(ℓ + 1)(ℓ + 2).

For the inductive step observe S
n+1(πw1

) ⊂ πw1 ⊗ S
n(πw1

). Thus S
n+1(πw1

) ⊂
π(n+1)w1

⊕ π(n−1)w1+w2

. Now since Sn+1(πw1
) is a representation space there are four

possibilities.

(6.8) (a) Sn+1(πw1
) = π(n+1)w1

⊕ π(n−1)w1+w2
,

(b) Sn+1(πw1
) = π(n+1)w1

,

(c) Sn+1(πw1
) = π(n−1)w1+w2

,

(d) Sn+1(πw1
) = {0}.

Elementary linear algebra eliminates a and d. We see b is true rather than c by
considering highest weights.

Corollary 6.4 dim Sn(C
ℓ+1) =

(

l+n
ℓ

)

.

Remark 6.5 It is possible to give an independent proof of this corollary by using in-
duction and the formula:

(6.9) S(Cℓ+1) = Σ
n
k=0S

k(C
ℓ).

Remark 6.6 The results here are only true for the group SU (ℓ + 1).

Theorem 6.7 The weights of πnw1
have simple multiplicities.

Proof First define

(6.10) βk =

(

(ℓ + 1)ck −
ℓ+1
∑

i=1

ci

)

/(ℓ + 1),

so β1 = w1. Then β1, . . . , βℓ+1 are the weights of πw1
. Thus, since πnw1

= Sn(πw1
)

the weights of πn are
∑ℓ−1

i=1 aiβi with ai ∈ Z, ai > 0 and
∑ℓ+1

i=1 ai = n.
If Σaiβi = Σbiβi then to show πnw1

has simple multiplicities we need to show
ai = bi . Set ci = ai − bi then we have

(6.11)

ℓ+1
∑

i=1

ciβi = 0,
ℓ+1
∑

i=1

ci = 0

Now βℓ+1 = −β1 · · · − βℓ and {β1, . . . , βℓ} is a linearly independent set. Thus
∑ℓ

i=1(ci − cℓ+1)βi = 0 and so ci = cℓ+1 for all i. Hence
∑ℓ+1

i=1 ci = (ℓ + 1)cℓ+1 = 0 so
ci = 0 for all i.
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Corollary 6.8 For the group SU (ℓ + 1), the invariant elliptic second order differential

operators on the homogenous bundle associated to the representation πnw1
are homotopic

to ∆, where c is a constant and ∆ is the Laplacian.

Remark 6.9 Since πwℓ
is the contragradiant representation to πw1

all the results of
this section apply equally to representation with wℓ replacing w1 (and for Lemma 6.2
πwℓ

⊗ πnwℓ = π(n+1)wℓ ⊕ π(n−1)wℓ + wℓ−1).

7 Some Examples

In any particular case the multiplicities of a representation can be explicitly com-

puted. This is made easier by using a suitable program on a computer.

The following table was calculated by using the program LiE, written by Marc.

A. A. vanLeeuwen, Arjeh M. Cohen and Bert Lisser. It was available at the web site
http://wallis.uni-potiers.fr/ maavll/LIE/ The results are stated using the notation of [1,
Planches].

group highest weight highest weights
with simple multiplicity not with simple multiplicity

A4 w1 w2 w3 w4 2w2 2w3

B4 w1 w4 2w1 w2 w3 2w4

C4 w1 2w1 w2 w3 w4

D4 w1 w3 w4 2w1 w2 2w3 2w4

E6 w1 w6 2w1 w2 w3 w4 w5 2w6

E7 w7 w1 w2 w3 w4 w5 w6 2w7

E8 w1 w2 w3 w4 w5 w6 w7 w8

F4 w1 w2 w3 w4

G2 w1 2w1 w2
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