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For 1 < p < ∞ we prove an Lp-version of the generalized trace-free Korn inequality
for incompatible tensor fields P in W 1,p

0 (Curl; Ω, R
3×3). More precisely, let Ω ⊂ R

3

be a bounded Lipschitz domain. Then there exists a constant c > 0 such that

‖P‖Lp(Ω,R3×3) � c
(
‖dev sym P‖Lp(Ω,R3×3) + ‖dev Curl P‖Lp(Ω,R3×3)

)
holds for all tensor fields P ∈ W 1,p

0 (Curl; Ω, R
3×3), i.e., for all P ∈ W 1,p(Curl;

Ω, R
3×3) with vanishing tangential trace P × ν = 0 on ∂Ω where ν denotes the

outward unit normal vector field to ∂Ω and dev P := P − 1
3

tr(P )·1 denotes the
deviatoric (trace-free) part of P . We also show the norm equivalence

‖P‖Lp(Ω,R3×3) + ‖Curl P‖Lp(Ω,R3×3)

� c
(
‖P‖Lp(Ω,R3×3) + ‖dev Curl P‖Lp(Ω,R3×3)

)
for tensor fields P ∈ W 1,p(Curl; Ω, R

3×3). These estimates also hold true for tensor
fields with vanishing tangential trace only on a relatively open (non-empty) subset
Γ ⊆ ∂Ω of the boundary.
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1. Introduction

Korn-type inequalities are crucial for a priori estimates in linear elasticity and fluid
mechanics. They allow to bound the Lp-norm of the gradient Du in terms of the
symmetric gradient, i.e. Korn’s first inequality states

∃ c > 0 ∀u ∈ W 1,p
0 (Ω, Rn) : ‖Du‖Lp(Ω,Rn×n) � c ‖sym Du‖Lp(Ω,Rn×n). (1.1)

Generalizations to many different settings have been obtained in the literature,
including the geometrically nonlinear counterpart [23, 24, 39], mixed growth con-
ditions [15], incompatible fields (also with dislocations) [6, 40–43, 48, 55–58], as
well as the case of non-constant coefficients [37, 50, 59, 62] and on Riemannian
manifolds [9]. In this paper we focus on their improvement towards the trace-free
case:

∃ c > 0 ∀u ∈ W 1,p
0 (Ω, Rn) : ‖Du‖Lp(Ω,Rn×n) � c ‖devn sym Du‖Lp(Ω,Rn×n),

(1.2)
where devn X := X − 1

n tr(X) · 1 denotes the deviatoric (trace-free) part of the
square matrix X. Note in passing that (1.2) implies (1.1).

There exist many different proofs and generalizations of the trace-free classical
Korn’s inequality in the literature, see [63, theorem 2] but also [6, 17, 27, 33, 64,
65] as well as [67] for trace-free Korn’s inequalities in pseudo-Euclidean space and
[17, 32] for trace-free Korn inequalities on manifolds, [8, 25] for trace-free Korn
inequalities in Orlicz spaces and [18, 45] for weighted trace-free Korn inequali-
ties in Hölder and John domains. Such coercive inequalities found application in
micro-polar Cosserat-type models [27, 33, 34, 49] and general relativity [17]. On
the other hand, corresponding trace-free coercive inequalities for incompatible ten-
sor fields are useful in infinitesimal gradient plasticity as well as in linear relaxed
micromorphic elasticity, see [31, 51] but also [6, sec. 7] and the references contained
therein.

Notably, in case n = 2, the condition dev2 sym Du ≡ 0 becomes the system of
Cauchy-Riemann equations, so that the corresponding kernel is infinite-dimensional
and an adequate quantitative version of the trace-free classical Korn’s inequality
does not hold true. Nevertheless, in [27] it is proved that

‖Du‖Lp(Ω,R2×2) � c ‖dev2 sym Du‖Lp(Ω,R2×2) (1.3)

holds for each u ∈ W 1,p
0 (Ω, R2),1 but, again, this result ceases to be valid if

the Dirichlet conditions are prescribed only on a part of the boundary, cf. the
counterexample in [6, sec. 6.6].

Korn-type inequalities fail for the limiting cases p = 1 and p = ∞. Indeed, from
the counterexamples traced back in [16, 38, 47, 61] it follows that

∫
Ω
|sym Du|dx

does not dominate each quantity
∫
Ω
|∂iuj |dx for any vector field u ∈ W 1,1

0 (Ω, Rn).
Hence, also trace-free versions fail for p = 1 and p = ∞. On the other hand,
Poincaré-type inequalities estimating certain integral norms of the deformation u
in terms of the total variation of the symmetric strain tensor sym Du are still valid.

1A simple proof using partial integration is given in the appendix for the case p = 2 and all
dimensions.
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In particular, for Poincaré-type inequalities for functions of bounded deformation
involving the deviatoric part of the symmetric gradient we refer to [26].

The classical Korn’s inequalities need compatibility, i.e. a gradient Du; giving up
the compatibility necessitates controlling the distance of P to a gradient by adding
the incompatibility measure (the dislocation density tensor) CurlP . We showed in
[43] the following quantitative version of Korn’s inequality for incompatible tensor
fields P ∈ W 1,p(Curl; Ω, R3×3):

inf
Ã∈so(3)

‖P − Ã‖Lp(Ω,R3×3) � c
(‖sym P‖Lp(Ω,R3×3) + ‖CurlP‖Lp(Ω,R3×3)

)
. (1.4)

Note that the constant skew-symmetric matrix fields (restricted to Ω) represent the
elements from the kernel of the right-hand side of (1.4). For compatible P = Du
recover from (1.4) the quantitative version of the classical Korn’s inequality, namely
for u ∈ W 1,p(Ω, R3):

inf
Ã∈so(3)

‖Du − Ã‖Lp(Ω,R3×3) � c ‖sym Du‖Lp(Ω,R3×3) (1.5)

and for skew-symmetric matrix fields P = A ∈ so(3) the corresponding Poincaré
inequality for squared skew-symmetric matrix fields A ∈ W 1,p(Ω, so(3)) (and thus
for vectors in R

3):

inf
Ã∈so(3)

‖A − Ã‖Lp(Ω,R3×3) � c ‖Curl A‖Lp(Ω,R3×3) � c̃ ‖DA‖Lp(Ω,R3×32 ), (1.6)

where in the last step we have used that Curl consists of linear combinations
from D. Interestingly, for skew-symmetric A also the converse is true, more pre-
cisely, the entries of DA are linear combinations of the entries from CurlA, cf. e.g.
[43, Cor. 2.3]:

DA = L(Curl A) for skew-symmetric A, (1.7)

where L(.) denotes a corresponding linear operator with constant coefficients, not
necessarily the same in any two places in the present paper. In fact, the mentioned
results also hold in higher dimensions n > 3, see [42] and the discussion contained
therein. In our proof of (1.4) we were highly inspired by a proof of (1.5) advocated
by P. G. Ciarlet and his collaborators [10–14, 19, 29], which uses the Lions lemma
resp. Nečas estimate, the compact embedding W 1,p ⊂⊂ Lp and the representation of
the second distributional derivatives of the displacement u by a linear combination
of the first derivatives of the symmetrized gradient Du:

D2u = L(D sym Du). (1.8)

It is worth mentioning that the role of the latter ingredient (1.8) was taken over by
(1.7) in our proof of (1.4) in [43] resp. [42]. In n = 3 dimensions the relation (1.7)
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is an easy consequence of the so called Nye’s formula [60, eq. (7)]:

CurlA = tr(DaxlA) · 1 − (Daxl A)T , (1.9a)

resp.

Daxl A =
1
2

tr(CurlA) · 1 − (Curl A)T , (1.9b)

where we identify the vectorspace of skew-symmetric matrices so(3) and R
3 via

axl : so(3) → R
3 which is defined by the cross product:

Ab =: axl(A) × b ∀ b ∈ R
3, (1.10)

and associates with a skew-symmetric matrix A ∈ so(3) the vector axl A :=
(−A23, A13,−A12)T . The relation (1.9a) admits moreover a counterpart on the
group of orthogonal matrices O(3) and even in higher spatial dimensions, see [54].
In fact, Nye’s formula is (formally) a consequence of the following algebraic identity:

(Anti a) × b = b ⊗ a − 〈b, a〉·1 ∀ a, b ∈ R
3, (1.11)

where the vector product of a matrix and a vector is to be seen row-wise and
Anti : R

3 → so(3) is the inverse of axl. Despite the absence of the simple algebraic
relations in the higher dimensional case a corresponding relation to (1.7) also holds
true in n > 3, see e.g. [42].

Moreover, the kernel in quantitative versions of Korn’s inequalities is killed by
corresponding boundary conditions, namely by a vanishing trace condition u|∂Ω = 0
in the case of (1.5) and (1.6) and by a vanishing tangential trace condition P ×
ν |∂Ω = 0 in the general case (1.4), cf. [42, 43].

The objective of the present paper is to improve on inequality (1.4) by showing
that it already suffices to consider the deviatoric (trace-free) parts on the right-hand
side, hence, further contributing to the problems proposed in [58]. More precisely,
the main results are

Theorem 1. Let Ω ⊂ R
3 be a bounded Lipschitz domain and 1 < p < ∞. There

exists a constant c = c(p,Ω) > 0 such that for all P ∈ Lp(Ω, R3×3) we have

inf
T∈KdS,dC

‖P − T‖Lp(Ω,R3×3)

� c
(‖dev sym P‖Lp(Ω,R3×3) + ‖dev CurlP‖W−1,p(Ω,R3×3)

)
, (1.12)

where dev X := X − 1
3 tr(X)·1 denotes the deviatoric part of a square tensor X ∈

R
3×3 and KdS,dC represent the kernel of the right-hand side and is given by

KdS,dC = {T : Ω → R
3×3 | T (x) = Anti

(
Ã x + β x + b

)
+
(〈

axl Ã, x
〉

+ γ
)·1,

Ã ∈ so(3), b ∈ R
3, β, γ ∈ R}. (1.13)

By killing the kernel with tangential trace conditions (note that dev(P × ν) = 0
iff P × ν = 0) we arrive at the following Korn’s first type inequality
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Theorem 2. Let Ω ⊂ R
3 be a bounded Lipschitz domain and 1 < p < ∞. There

exists a constant c = c(p,Ω) > 0 such that we have

‖P‖Lp(Ω,R3×3) � c
(‖dev sym P‖Lp(Ω,R3×3) + ‖dev CurlP‖Lp(Ω,R3×3)

)
(1.14)

for all

P ∈ W 1,p
0 (Curl; Ω, R3×3)

:= {P ∈ Lp(Ω, R3×3) | CurlP ∈ Lp(Ω, R3×3), P × ν ≡ 0 on ∂Ω}.

The appearance of the term dev CurlP on the right-hand side of (1.14) would
suggest to consider p-integrable tensor fields P with ‘only’ p-integrable dev CurlP .
However, this would not lead to a new Banach space, since we show that for all
m ∈ Z it holds that

CurlP ∈ Wm,p(Ω, R3×3) ⇔ dev CurlP ∈ Wm,p(Ω, R3×3). (1.15)

The estimate (1.14) generalizes the corresponding result in [6] from the L2-setting
to the Lp-setting, whereas the trace-free second type inequality (1.12) is completely
new. Generalizations to different right-hand sides and higher dimensions have been
obtained in the recent papers [40, 41]. Note however that the estimates (1.12) and
(1.14) are restricted to the case of three dimensions since the deviatoric operator
acts on square matrices and only in the three-dimensional setting the matrix Curl
returns a square matrix.

Again, for compatible P = Du we get back a tangential trace-free classical Korn
inequality for the displacement gradient, namely

‖Du‖Lp(Ω,R3×3) � c ‖dev symDu‖Lp(Ω,R3×3) with Du × ν = 0 on ∂Ω (1.16)

as well as

inf
T∈KdS,C

‖Du − T‖Lp(Ω,R3×3) � c ‖dev sym Du‖Lp(Ω,R3×3) (1.17)

respectively

‖u − Πu‖W 1,p(Ω,R3) � c ‖dev symDu‖Lp(Ω,R3×3), (1.18)

where Π denotes an arbitrary projection operator from W 1,p(Ω, R3) onto the space
of conformal Killing vectors, here the finite dimensional kernel of dev sym D, which
is given by quadratic polynomials of the form

ϕc(x) =
〈
a, x
〉
x − 1

2
a ‖x‖2 + Anti(b)x + β x + c,

with a := axl Ã, b, c ∈ R
3and β ∈ R,

namely the infinitesimal conformal mappings, cf. [17, 33, 49, 63–65], see figure 1
for an illustration in 2D.
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Figure 1. In the planar case, the condition dev2 sym Du = 0 coincides with the Cauchy-
Riemann equations for the function u (see appendix). Therefore, infinitesimal conformal
mappings in 2D are holomorphic functions which preserve angles exactly. This ceases to
be the case for 3D infinitesimal conformal mappings defined by dev3 sym Du = 0.

A first proof of (1.18), even in all dimensions n � 3, was given by Reshetnyak
[63] over domains which are star-like with respect to a ball. Over bounded Lipschitz
domains the trace-free Korn’s second inequality in all dimensions n � 3, namely

∃c > 0 ∀u ∈ W 1,p(Ω, Rn) :

‖u‖W 1,p(Ω,Rn) � c
(‖u‖Lp(Ω,Rn) + ‖devn sym Du‖Lp(Ω,Rn×n)

)
, (1.19)

was justified by Dain [17] in the case p = 2 and by Schirra [65] for all p > 1. Their
proofs use again the Lions lemma and the ‘higher order’ analogues of the differential
relation (1.8):

DΔu = L(D2 devn sym Du). (1.20)

However, the differential operators symD and devn sym D are particular cases of
the so-called coercive elliptic operators whose study began with Aronszajn [5].

Let us go back to

‖P‖L2(Ω,R3×3) � c
(‖dev sym P‖L2(Ω,R3×3) + ‖dev CurlP‖L2(Ω,R3×3)

)
(1.21)

whose first proof for P ∈ W 1,2
0 (Curl; Ω, R3×3) was given in [6] via the trace-free

classical Korn’s inequality, a Maxwell estimate and a Helmholtz decomposition and
is not directly amenable to the Lp-case. Here, we catch up with the latter.

In the following section we start by summarizing the notations and collect some
preliminary results from algebraic calculations which are needed in the subsequent
vector calculus to establish relations of the type:

D3(A + ζ · 1) = L(D2 dev Curl(A + ζ · 1)) (1.22)

for skew-symmetric tensor fields A and scalar functions ζ, where L denotes a corre-
sponding constant coefficients linear operator. Based on this ‘higher order’ analogue
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of the differential relation (1.7) we prove our main results in the last section using
a similar argumentation as in [17, 65] which argue by the Lions lemma resp. Nečas
estimate and the compact embedding W 1,p(Ω) ⊂⊂ Lp(Ω).

2. Notations and preliminaries

Let n � 2. We consider for vectors a, b ∈ R
n the scalar product

〈
a, b
〉

:=∑n
i=1 ai bi ∈ R, the (squared) norm ‖a‖2 :=

〈
a, a
〉

and the dyadic product a ⊗ b :=
(ai bj)i,j=1,...,n ∈ R

n×n. Similarly, we define the scalar product for matrices P,Q ∈
R

n×n by
〈
P,Q

〉
:=
∑n

i,j=1 Pij Qij ∈ R and the (squared) Frobenius-norm by
‖P‖2 :=

〈
P, P

〉
. We highlight by . · . the scalar multiplication of a scalar with a

matrix, whereas matrix multiplication is denoted only by juxtaposition.
Moreover, PT := (Pji)i,j=1,...,n denotes the transposition of the matrix P =

(Pij)i,j=1,...,n. The latter decomposes orthogonally into the symmetric part
sym P := 1

2 (P + PT ) and the skew-symmetric part skew P := 1
2 (P − PT ). We will

denote by so(n) := {A ∈ R
n×n | AT = −A} the Lie-Algebra of skew-symmetric

matrices.
For the identity matrix we will write 1, so that the trace of a squared matrix

P is given by trP :=
〈
P,1

〉
. The deviatoric (trace-free) part of P is given by

devn P := P − 1
n tr(P )·1 and in three dimensions its index will be suppressed, i.e.

we write dev instead of dev3.
We will denote by D ′(Ω) the space of distributions on a bounded Lipschitz domain

Ω ⊂ R
n and by W−k,p(Ω) the dual space of W k,p′

0 (Ω), where p′ = p
p−1 is the Hölder

dual exponent to p.
Throughout the paper we use c as a generic positive constant, which is not

necessarily the same in any two places, and we use L(.) as a generic linear operator
with constant coefficients, which also may differ in any two places within the paper.

In 3-dimensions we make use of the vector product × : R
3 × R

3 → R
3. Since the

vector product a × . with a fixed vector a ∈ R
3 is linear in the second component,

there exists a unique matrix Anti(a) such that

a × b =: Anti(a)b ∀ b ∈ R
3, (2.1)

and direct calculations show that for a = (a1, a2, a3)T the matrix Anti(a) has the
form

Anti(a) =

⎛⎝ 0 −a3 a2

a3 0 −a1

−a2 a1 0

⎞⎠ . (2.2)

The inverse of Anti : R
3 → so(3) is denoted by axl : so(3) → R

3 and fulfills axl(A) ×
b = Ab for all skew-symmetric (3 × 3)-matrices A and vectors b ∈ R

3. The matrix
representation of the cross product allows for a generalization towards a cross
product of a matrix P ∈ R

3×3 and a vector b ∈ R
3 via

P × b := P Anti(b), (2.3)

so, especially, for P = 1 it holds

1 × b = 1 Anti(b) = Anti(b) ∀ b ∈ R
3. (2.4)
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We repeat the following crucial algebraic identity:

(Anti a) × b = b ⊗ a − 〈b, a〉·1 ∀ a, b ∈ R
3. (2.5)

Observation 3. For P ∈ R
3×3 and b ∈ R

3 we have

dev(P × b) = 0 ⇔ P × b = 0. (2.6)

Proof. We decompose P into its symmetric and skew-symmetric part, i.e.,

P = S + A = S + Anti(a), for some S ∈ Sym(3), A ∈ so(3) and with a = axl(A).

For a symmetric matrix S it holds tr(S × b) = 0 for any b ∈ R
3, since2

tr(S × b) =
〈
S × b,1

〉
R3×3 =

〈
S Anti(b),1

〉
R3×3 = −〈S,Anti(b)

〉
R3×3

S∈Sym(3)
= 0.

(2.7)
Thus, using the decomposition P = S + Anti(a), we have:

dev(P × b) = P × b − 1
3

tr(P × b)·1 (2.7)
= P × b − 1

3
tr((Anti a) × b)·1

(2.5)
= P × b − 1

3
tr(b ⊗ a − 〈b, a〉·1)·1 = P × b +

2
3
〈
a, b
〉·1. (2.8)

Moreover, for any matrix P ∈ R
3×3 we note that

(P × b) b = (P Anti(b))b = P (Anti(b) b) = P (b × b) = 0. (2.9)

Thus, we obtain

〈b,dev(P × b) b〉 (2.8)
=
〈

b,

(
P × b +

2
3
〈
a, b
〉·1) b

〉
(2.9)
=

2
3
〈
a, b
〉 ‖b‖2, (2.10)

and the conclusion follows from the identity

‖b‖2·P × b
(2.8)
= ‖b‖2·dev(P × b) − 2

3
‖b‖2

〈
a, b
〉·1

(2.10)
= ‖b‖2·dev(P × b) − 〈b,dev(P × b) b

〉·1. (2.11)

An application of the Cauchy-Bunyakovsky-Schwarz inequality on the right-hand
side of (2.11) shows that

‖dev(P × b)‖ � ‖P × b‖ �
(
1 +

√
3
)
‖dev(P × b)‖. (2.12)

�

Observation 4. Let a ∈ R
3 and α ∈ R, then

(Anti(a) + α · 1) × b = 0 for b ∈ R
3\{0} ⇒ a = 0 and α = 0.

2Cf. the appendix for component-wise calculations.
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Proof. By (2.5) and (2.4) we have:

0 = (Anti(a) + α · 1) × b = b ⊗ a − 〈b, a〉·1 + α · Anti(b). (2.13)

Taking the trace on both sides we obtain

0 = tr(b ⊗ a − 〈b, a〉·1 + α · Anti(b)) =
〈
a, b
〉− 3

〈
a, b
〉

= −2
〈
a, b
〉
.

Thus, reinserting
〈
b, a
〉

= 0 in (2.13) and applying sym on both sides, this implies
sym(b ⊗ a) = 0. Since

‖sym(a ⊗ b)‖2 =
1
2
‖a‖2‖b‖2 +

1
2
〈
a, b
〉2 (2.14)

and b �= 0 we must have a = 0. Hence, by (2.13) also α = 0. �

Formally the gradient and the curl of a vector field a : Ω → R
3 can be seen as

Da = a ⊗∇ and curl a = a × (−∇).

The latter also generalizes to (3 × 3)-matrix fields P : Ω → R
3×3 row-wise:3

CurlP = P × (−∇) =

⎛⎝(PT e1)T

(PT e2)T

(PT e3)T

⎞⎠× (−∇) =

⎛⎝(curl (PT e1))T

(curl (PT e2))T

(curl (PT e3))T

⎞⎠ ∈ R
3×3. (2.15)

Replacing b by ∇ in (2.5) we obtain Nye’s formulas

CurlA = tr(DaxlA) · 1 − (Daxl A)T , (2.16a)

and

DaxlA =
1
2

tr(CurlA) · 1 − (CurlA)T (2.16b)

for all skew-symmetric (3 × 3)-matrix fields A.

Remark 5. Formal calculations (e.g. replacing b by ∇) have to be performed
very carefully. Indeed, they are allowed in algebraic identities but fail, in general,
for implications, e.g. for A ∈ so(3) and b ∈ R

3 we have A × b = 0 if and only if
dev(A × b) = 0, since the following expression holds true, cf. Observation 3 and
(2.11):

‖b‖2·A × b = ‖b‖2·dev(A × b) − 〈b,dev(A × b) b
〉·1 . (2.17)

However, dev(CurlA) = dev(A × (−∇)) = 0 does not imply already that CurlA =
A × (−∇) = 0, due to the counterexample A = Anti(x), since by Nye’s formula
(2.16) we have Curl(Anti(x)) = 2 · 1. Of course, we can interpret (2.17) also in the
sense of vector calculus, which gives then an expression for ΔCurl A in terms of
the second distributional derivatives of dev(CurlA), but, the latter would have no
meaning for the relation of CurlA and dev CurlA.

3In the literature, the matrix Curl operator is sometimes defined as our transposed (Curl P )T ,
cf. Ciarlet [12, problem 6.18-4].

https://doi.org/10.1017/prm.2021.62 Published online by Cambridge University Press

https://doi.org/10.1017/prm.2021.62


1486 P. Lewintan and P. Neff

Lemma 6. Let A ∈ D ′(Ω, so(3)) and ζ ∈ D ′(Ω, R). Then

(a) the entries of D2(A + ζ · 1) are linear combinations of the entries of
DCurl(A + ζ · 1).

(b) the entries of D2A are linear combinations of the entries of Ddev CurlA.

(c) the entries of D3(A + ζ · 1) are linear combinations of the entries of
D2 dev Curl(A + ζ · 1).

Proof. Observe that applying (2.4) to the vector field ∇ζ we obtain:

Curl(ζ · 1)
(2.15)
= 1 × (−∇ζ)

(2.4)
= −Anti(∇ζ). (2.18)

Let us first start by proving part (b). From Nye’s formula (2.16a) we obtain

dev CurlA =
1
3

tr(Daxl A)·1 − (Daxl A)T (2.19)

so that taking the Curl of the transpositions on both sides gives

Curl([dev CurlA]T ) Curl ◦D≡0=
(2.19)

1
3

Curl(tr(DaxlA)·1)
(2.18)
= −1

3
Anti(∇ tr(Daxl A)).

(2.20)
In other words, we have that Curl([dev CurlA]T ) ∈ so(3), and applying axl on both
sides of (2.20) we obtain

∇ tr(Daxl A) = −3 axl(Curl([dev CurlA]T )) = L0(Ddev CurlA). (2.21)

Taking the ∂j-derivative of (2.19) for j = 1, 2, 3 we conclude

∂j(DaxlA)T (2.19)
=

1
3
∂j tr(Daxl A) − ∂j dev CurlA

(2.21)
= L̃0(Ddev CurlA) , (2.22)

which establishes part (b), namely D2A = L2(D(dev CurlA)) for skew-symmetric
tensor fields A.

The proof of part (a) is divided into the following two key observations:

(a.i) D2 ζ = L̃1(D Curl(A + ζ · 1)), (a.ii) D2 A = L̃2(D Curl(A + ζ · 1)).

To show that each entry of the Hessian matrix D2ζ is a linear combination of the
entries of DCurl(A + ζ · 1) we make use of the second-order differential operator
inc given for B ∈ D ′(Ω, R3×3) via4

incB := Curl([CurlB]T ) (2.23)

so that

inc (ζ · 1) = Curl([Curl(ζ · 1)]T )
(2.18)
= Curl(−[Anti(∇ζ)]T ) = Curl(Anti(∇ζ))

(2.16a)
= tr(D∇ζ) · 1 − (D∇ζ)T = Δζ · 1 − D2ζ ∈ Sym(3) (2.24)

4See Kröner [35, §8] for a component-wise expression of the incompatibility operator inc .
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is symmetric. On the other hand, for a skew-symmetric matrix field A ∈
D ′(Ω, so(3)) we have that

incA = Curl([CurlA]T )
(2.16)
= Curl(tr(DaxlA) · 1 − Daxl A)

Curl ◦D≡0= Curl(tr(DaxlA) · 1)
(2.18)
= −Anti(∇ tr(Daxl A)) ∈ so(3) (2.25)

is skew-symmetric. Hence,

sym(inc (A + ζ · 1)) = Δζ · 1 − D2ζ and tr(inc (A + ζ · 1)) = 2Δζ. (2.26)

In other words, the entries of the Hessian matrix of ζ are linear combinations of
entries from inc (A + ζ · 1):

D2ζ = Δζ · 1 − sym(inc (A + ζ · 1))

=
1
2

tr(inc (A + ζ · 1))·1 − sym(inc (A + ζ · 1))

= L̃1(DCurl(A + ζ · 1)), (2.27)

where we have used that the entries of incB are, of course, linear combinations of
entries of DCurlB.

To establish (a.ii) from (a.i), recall that for a skew-symmetric matrix field A the
entries of DA are linear combinations of the entries from CurlA:

DA
(1.7)
= L(Curl A) = L(Curl(A + ζ · 1)) − L(Curl(ζ · 1))

(2.18)
= L(Curl(A + ζ · 1)) + L(Anti(∇ζ)). (2.28)

We conclude by taking the ∂j-derivative of (2.28) for j = 1, 2, 3, namely

∂j DA = L(∂j Curl(A + ζ · 1)) + L(∂j Anti(∇ζ))
(a,i)
= L̃3(DCurl(A + ζ · 1)).

Finally, we establish part (c) arguing in a similar way by showing the following
linear combinations:

(1) D2ζ = L̃4(Ddev Curl(A + ζ · 1)),

(2) D3A = L̃7(D2 dev Curl(A + ζ · 1)).

Regarding (2.18) and (2.16) we have

dev Curl(A + ζ · 1)
(2.18)
= dev[CurlA − Anti(∇ζ)] = dev CurlA − Anti(∇ζ)

(2.16)
=

1
3

tr(Daxl A)·1 − (DaxlA)T − Anti(∇ζ). (2.29)
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Transposing and taking the Curl on both sides yields

Curl([dev Curl(A + ζ · 1)]T )
(2.18),(2.16)

=
Curl ◦D≡0

−1
3
Anti(∇ tr(Daxl A))︸ ︷︷ ︸

∈so(3)

+ Δζ · 1 − D2ζ︸ ︷︷ ︸
∈Sym(3)

(2.30)

and we obtain, similar to the decomposition in (2.27):

D2ζ =
1
2

tr(Curl([dev Curl(A + ζ · 1)]T ))·1 − sym(Curl([dev Curl(A + ζ · 1)]T ))

= L̃4(Ddev Curl(A + ζ · 1)). (2.31)

On the other hand, taking inc of the transpositions on both sides of (2.29) gives

inc ([dev Curl(A + ζ · 1)]T )
(2.24)
=

(2.25)

1
3
Δ tr(DaxlA) · 1

− 1
3

D2 tr(Daxl A) − Anti(∇Δζ), (2.32)

yielding the relation

D2 tr(DaxlA) =
3
2

tr(inc ([dev Curl(A + ζ · 1)]T ))·1

− sym(inc ([dev Curl(A + ζ · 1)]T ))

= L̃5(D2 dev Curl(A + ζ · 1)). (2.33)

Considering the second distributional derivatives in (2.29) we conclude

D3 axlA =
1
3

D2 tr(DaxlA)·1 − D2([dev Curl(A + ζ · 1)]T ) + D2 Anti(∇ζ)

(2.31)
=

(2.33)
L̃6(D2 dev Curl(A + ζ · 1)). �

Remark 7. In the above proof we have used that the second-order differential oper-
ator inc does not change the symmetry property after application on square matrix
fields, cf. the appendix. Further properties are collected e.g. in [52, appendix], [1,
sec. 2] and [12, sec. 6.18].

The incompatibility operator inc arises in dislocation models, e.g., in the mod-
elling of elastic materials with dislocations or in the modelling of dislocated crystals,
since the strain cannot be a symmetric gradient of a vector field as soon as dis-
locations are present and the notion of incompatibility is at the basis of a new
paradigm to describe the inelastic effects, cf. [3, 4, 20, 46], cf. the appendix for
further comments.
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Moreover, the equation inc sym e ≡ 0 is equivalent to the Saint-Venant compat-
ibility condition5 defining the relation between the symmetric strain sym e and the
displacement vector field u:

inc sym e ≡ 0 ⇔ sym e = sym Du (2.34)

over simply connected domains, cf. [1, 46]. In the appendix we show that the
operators inc and sym can be interchanged, so that

inc sym e = sym inc e = sym Curl([Curl e]T ). (2.35)

Investigations over multiply connected domains can be found e.g. in [30, 66].

Returning to our proof, a crucial ingredient in our following argumentation is

Theorem 8 (Lions lemma and Nečas estimate). Let Ω ⊂ R
n be a bounded

Lipschitz domain. Let m ∈ Z and p ∈ (1,∞). Then f ∈ D ′(Ω, Rd) and Df ∈
Wm−1,p(Ω, Rd×n) imply f ∈ Wm,p(Ω, Rd). Moreover,

‖f‖W m, p(Ω,Rd) � c
(‖f‖W m−1,p(Ω,Rd) + ‖Df‖W m−1,p(Ω,Rd×n)

)
, (2.36)

with a constant c = c(m, p, n, d,Ω) > 0.

For the proof we refer to [2, proposition 2.10 and theorem 2.3], [7]. However, since
we are dealing with higher order derivatives we also need a ‘higher order’ version
of the Lions lemma resp. Nečas estimate.

Corollary 9. Let Ω ⊂ R
n be a bounded Lipschitz domain, m ∈ Z and p ∈ (1,∞).

Denote by Dkf the collection of all distributional derivatives of order k. Then f ∈
D ′(Ω, Rd) and Dkf ∈ Wm−k,p(Ω, Rd×nk

) imply f ∈ Wm,p(Ω, Rd). Moreover,

‖f‖W m,p(Ω,Rd) � c
(
‖f‖W m−1,p(Ω,Rd) + ‖Dkf‖

W m−k,p(Ω,Rd×nk )

)
, (2.37)

with a constant c = c(m, p, n, d,Ω) > 0.

5Those compatibility conditions are contained in the third appendix §32 p. 597 et seq. of the
third edition of the lecture notes Résistance des corps solides given by Navier and extended with
several notes and appendices by Barré de Saint-Venant and published as Résumé des Leçons
données à l’École des Ponts et Chaussées sur l’Application de la Mécanique, vol. I, Paris, 1864.
Their coordinate-free version can be found in Lagally’s monograph on vector calculus from 1928
[36, Ziff. 191] where it reads:

∇× (sym Du) ×∇ ≡ 0

and formally follows from the definitions of those operators, see [36, Ziff. 191], since

∇× (symDu) ×∇ =
1

2
∇× (∇⊗ u + u ⊗∇) ×∇

=
1

2
[(∇×∇) ⊗ u ×∇ + ∇× u ⊗ (∇×∇)] ≡ 0.
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Proof. The assertion f ∈ Wm,p(Ω, Rd) and the estimate (2.37) follow by inductive
application of theorem 8 to Dlf with l = k − 1, k − 2, . . . , 0. Indeed, starting by
applying theorem 8 to Dk−1f gives Dk−1f ∈ Wm−k+1,p(Ω, Rd×nk−1

) as well as

‖Dk−1f‖
W m−k+1,p(Ω,Rd×nk−1 )

� c
(
‖Dk−1f‖W m−k,p(Ω,Rd×nk−1 ) + ‖Dkf‖W m−k,p(Ω,Rd×nk )

)
� c

(
‖f‖W m−1,p(Ω,Rd) + ‖Dkf‖

W m−k,p(Ω,Rd×nk )

)
. (2.38)

Now, we can apply theorem 8 to Dk−2f to deduce Dk−2f ∈ Wm−k+2,p(Ω, Rd×nk−2
)

and moreover

‖Dk−2f‖W m−k+2,p(Ω,Rd×nk−2 )

� c
(
‖Dk−2f‖W m−k+1,p(Ω,Rd×nk−1 ) + ‖Dk−1f‖W m−k+1,p(Ω,Rd×nk−1 )

)
� c

(
‖f‖W m−1,p(Ω,Rd) + ‖Dk−1f‖W m−k+1,p(Ω,Rd×nk−1 )

)
(2.38)

� c
(
‖f‖W m−1,p(Ω,Rd) + ‖Dkf‖W m−k,p(Ω,Rd×nk )

)
. (2.39)

Consequently, for all l = k − 1, k − 2, . . . , 0 we deduce Dlf ∈ Wm−l,p(Ω, Rd×nl

) as
well as

‖Dlf‖W m−l,p(Ω,Rd×nl ) � c
(
‖f‖W m−1,p(Ω,Rd) + ‖Dkf‖W m−k,p(Ω,Rd×nk )

)
. (2.40)

�

Remark 10. The need to consider higher order derivatives is indicated by the
appearance of linear terms in the kernel of Korn’s quantitative versions, similar to
the situation at the classical trace-free Korn inequalities [17, 65]. In our case we
have:

Lemma 11. Let A ∈ Lp(Ω, so(3)) and ζ ∈ Lp(Ω, R). Then we have in the distribu-
tional sense

(a) Curl(A + ζ · 1) ≡ 0 if and only if A + ζ · 1 = Anti(Ã x + b) + (
〈
axl Ã, x

〉
+

β) · 1 a.e. on Ω,

(b) dev CurlA ≡ 0 if and only if A = Anti(β x + b) a.e. on Ω,

(c) dev Curl(A + ζ · 1) ≡ 0 if and only if A + ζ · 1 = Anti(Ã x + β x + b) +
(
〈
axl Ã, x

〉
+ γ) · 1 a.e. on Ω,

with constant Ã ∈ so(3), b ∈ R
3, β, γ ∈ R.

Proof. Although the deductions have already been partially indicated in the liter-
ature, cf. e.g. [53, sec. 3.4] and [6, 17, 63, 64], we include it here for the sake of
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completeness. The ‘if’-parts are seen by direct calculations, cf. the relations (2.16)
and (2.18):

(a) Curl(Anti(Ã x + b) + (
〈
axl Ã, x

〉
+ β)·1) = Ã − Anti(axl Ã) ≡ 0,

(b) dev Curl(Anti(β x + b)) = dev(tr(β · 1) · 1 − β · 1) = dev(2β · 1) ≡ 0,

(c) dev Curl(Anti(Ã x + β x + b) + (
〈
axl Ã, x

〉
+ γ)·1)

= dev(Ã + 2β·1 − Anti(axl Ã)) ≡ 0.

Now, we focus on the ‘only if’-directions, starting with

Curl(A + ζ · 1) ≡ 0
(2.18)⇐⇒ Anti(∇ζ) = CurlA

(2.16)
= tr(DaxlA)·1 − (Daxl A)T .

Taking the trace on both sides we obtain tr(DaxlA) = 0 and consequently

Anti(∇ζ) = −(Daxl A)T , (2.41)

hence sym(Daxl A) = 0. By the classical Korn’s inequality (1.5) it follows that
there exists a constant skew-symmetric matrix Ã ∈ so(3) so that Daxl A ≡ Ã, which
implies A = Anti(Ãx + b) with b ∈ R

3. Furthermore, by (2.41) we obtain

Anti(∇ζ) = Ã ⇒ ζ =
〈
axl Ã, x

〉
+ β with β ∈ R,

which establishes (a).
For part (b) we start with the relation dev CurlA ≡ 0 in (2.20) and have

Anti(∇ tr(DaxlA)) ≡ 0 ⇒ ∇ tr(DaxlA) ≡ 0, (2.42)

so that
1
3

tr(Daxl A) = β (2.43)

for some β ∈ R. Reinserting in the deviatoric counterpart of Nye’s formula (2.19)
gives

0 = β · 1 − (Daxl A)T resp. DaxlA = β · 1 ⇒ axl A = β x + b (2.44)

for some b ∈ R
3 and thus A = Anti(β x + b).

Finally, for part (c), let now dev Curl(A + ζ · 1) ≡ 0. Then considering the skew-
symmetric parts of (2.30) we obtain

Anti(∇ tr(Daxl A)) ≡ 0 ⇒ ∇ tr(Daxl A) ≡ 0.

Hence, again

1
3

tr(Daxl A) = β (2.45)

for some β ∈ R, so that considering the symmetric parts of (2.29) we get

0 =
1
3

tr(Daxl A)·1 − sym(Daxl A)
(2.45)
= β·1 − sym(Daxl A). (2.46)
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In other words, we have

sym(D(axl A − β x)) ≡ 0

and by (1.5), it follows that D(axl A − β x) must be a constant skew-symmetric
matrix. Thus

axl A = Ã x + β x + b (2.47)

for some Ã ∈ so(3), b ∈ R
3 and β ∈ R. Furthermore, by (2.29) we have

Anti(∇ζ)
(2.29)
= skew(Daxl A)

(2.47)
= Ã

so that ζ is of the form

ζ =
〈
axl Ã, x

〉
+ γ (2.48)

for some γ ∈ R, and we arrive at (c):

A + ζ · 1 (2.47)
=

(2.48)
Anti

(
Ã x + β x + b

)
+
(〈

axl Ã, x
〉

+ γ
)·1. �

We are now prepared to proceed as in the proof of the generalized Korn inequality
for incompatible tensor fields.

3. Main results

We will make use of the Banach space

W 1,p(Curl; Ω, R3×3) := {P ∈ Lp(Ω, R3×3) | CurlP ∈ Lp(Ω, R3×3)} (3.1a)

equipped with the norm

‖P‖W 1,p(Curl;Ω,R3×3) :=
(
‖P‖p

Lp(Ω,R3×3) + ‖CurlP‖p
Lp(Ω,R3×3)

) 1
p

, (3.1b)

as well as its subspace

W 1,p
0 (Curl; Ω, R3×3) := {P ∈ W 1,p(Curl; Ω, R3×3) | P × ν = 0 on ∂Ω},

where ν denotes the outward unit normal vector field to ∂Ω, and the tangential
trace P × ν is understood in the sense of W− 1

p ,p(∂Ω, R3×3) which is justified by
partial integration, so that its trace is defined by

∀Q ∈ W
1− 1

p′ ,p′
(∂Ω, R3×3) :〈

P × (−ν), Q
〉

∂Ω
=
∫

Ω

〈
CurlP , Q̃

〉− 〈P,Curl Q̃
〉
dx, (3.2)

where Q̃ ∈ W 1,p′
(Ω, R3×3) denotes any extension of Q in Ω. Here,

〈
., .
〉

∂Ω
indicates

the duality pairing between W− 1
p ,p(∂Ω, R3×3) and W

1− 1
p′ ,p′

(∂Ω, R3×3).
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However, the appearance of the operator dev Curl on the right-hand side of our
designated results in this paper would suggest to work in

W 1,p(dev Curl; Ω, R3×3) := {P ∈ Lp(Ω, R3×3) | dev CurlP ∈ Lp(Ω, R3×3)} (3.3)

but this is, surprisingly at first glance, not a new space:

Lemma 12. W 1,p(dev Curl; Ω, R3×3) = W 1,p(Curl; Ω, R3×3).

It is sufficient to show that the p-integrability of dev CurlP already implies the
p-integrability of CurlP , and follows from the general case:

Lemma 13. Let P ∈ D ′(Ω, R3×3). Then we have for all m ∈ Z that

CurlP ∈ Wm,p(Ω, R3×3) ⇔ dev CurlP ∈ Wm,p(Ω, R3×3). (3.4)

Proof. We again consider the decomposition of P into its symmetric and skew-
symmetric part, i.e.

P = S + A = S + Anti(a) for some S ∈ Sym(3), A ∈ so(3) and with a = axl(A).

Then by Nye’s formula (2.16a) we have

CurlP = Curl(S + Anti(a))
(3.5)
= CurlS + div a · 1 − (Da)T (3.5)

and in view of tr(CurlS) = 0 we obtain

dev CurlP = CurlS − (Da)T +
1
3

div a · 1 (3.6)

so that taking the Curl of the transpositions on both sides gives

Curl([dev CurlP ]T ) Curl ◦D≡0=
(2.18)

incS︸ ︷︷ ︸
∈Sym(3)

− 1
3
Anti(∇div a)︸ ︷︷ ︸

∈so(3)

, (3.7)

which gives

skew Curl([dev CurlP ]T ) = −1
3

Anti(∇div a). (3.8)

Thus, dev CurlP ∈ Wm,p(Ω, R3×3) implies Curl([dev CurlP ]T ) ∈ Wm−1,p(Ω,
R

3×3) as well as

skew Curl([dev CurlP ]T ) =
1
2
(Curl([dev CurlP ]T ) − [Curl([dev CurlP ]T )]T )

∈ Wm−1,p(Ω, R3×3), (3.9)

so that we obtain

∇div a
(3.8)
= −3 axl skew Curl([dev CurlP ]T ) ∈ Wm−1,p(Ω, R3). (3.10)

Since a = axl skew P ∈ D ′(Ω, R3), we apply theorem 8 to div a ∈ D ′(Ω, R) to con-
clude from (3.10) that div a ∈ Wm,p(Ω, R). The statement of the lemma then follows
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from the decompositions (3.5) and (3.6) which give the expression

CurlP = dev CurlP +
2
3

div a · 1 ∈ Wm,p(Ω, R3×3). (3.11)

�

Corollary 14. The classical Hilbert space H(Curl; Ω, R3×3) coincides with
the Hilbert space H(dev Curl; Ω, R3×3) := {P ∈ L2(Ω, R3×3) | dev CurlP ∈ L2(Ω,
R

3×3)}.

Remark 15 (Equivalence of norms). In view of (3.10) an application of the Lions
lemma to div a, with a = axl skew P , gives us div a ∈ Wm,p(Ω, R). Moreover, by the
Nečas estimate we have

‖div a‖W m,p(Ω,R) � c1 (‖div a‖W m−1,p(Ω,R) + ‖∇div a‖W m−1,p(Ω,R3))

(3.10)

� c2 (‖div axl skew P‖W m−1,p(Ω,R)

+ ‖Curl([dev CurlP ]T )‖W m−1,p(Ω,R3×3))

� c3 (‖P‖W m,p(Ω,R3×3) + ‖dev CurlP‖W m,p(Ω,R3×3)),

provided that P ∈ Wm,p(Ω, R3×3). Together with (3.11) we conclude:

‖CurlP‖W m,p(Ω,R3×3) � c4 (‖P‖W m,p(Ω,R3×3) + ‖dev CurlP‖W m,p(Ω,R3×3)) (3.12)

as well as

‖P‖W m,p(Ω,R3×3) + ‖CurlP‖W m,p(Ω,R3×3)

� c5 (‖P‖W m,p(Ω,R3×3) + ‖dev CurlP‖W m,p(Ω,R3×3)) (3.13)

and especially for m = 0:

‖P‖Lp(Ω,R3×3) + ‖Curl P‖Lp(Ω,R3×3) � c5 (‖P‖Lp(Ω,R3×3) + ‖dev CurlP‖Lp(Ω,R3×3))
(3.14)

for all P ∈ W 1,p(Curl; Ω, R3×3).6

6This result also follows from the open mapping theorem (also known as Banach-Schauder
theorem [12, Thm 5.6-1]) in functional analysis. More precisely, the latter provides the following
sufficient condition for two norms to be equivalent in an infinite-dimensional space, see [12, Thm
5.6-4]:

Corollary 16. Let ‖.‖ and ‖.‖′ be two norms on the same vector space X, with the following
properties: both spaces (X, ‖.‖) and (X, ‖.‖′) are complete, and there exists a constant C such
that

‖x‖′ � C ‖x‖ for all x ∈ X.

Then the two norms ‖.‖ and ‖.‖′ are equivalent.
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Remark 17. The last identity in (3.11), which could also be formally obtained from
(2.8) with b = −∇, together with the expression (3.10) gives for general matrix field
P ∈ D ′(Ω, R3×3):

DCurlP = L(D dev CurlP ). (3.15)

Thus, recalling (1.7), we arrive directly at the case (b) of lemma 6.

Corollary 18. Notably, the trace condition in W 1,p
0 (dev Curl; Ω, R3×3) would read

dev(P × ν) = 0 on ∂Ω, to be understood by partial integration via

∀ Q ∈ W
1− 1

p′ ,p′
(∂Ω, R3×3) :〈

dev(P × (−ν)), Q
〉

∂Ω
=
∫

Ω

〈
dev CurlP , Q̃

〉− 〈P,Curl dev Q̃
〉
dx (3.16)

=
∫

Ω

〈
CurlP ,dev Q̃

〉− 〈P,Curl dev Q̃
〉
dx

(3.2)
=
〈
P × (−ν),dev Q

〉
∂Ω

,

where Q̃ ∈ W 1,p′
(Ω, R3×3) denotes any extension of Q in Ω. However, it follows

from observation 3 that the boundary conditions P × ν = 0 and dev(P × ν) = 0 on
∂Ω are the same.

Lemma 19. Let Ω ⊂ R
3 be a bounded Lipschitz domain, 1 < p < ∞ and P ∈

D ′(Ω, R3×3). Then either of the conditions

(a) dev sym P ∈ Lp(Ω, R3×3) and CurlP ∈ W−1, p(Ω, R3×3),

(b) sym P ∈ Lp(Ω, R3×3) and dev CurlP ∈ W−1, p(Ω, R3×3),

(c) dev sym P ∈ Lp(Ω, R3×3) and dev CurlP ∈ W−1,p(Ω, R3×3),

implies P ∈ Lp(Ω, R3×3). Moreover, we have the corresponding estimates

‖P‖Lp(Ω,R3×3) � c
(
‖skew P + 1

3 trP · 1‖W−1,p(Ω,R3×3)

+ ‖dev sym P‖Lp(Ω,R3×3) + ‖CurlP‖W−1,p(Ω,R3×3)

)
, (3.17a)

‖P‖Lp(Ω,R3×3) � c
(
‖skew P‖W−1,p(Ω,R3×3)

+ ‖sym P‖Lp(Ω,R3×3) + ‖dev CurlP‖W−1,p(Ω,R3×3)

)
, (3.17b)

‖P‖Lp(Ω,R3×3) � c
(
‖skew P + 1

3 trP · 1‖W−1,p(Ω,R3×3)

+ ‖dev sym P‖Lp(Ω,R3×3) + ‖dev CurlP‖W−1,p(Ω,R3×3)

)
, (3.17c)

each with a constant c = c(p,Ω) > 0.
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Proof. We start by proving part (b). For that purpose we will follow the proof of
[43, lemma 3.1]. Thus, for part (b) it remains to deduce that skew P ∈ Lp(Ω, R3×3).
We have

‖D2 skew P‖W−2,p(Ω,R3×33 )

Lem. 6(b)

� c ‖Ddev Curl skew P‖W−2,p(Ω,R3×32 )

� c ‖dev Curl(P − sym P )‖W−1,p(Ω,R3×3)

� c (‖dev CurlP‖W−1,p(Ω,R3×3) + ‖Curl symP‖W−1,p(Ω,R3×3))

� c (‖sym P‖Lp(Ω,R3×3) + ‖dev CurlP‖W−1,p(Ω,R3×3)). (3.18)

Hence, the assumptions of part (b) yield D2 skew P ∈ W−2,p(Ω, R3×33
), so that, by

corollary 9, we obtain skew P ∈ Lp(Ω, R3×3) and moreover the estimate

‖skew P‖Lp(Ω,R3×3) � c (‖skew P‖W−1,p(Ω,R3×3) + ‖D2 skew P‖W−2,p(Ω,R3×33 ))

(3.18)

� c
(
‖skew P‖W−1,p(Ω,R3×3)

+ ‖sym P‖Lp(Ω,R3×3) + ‖dev CurlP‖W−1,p(Ω,R3×3)

)
. (3.19)

Then by adding ‖sym P‖Lp(Ω,R3×3) on both sides we obtain (3.17b).
Clearly, the conclusion of (a) as well as the estimate (3.17a) follow from (c) and

(3.17c), respectively. To establish (c), we make use of the orthogonal decomposi-
tion P = dev sym P + (skew P + 1

3 tr P · 1). Then, to obtain skew P + 1
3 trP · 1 ∈

Lp(Ω, R3×3) for (c), we consider

‖D2 dev Curl(skew P + 1
3 trP · 1)‖W−3,p(Ω,R3×33 )

� c ‖dev Curl(P − dev sym P )‖W−1,p(Ω,R3×3)

� c (‖dev CurlP‖W−1,p(Ω,R3×3) + ‖Curl dev symP‖W−1,p(Ω,R3×3))

� c (‖dev CurlP‖W−1,p(Ω,R3×3) + ‖dev sym P‖Lp(Ω,R3×3)). (3.20)

Therefore, D2 dev Curl(skew P + 1
3 trP · 1) ∈ W−3,p(Ω, R3×33

) follows from the
assumptions of (c) and lemma 6(c) implies

D3(skew P + 1
3 trP · 1) ∈ W−3,p(Ω, R3×34

). (3.21)

Applying corollary 9 again, this time to skew P + 1
3 trP · 1, we arrive at skew P +

1
3 trP · 1 ∈ Lp(Ω, R3×3) and, moreover,

‖skew P + 1
3 trP · 1‖Lp(Ω,R3×3)

� c
(
‖skew P + 1

3 tr P · 1‖W−1,p(Ω,R3×3)

+ ‖D3(skew P + 1
3 trP · 1)‖W−3,p(Ω,R3×34 )

)
Lem. 6(c)

� c
(
‖skew P + 1

3 trP · 1‖W−1,p(Ω,R3×3) (3.22)
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+ ‖D2 dev Curl(skew P + 1
3 trP · 1)‖W−3,p(Ω,R3×33 )

)
(3.20)

� c
(
‖skew P + 1

3 trP · 1‖W−1,p(Ω,R3×3)

+ ‖dev sym P‖Lp(Ω,R3×3) + ‖dev CurlP‖W−1,p(Ω,R3×3)

)
. �

Remark 20. Of course, part (a) can also be proven independently of part (c).
Indeed, using lemma 6(a) we obtain

‖D2(skew P + 1
3 tr P · 1)‖W−2,p(Ω,R3×33 )

Lem. 6(a)

� c ‖DCurl(skew P + 1
3 trP · 1)‖W−2,p(Ω,R3×32 )

� c ‖Curl(P − dev sym P )‖W−1,p(Ω,R3×3)

� c (‖Curl P‖W−1,p(Ω,R3×3) + ‖dev sym P‖Lp(Ω,R3×3)) (3.23)

and the conclusion follows from an application of corollary 9 to skew P + 1
3 tr P · 1.

The rigidity results now follow by elimination of the corresponding first term on
the right-hand side.

Theorem 21. Let Ω ⊂ R
3 be a bounded Lipschitz domain and 1 < p < ∞. There

exists a constant c = c(p,Ω) > 0 such that for all P ∈ Lp(Ω, R3×3) we have

inf
T∈KdS,C

‖P − T‖Lp(Ω,R3×3)

� c
(‖dev sym P‖Lp(Ω,R3×3) + ‖Curl P‖W−1,p(Ω,R3×3)

)
, (3.24a)

inf
T∈KS,dC

‖P − T‖Lp(Ω,R3×3)

� c
(‖sym P‖Lp(Ω,R3×3) + ‖dev CurlP‖W−1,p(Ω,R3×3)

)
, (3.24b)

inf
T∈KdS,dC

‖P − T‖Lp(Ω,R3×3)

� c
(‖dev sym P‖Lp(Ω,R3×3) + ‖dev CurlP‖W−1,p(Ω,R3×3)

)
, (3.24c)

where the kernels are given, respectively, by

KdS,C = {T : Ω → R
3×3 | T (x) = Anti(Ã x + b) + (

〈
axl Ã, x

〉
+ β)·1,

Ã ∈ so(3), b ∈ R
3, β ∈ R}, (3.25a)

KS,dC = {T : Ω → R
3×3 | T (x) = Anti(β x + b), b ∈ R

3, β ∈ R}, (3.25b)

KdS,dC = {T : Ω → R
3×3 | T (x) = Anti

(
Ã x + β x + b

)
+
(〈

axl Ã, x
〉

+ γ
)·1,

Ã ∈ so(3), b ∈ R
3, β, γ ∈ R}. (3.25c)

Proof. We proceed as in the proof of Korn’s inequalities (1.4) resp. (1.5), see [43,
theorem 3.3] resp. [12, theorem 6.15-3], and start by characterizing the kernel of
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the right-hand side,

KdS,C := {P ∈ Lp(Ω, R3×3) | dev sym P = 0 a.e. and

CurlP = 0 in the distributional sense},

so that P ∈ KdS,C if and only if P = skew P + 1
3 trP · 1 and Curl(skew P +

1
3 trP · 1) ≡ 0. Hence, (3.25a) follows by virtue of Lemma 11(a).

Let us denote by e1, . . . , eM a basis of KdS,C , where M := dim KdS,C = 7, and
by 	1, . . . , 	M the corresponding continuous linear forms on KdS,C given by

	α(ej) := δαj . (3.26)

By the Hahn-Banach theorem in a normed vector space (see e.g. [12, theorem
5.9-1]), we extend 	α to continuous linear forms—again denoted by 	α—on the
Banach space Lp(Ω, R3×3), 1 � α � M . Notably,

T ∈ KdS,C is equal to 0 ⇔ 	α(T ) = 0 ∀ α ∈ {1, . . . , M}.

Following the proof of [43, theorem 3.4] we eliminate the first term on the right-
hand side of (3.17a) by exploiting the compactness Lp(Ω, R3×3) ⊂⊂ W−1,p(Ω, R3×3)
and arrive at

‖P‖Lp(Ω,R3×3)

� c

(
‖dev sym P‖Lp(Ω,R3×3) + ‖CurlP‖W−1,p(Ω,R3×3) +

M∑
α=1

|	α(P )|
)

. (3.27)

Indeed, if (3.27) were false, there would exist a sequence Pk ∈ Lp(Ω, R3×3) such
that

‖Pk‖Lp(Ω,R3×3) = 1

and

(
‖dev sym Pk‖Lp(Ω,R3×3) + ‖CurlPk‖W−1,p(Ω,R3×3) +

M∑
α=1

|	α(Pk)|
)

<
1
k

.

Thus, for a subsequence Pk ⇀ P ∗ in Lp(Ω, R3×3 with dev sym P ∗ = 0 a.e.,
sym Curl P ∗ = 0 in the distributional sense and 	α(Pk) = 0 for all α = 1, . . . , M ,
so that P ∗ = 0 a.e.. By the compact embedding Lp(Ω, R3×3) ⊂⊂ W−1,p(Ω, R3×3)
there exists a subsequence Pk, so that skew Pk + 1

3 tr Pk · 1 → 0 in W−1,p(Ω, R3×3).
This is a contradiction to (3.17a).

Considering now the projection πa : Lp(Ω, R3×3) → KdS,C given by

πa(P ) :=
M∑

j=1

	j(P ) ej (3.28)

we obtain 	α(P − πa(P ))
(3.26)
= 0 for all 1 � α � M , so that (3.24a) follows after

applying (3.27) to P − πa(P ).
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Furthermore, we obtain the characterizations (3.25b) and (3.25c) by lemma 11
(b) and (c), respectively, since

KS,dC := {P ∈ Lp(Ω, R3×3) | sym P = 0 a.e. and

dev CurlP = 0 in the distributional sense} (3.29)

Lemma 11(b)
= {T : Ω → R

3×3 | T (x) = Anti(β x + b), b ∈ R
3, β ∈ R} (3.30)

and

KdS,dC := {P ∈ Lp(Ω, R3×3) | dev sym P = 0 a.e. and

dev CurlP = 0 in the distributional sense} (3.31)

Lemma 11(c)
= {T : Ω → R

3×3 | T (x) = Anti
(
Ã x + β x + b

)
+
(〈

axl Ã, x
〉

+ γ
)·1, Ã ∈ so(3), b ∈ R

3, β, γ ∈ R}
with dimKS,dC = 4 and dimKdS,dC = 8. Hence, we can argue as above to deduce
(3.24b) and (3.24c) from (3.17b) and (3.17c), respectively, since we end up with

‖P − πb(P )‖Lp(Ω,R3×3) � c
(‖sym P‖Lp(Ω,R3×3) + ‖dev CurlP‖W−1,p(Ω,R3×3)

)
(3.32)

and

‖P − πc(P )‖Lp(Ω,R3×3) � c
(‖dev sym P‖Lp(Ω,R3×3) + ‖dev CurlP‖W−1,p(Ω,R3×3)

)
(3.33)

respectively, with projections πb : Lp(Ω, R3×3) → KS,dC and πc : Lp(Ω, R3×3) →
KdS,dC . �

Finally, the kernel is killed by the tangential trace condition P × ν ≡ 0
(⇔ dev(P × ν) = 0, cf. Obs. 3):

Theorem 22. Let Ω ⊂ R
3 be a bounded Lipschitz domain and 1 < p < ∞. There

exists a constant c = c(p,Ω) > 0 such that for all P ∈ W 1,p
0 (Curl; Ω, R3×3) we have

‖P‖Lp(Ω,R3×3) � c
(‖dev sym P‖Lp(Ω,R3×3) + ‖dev CurlP‖Lp(Ω,R3×3)

)
. (3.34)

Proof. We argue as in the proof of [43, theorem 3.5] and consider a sequence
{Pk}k∈N ⊂ W 1,p

0 (Curl; Ω, R3×3) which converges weakly in Lp(Ω, R3×3) to P ∗ so
that dev sym P ∗ = 0 a.e. and dev CurlP ∗ = 0 in the distributional sense, i.e. P ∗ ∈
KdS,dC , where

KdS,dC
(3.25c)

= {T : Ω → R
3×3 | T (x) = Anti

(
Ã x + β x + b

)
+
(〈

axl Ã, x
〉

+ γ
)·1,

Ã ∈ so(3), b ∈ R
3, β, γ ∈ R}.

By (3.16) it further follows that
〈
dev(P ∗ × (−ν)), Q

〉
∂Ω

= 0 for all Q ∈
W

1− 1
p′ ,p′

(∂Ω, R3×3). However, since P ∗ ∈ KdS,dC also has an explicit representa-
tion, the boundary condition dev(P ∗ × ν) = 0 is also valid in the classical sense.
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Furthermore, we deduce by observation 3 that P ∗ × ν = 0 on ∂Ω, so that P ∗ ∈
W 1,p

0 (Curl; Ω, R3×3). Again, using the explicit representation of P ∗ = Anti(Ã x +
β x + b) + (

〈
axl Ã, x

〉
+ γ)·1, we conclude with Observation 4 that, in fact, P ∗ ≡ 0:

[Anti
(
Ã x + β x + b

)
+
(〈

axl Ã, x
〉

+ γ
)·1] × ν = 0

Obs. 4⇒ Ã x + β x + b = 0 and
〈
axl Ã, x

〉
+ γ = 0 for all x ∈ ∂Ω

⇒ γ = 0, Ã = 0 ⇒ b = 0, β = 0. �

Remark 23. Similarly, the following estimates can also be deduced, even indepen-
dently of (3.34), for P ∈ W 1,p

0 (Curl; Ω, R3×3):

‖P‖Lp(Ω,R3×3) � c
(‖dev sym P‖Lp(Ω,R3×3) + ‖CurlP‖Lp(Ω,R3×3)

)
, (3.35)

‖P‖Lp(Ω,R3×3) � c
(‖sym P‖Lp(Ω,R3×3) + ‖dev CurlP‖Lp(Ω,R3×3)

)
. (3.36)

Since by [6, theorem 3.1 (ii)] it holds

‖Curl P‖Lp(Ω,R3×3) � c ‖dev CurlP‖Lp(Ω,R3×3) for P ∈ W 1,p
0 (Curl; Ω, R3×3),

(3.37)
we can recover (3.34) from (3.35) and (3.37).

However, without boundary conditions the Nečas estimate provides for P ∈
W 1,p(Curl; Ω, R3×3):

‖Curl P‖Lp(Ω,R3×3)

(2.36)

� c (‖Curl P‖W−1,p(Ω,R3×3) + ‖DCurlP‖W−1,p(Ω,R3×32 ))

(3.15)

� c (‖Curl P‖W−1,p(Ω,R3×3) + ‖Ddev CurlP‖W−1,p(Ω,R3×32 ))

� c (‖Curl P‖W−1,p(Ω,R3×3) + ‖dev CurlP‖Lp(Ω,R3×3)). (3.38)

Remark 24. Among the inequalities (3.34), (3.35) and (3.36) we expect (3.35) also
to hold true in higher space dimensions n > 3, see the discussion in our Introduction.

Remark 25. Regarding (3.14) and (3.34) or (3.37) and (3.34) we obtain the norm
equivalence

‖P‖Lp(Ω,R3×3)+ ‖CurlP‖Lp(Ω,R3×3)

� c
(‖dev sym P‖Lp(Ω,R3×3) + ‖dev CurlP‖Lp(Ω,R3×3)

)
for tensor fields P ∈ W 1,p

0 (Curl; Ω, R3×3).

For P = Du in (3.34) we recover the following tangential trace-free Korn
inequality:

Corollary 26. Let Ω ⊂ R
3 be a bounded Lipschitz domain and 1 < p < ∞. There

exists a constant c = c(p,Ω) > 0 such that for all u ∈ W 1,p(Ω, R3) with Du × ν = 0
on ∂Ω we have

‖Du‖Lp(Ω,R3×3) � c ‖dev sym Du‖Lp(Ω,R3×3). (3.39)
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For skew-symmetric P = Anti(a) we recover from (3.34) a Poincaré inequality
involving only the deviatoric (trace-free) part of the gradient:

Corollary 27. Let Ω ⊂ R
3 be a bounded Lipschitz domain and 1 < p < ∞. There

exists a constant c = c(p,Ω) > 0 such that for all a ∈ W 1,p
0 (Ω, R3) we have

‖a‖Lp(Ω,R3) � c ‖dev Da‖Lp(Ω,R3×3). (3.40)

Proof. This follows from theorem 22 by setting P = Anti(a) and the following
observations:

Anti(a) × ν = 0 ⇔ a = 0 on ∂Ω, see observation 4, Curl(Anti(a)) = L(Da), see
(2.16a) and the form of Anti(a), see (2.2). �

Remark 28. The previous results also hold true for functions with vanishing tan-
gential trace only on a relatively open (non-empty) subset Γ ⊆ ∂Ω of the boundary.
So, e.g., we have

‖P‖Lp(Ω,R3×3) � c
(‖dev sym P‖Lp(Ω,R3×3) + ‖dev CurlP‖Lp(Ω,R3×3)

)
(3.41)

for all P ∈ W 1,p
Γ,0(Curl; Ω, R3×3), which is the completion of C∞

Γ,0(Ω, R3×3) with
respect to the W 1,p(Curl; Ω, R3×3)-norm.

Remark 29. In [28] the authors proved that in n = 2 dimensions, for p = 2 a Korn
inequality for incompatibile fields also holds true when CurlP is only in L1 (actu-
ally when it is a measure with bounded total variation) under the normalization
condition

∫
Ω

skew P dx = 0. In terms of scaling, it is interesting to involve in (3.34)
the Sobolev exponent. So, we will show in a forthcoming paper that for 1 < p < 3
the following estimate holds true on an arbitrary open set Ω ⊆ R

3:

‖P‖Lp∗ (Ω,R3×3) � c (‖dev sym P‖Lp∗ (Ω,R3×3) + ‖dev CurlP‖Lp(Ω,R3×3)) (3.42)

for all P ∈ C∞
c (Ω, R3×3), where p∗ = 3p

3−p . However, we do not know if such a result
still holds in the borderline case p = 1.
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Appendix A. Appendix

Appendix A.1. On the trace-free Korn’s first inequality in L2

Using partial integration (see also [58, appendix A.1]) we catch up with a simple
proof of

Lemma 30. Let n � 2, Ω (open) ⊂ R
n, u ∈ W 1,2

0 (Ω, Rn). Then∫
Ω

‖Du‖2dx � 2
∫

Ω

‖devn symDu‖2dx. (A.1)

Proof. For u ∈ C∞
c (Ω, Rn) we have

2
∫

Ω

‖sym Du‖2dx =
∫

Ω

‖Du‖2 +
n∑

i,j=1

(∂iuj)(∂jui)dx

part. int.
=

∫
Ω

‖Du‖2 +
n∑

i,j=1

(∂juj)(∂iui)dx

=
∫

Ω

‖Du‖2 + (div u)2dx, (A.2)

from where the ‘baby’ Korn inequality
∫
Ω
‖Du‖2dx � 2

∫
Ω
‖sym Du‖2dx for u ∈

W 1,2
0 (Ω, Rn) follows. Its improvement is obtained in regard with the decomposition

‖devn sym Du‖2 = ‖sym Du − 1
n

tr(sym Du)︸ ︷︷ ︸
=div u

· 1‖2 = ‖sym Du‖2 − 1
n

(div u)2,

(A.3)
since we obtain

2
∫

Ω

‖devn sym Du‖2dx
(A.3)
= 2

∫
Ω

‖sym Du‖2dx − 2
n

∫
Ω

(div u)2dx

(A.2)
=

∫
Ω

‖Du‖2dx +
n − 2

n

∫
Ω

(div u)2dx
n�2

�
∫

Ω

‖Du‖2dx. �

Remark 31. The trace-free Korn’s first inequality (A.1) is also valid in Lp, p > 1,
see [27, Prop. 1] for the n = 2 case and [65, Thm. 2.3] for all n � 2 where again
the justification was based on the Lions lemma.

Appendix A.2. Infinitesimal planar conformal mappings

Infinitesimal conformal mappings are defined by devn sym Du ≡ 0 and in n > 2
they have the representation

〈
a, x
〉
x − 1

2
a‖x‖2 + Ax + β x + c, with A ∈ so(n), a, c ∈ R

n and β ∈ R,

cf. [17, 33, 49, 63–65].
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In the planar case, the situation is quite different. Indeed, the condition
dev2 sym Du ≡ 0 reads(

u1,x
1
2 (u1,y + u2,x)

1
2 (u1,y + u2,x) u2,y

)
− 1

2
(u1,x + u2,y) ·

(
1 0
0 1

)
= 0

⇔
(

1
2 (u1,x − u2,y) 1

2 (u1,y + u2,x)
1
2 (u1,y + u2,x) 1

2 (u2,y − u1,x)

)
= 0 ⇔

{
u1,x = u2,y

u1,y = −u2,x

and corresponds to the validity of the Cauchy-Riemann-equations. Thus, in the
planar case, infinitesimal conformal mappings are conformal mappings.

Appendix A.3. Kröner’s relation in infinitesimal elasto-plasticity

At the macroscopic scale, in infinitesimal elasto-plastic theory, see e.g. [3, 4,
20–22, 44, 46], the incompatibility of the elastic strain is related to the Curl of the
contortion tensor κ := αT − 1

2 tr(α) · 1, where α := CurlP is the dislocation density
tensor, by Kröner’s relation [35]:

inc (sym e) = −Curlκ, (A.4)

where the additive decomposition of the displacement gradient into non-symmetric
elastic and plastic distortions is assumed:

Du = e + P. (A.5)

Indeed, (A.4) follows from Nye’s formula (2.16) and the identities

tr Curl sym e = 0 as well as α := CurlP
(A.5)
= −Curl e,

since we have

Daxl skew e
(2.16b)

=
1
2

tr(Curl skew e) · 1 − (Curl skew e)T

tr Curl sym e=0
=

1
2

tr(Curl skew e + Curl sym e) · 1 − (Curl skew e)T

=
1
2

tr(Curl e) · 1 − (Curl e)T + (Curl sym e)T

α=−Curl e= −1
2

tr(α) · 1 + αT + (Curl sym e)T = κ + (Curl sym e)T .

(A.6)

Thus, applying Curl on both sides of (A.6) establishes (A.4), since Curl ◦D≡ 0:

0 = Curl Daxl skew e
(A.6)
= Curlκ + Curl([Curl sym e]T ) = Curlκ + inc (sym e).

(A.7)

From the decomposition sym Du = sym e + sym P it follows moreover inc (sym e) =
−inc (sym P ), see also the last calculation in footnote 5.
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In finite strain elasticity [10], the Riemann-Christoffel tensor R expresses the
compatibility of strain tensors in the sense of

C ∈ C2(Ω,Sym+(3)) : R(C) = 0 ⇔
C = (Dϕ)T Dϕ in simply connected domains. (A.8)

Writing C = (1 + P )T (1 + P ) = 1 + 2· sym P + PT P for P ∈ C2(Ω, R3×3), the
incompatibility operator is the linearization of the Riemann-Christoffel tensor at
the identity, since

R(1 + 2· sym P + PT P ) = R(1) + 2·DR(1) sym P + h.o.t.

= 0 + 2·inc (sym P ) + h.o.t. (A.9)

see also [20] and the references contained therein.

Appendix A.4. Further identities

Symmetric tensors play an important role in the above considerations. We
mention here the full expression of S × b for S ∈ Sym(3) and b ∈ R

3:

S × b =

⎛⎝S12 b3 − S13 b2 S13 b1 − S11 b3 S11 b2 − S12 b1

S22 b3 − S23 b2 S23 b1 − S12 b3 S12 b2 − S22 b1

S23 b3 − S33 b2 S33 b1 − S13 b3 S13 b2 − S23 b1

⎞⎠ (A.10)

which is an example of a trace-free matrix with non-zero entries on the diagonal:

tr(S × b) = S12 b3 − S13 b2 + S23 b1 − S12 b3 + S13 b2 − S23 b1 = 0.

Moreover, we outline some basic identities which played useful roles in our
considerations:

We catch up with the verification of the identities not contained in our
considerations explicitly:
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• (1× b)T × b
1.(a)
= (Anti(b))T × b = −(Anti b) × b

1.(b)
= −b ⊗ b + 〈b, b〉·1 ⇒ 1.(d),

• we have the decompositions:

(P × b)T × b = (sym P × b + skew P × b)T × b

= ((sym P ) × b)T × b︸ ︷︷ ︸
∈Sym(3)

+ ((skew P ) × b)T × b︸ ︷︷ ︸
∈so(3)

but also

incP = inc (sym P + skew P ) = inc sym P︸ ︷︷ ︸
∈Sym(3)

+ inc skew P︸ ︷︷ ︸
∈so(3)

where we have used (e) and (f), so that (h) and (i) follow,

• the equivalence a ⊗ b = 0 ⇔ dev sym(a ⊗ b) = 0 follows from the expression:

‖b‖4

2
‖a ⊗ b‖2 = ‖b‖4‖dev sym(a ⊗ b)‖2 +

1
2

(
n

n − 1

)2 〈
b,dev sym(a ⊗ b)b

〉2
.
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481 (2020), 14–11. Article ID 123440.

19 G. Duvaut and J.-L. Lions. Les Inéquations en Mécanique et en Physique (Dunod, Paris,
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43 P. Lewintan and P. Neff. Nečas-lions lemma revisited: An Lp-version of the generalized Korn
inequality for incompatible tensor fields. Math. Meth. Appl. Sci. 44 (2021), 11392–11403.

44 S. Li. On variational symmetry of defect potentials and multiscale configurational force.
Philos. Magaz. 88 (2008), 1059–1084.
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