
In this issue of the Journal, Bodnar and colleagues report
identifying increased activity in the cingulate cortex, specific to
semantic processing during memory encoding, in participants
with non-remitted first-episode schizophrenia compared with
participants who achieved remission.1 The finding of altered
cingulate brain activity measured by functional magnetic
resonance imaging (fMRI) during semantic memory encoding/
processing may underlie core pathophysiological and clinical
issues during the early phases of schizophrenia. We believe that
the specific merit of this study is that it brings us closer towards
translating psychiatric neuroimaging into clinical practice,
suggesting that these alterations may be of potential use for
detecting treatment response.

First-generation psychiatric neuroimaging focused on simple
structural brain alterations associated with the neurobiology of
the illness. These early studies adopted imaging methods
including computerised tomography (CT) to investigate brain size
abnormalities2 or positron emission tomography (PET) to assess
glucose utilisation in schizophrenia.3 Second-generation
psychiatric neuroimaging studies benefited from more
sophisticated techniques that included structural methods (sMRI)
coupled with whole-brain automated methods (voxel-based
morphometry (VBM)), white-matter methods (diffusion tensor
imaging (DTI) and tractography), functional methods (fMRI)
and advanced neurochemical imaging (PET techniques addressing
receptor bindings and pre-/post-synaptic functions, magnetic
resonance spectroscopy (MRS)) and sophisticated meta-analytical
imaging methods. Furthermore, when early clinical intervention
in schizophrenia became a major objective of mental health
services, the imaging research interest shifted from the chronic
phases to the early period. Despite this progress, nearly three
decades after Johnstone et al’s first computerised axial

tomography of the brain of individuals with schizophrenia,4 no
consistent or reliable anatomical or functional alterations have
been unequivocally associated with psychosis or schizophrenia
and no clinical applications have been developed in psychiatric
neuroimaging.

Translating psychiatric imaging into clinical utility

The lack of clinical relevance for psychiatric imaging is particularly
concerning in the early phases of schizophrenia, because of the
severe clinical, functional, social and economic long-term
consequences of the illness. In this sense the finding of Bodnar
et al that alterations in the cingulate cortex during a first episode
of schizophrenia are related to psychopathology and outcomes are
of great interest.1 Structural alterations in the cingulate cortex
have been confirmed at a meta-analytical level in participants
presenting with a first episode of schizophrenia.5 However,
cingulate function and structure has been reported to be especially
sensitive to remedial antipsychotic treatment in schizophrenia6

and there is evidence indicating that a few weeks of antipsychotic
treatment modulate the functional response in this region.7 As the
participants in Bodnar et al’s study were receiving antipsychotics,
the clinical significance of their findings is questioned. Anti-
psychotic exposure can play a prominent confounding role in
second-generation psychiatric imaging, militating against its
clinical application.8 One possible approach to circumvent this
problem would be to selectively analyse participants with a first
episode who are drug naive. In a recent meta-analysis including
participants with untreated first-episode schizophrenia we
confirmed that structural alterations in the cingulate cortex are
present before the initiation of antipsychotic treatment.9

An alternative option would be to endorse ‘close in’ clinical
high-risk approaches to identify a group of individuals with
higher transition rates (18% after 6 months of follow-up, 22%
after 1 year, 29% after 2 years and 36% after 3 years10) than those
observed in the general population. This clinical strategy aims at
identifying neural changes occurring prior to the onset of
schizophrenia and may improve the ability of neuroimaging to
predict clinical outcomes in schizophrenia (for a review of
structural and functional findings see Fusar-Poli et al11 and
Smieskova et al12). Overall, these studies have shown that several
abnormalities in brain anatomy and neurophysiology that are
fundamental to schizophrenia are also present in people at high
risk of schizophrenia, and may therefore represent vulnerability
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markers.11 Interestingly, structural brain abnormalities in the
insula and temporal lobe are also found to covary with levels of
schizotypy in healthy individuals.13 A recent meta-analysis of
whole brain structural studies comparing 896 participants at high
risk with 701 controls confirmed cingulate alterations in the high-
risk group when compared with the control group, and additional
abnormalities in temporal, prefrontal, parahippocampal/
hippocampal regions.11 Volumetric reductions in cingulate as well
as in temporal, insular, prefrontal cortex and in cerebellum have
also been associated with longitudinal development of
schizophrenia over follow-up.12 However, because of the paucity
of structural imaging studies specifically linking brain changes
and clinical outcomes, second-generation imaging studies are
not able to definitively ascertain which structural abnormalities
are specific to vulnerability as opposed to later transition to
schizophrenia.

Linking imaging findings to clinical status

In this sense, Bodnar et al’s study linking imaging findings with
remission status points to a crucial gap in the high-risk literature.1

In fact, a recent systematic review showed a literature bias in that
nearly half of the high-risk studies provided no characteristics of
those participants who did not develop schizophrenia.14 The
largest study published to date showed the non-converting high-
risk group demonstrated significant improvement in attenuated
positive symptoms, negative symptoms, and social and role
functioning with more than 50% of this non-converting sample
no longer presenting with any high-risk symptoms.15 However,
this group remained on average at a lower level of functioning
than non-psychiatric comparison participants, suggesting that
initial high-risk categorisation is associated with persistent
disability for a significant proportion.15 In line with Bodnar and
colleagues’ approach it would be very useful to address brain
changes associated with remission status within the high-risk
cohort to identify protective neurobiological markers of later
development of illness. In terms of predicting clinical outcome
and strengthening clinical applications for psychiatric imaging,
there is evidence from functional and neurochemical high-risk
studies that the extent of abnormality at baseline is predictive of
subsequent conversion to psychosis.12 These neurofunctional
abnormalities were not only related to different duration of high
risk but also to grey matter reductions.16 Furthermore, structural
abnormalities were positively correlated with clinical outcomes
such as global functioning, negative symptomatology and
hallucinations. Additional MRS studies in high-risk individuals
have linked abnormal neuronal density and membrane turnover
in cingulate as well as in frontal and insular lobes with later
development of psychosis.17 Positron emission tomography
studies addressing dopaminergic neurotransmission before and
after the onset of psychosis found an increased striatal presynaptic
dopamine synthesis capacity that predicts the onset of illness,18 in
line with consistent evidence pointing to early striatal presynaptic
dopaminergic alterations in schizophrenia.19 Overall, second-
generation imaging research into the high-risk state for psychosis
has exponentially progressed, sustaining preventive interventions
in clinical psychiatry.20 However, despite the potential, the validity
of high-risk criteria is still greatly debated and the problem of the
high number of false positives severely undermines the benefits of
preventive interventions.

Third-generation psychiatric imaging

There is, therefore, an urgent need for psychiatric imaging to
move towards third-generation paradigms in line with Bodnar

et al’s study. Studies need to move away from simple investigations
of the neurobiology underlying the early phases of schizophrenia,
towards imaging that translates into clinically useful information,
targeting longitudinal outcomes including transition, remission
and response to preventive interventions. Third-generation
psychiatric imaging in early psychosis will benefit from utilising
even more complex techniques including multimodal
approaches,21 multicenter analyses22 or automated diagnostic
methods (support vector machines (SVMs)).23 In particular,
multivariate pattern recognition methods such as SVM are able
to predict progression through different disease stages and
categorise individual brain scans by separation of images from
different groups, taking into account the interregional dependencies
of different pathologies. Support vector machines use information
from all voxels to reflect differences between groups in order to
create models that allow predictions of clinical outcomes in
individual patients (i.e. prediction of subsequent conversion to
psychosis) with an accuracy of 82%.24

Future third-generation imaging studies in early schizophrenia
will also benefit from the incorporation of new sources of
neurobiological information such as whole genome sequencing,
proteomic, lipidomic and expression profiles and cellular models
derived from recent research on induced pluripotent stem cells.25

For psychiatric imaging to be something more than basic
neuroscience more studies such as the one by Bodnar et al are
urgently required in the high-risk and early schizophrenia
literature, to selectively link basic research and clinical out-
comes.26 These new third-generation neuroimaging approaches
will sustain a research enterprise that it is hoped will improve
and create therapeutic options for early schizophrenia and
ultimately help in the treatment of our patients.
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