Third-generation neuroimaging in early schizophrenia: translating research evidence into clinical utility

Stefan Borgwardt and Paolo Fusar-Poli

Summary
Psychiatric imaging needs to move away from simple investigations of the neurobiology underlying the early phases of schizophrenia to translate imaging findings in the clinical field, targeting clinical outcomes including transition, remission and response to preventive interventions.

Declaration of interest
S.B. has received honoraria for lectures and consultancy fees from Lilly.

Translating psychiatric imaging into clinical utility
The lack of clinical relevance for psychiatric imaging is particularly concerning in the early phases of schizophrenia, because of the severe clinical, functional, social and economic long-term consequences of the illness. In this sense the finding of Bodnar et al that alterations in the cingulate cortex during a first episode of schizophrenia are related to psychopathology and outcomes are of great interest. Structural alterations in the cingulate cortex have been confirmed at a meta-analytical level in participants presenting with a first episode of schizophrenia. However, cingulate function and structure has been reported to be especially sensitive to remedial antipsychotic treatment in schizophrenia and there is evidence indicating that a few weeks of antipsychotic treatment modulate the functional response in this region. As the participants in Bodnar et al’s study were receiving antipsychotics, the clinical significance of their findings is questioned. Antipsychotic exposure can play a prominent confounding role in second-generation psychiatric imaging, militating against its clinical application. One possible approach to circumvent this problem would be to selectively analyse participants with a first episode who are drug naive. In a recent meta-analysis including participants with untreated first-episode schizophrenia we confirmed that structural alterations in the cingulate cortex are present before the initiation of antipsychotic treatment.

An alternative option would be to endorse ‘close in’ clinical high-risk approaches to identify a group of individuals with higher transition rates (18% after 6 months of follow-up, 22% after 1 year, 29% after 2 years and 36% after 3 years) than those observed in the general population. This clinical strategy aims at identifying neural changes occurring prior to the onset of schizophrenia and may improve the ability of neuroimaging to predict clinical outcomes in schizophrenia (for a review of structural and functional findings see Fusar-Poli et al and Smieskova et al). Overall, these studies have shown that several abnormalities in brain anatomy and neurophysiology that are fundamental to schizophrenia are also present in people at high risk of schizophrenia, and may therefore represent vulnerability.

In this issue of the Journal, Bodnar and colleagues report identifying increased activity in the cingulate cortex, specific to semantic processing during memory encoding, in participants with non-remitted first-episode schizophrenia compared with participants who achieved remission. The finding of altered cingulate brain activity measured by functional magnetic resonance imaging (fMRI) during semantic memory encoding/processing may underlie core pathophysiological and clinical issues during the early phases of schizophrenia. We believe that the specific merit of this study is that it brings us closer towards translating psychiatric neuroimaging into clinical practice, suggesting that these alterations may be of potential use for detecting treatment response.

First-generation psychiatric neuroimaging focused on simple structural brain alterations associated with the neurobiology of the illness. These early studies adopted imaging methods including computerised tomography (CT) to investigate brain size abnormalities or positron emission tomography (PET) to assess glucose utilisation in schizophrenia. Second-generation psychiatric neuroimaging studies benefited from more sophisticated techniques that included structural methods (sMRI) coupled with whole-brain automated methods (voxel-based morphometry (VBM)), white-matter methods (diffusion tensor imaging (DTI) and tractography), functional methods (fMRI) and advanced neurochemical imaging (PET techniques addressing receptor bindings and pre-/post-synaptic functions, magnetic resonance spectroscopy (MRS)) and sophisticated meta-analytical imaging methods. Furthermore, when early clinical intervention in schizophrenia became a major objective of mental health services, the imaging research interest shifted from the chronic phases to the early period. Despite this progress, nearly three decades after Johnstone et al’s first computerised axial tomography of the brain of individuals with schizophrenia, no consistent or reliable anatomical or functional alterations have been unequivocally associated with psychosis or schizophrenia and no clinical applications have been developed in psychiatric neuroimaging.

See pp. 300–307, this issue.
markers. Interestingly, structural brain abnormalities in the insula and temporal lobe are also found to covary with levels of schizotypy in healthy individuals. A recent meta-analysis of whole brain structural studies comparing 896 participants at high risk with 701 controls confirmed cingulate alterations in the high-risk group when compared with the control group, and additional abnormalities in temporal, prefrontal, parahippocampal/hippocampal regions. Volumetric reductions in cingulate as well as in temporal, insular, prefrontal cortex and in cerebellum have also been associated with longitudinal development of schizophrenia over follow-up. However, because of the paucity of structural imaging studies specifically linking brain changes and clinical outcomes, second-generation imaging studies are not able to definitively ascertain which structural abnormalities are specific to vulnerability as opposed to later transition to schizophrenia.

Linking imaging findings to clinical status

In this sense, Bodnar et al’s study linking imaging findings with remission status points to a crucial gap in the high-risk literature. In fact, a recent systematic review showed a literature bias in that nearly half of the high-risk studies provided no characteristics of those participants who did not develop schizophrenia. The largest study published to date showed the non-converting high-risk group demonstrated significant improvement in attenuated psychosis) with an accuracy of 82%. Future third-generation imaging studies in early schizophrenia will also benefit from the incorporation of new sources of neurobiological information such as whole genome sequencing, proteomic, lipidomic and expression profiles and cellular models derived from recent research on induced pluripotent stem cells. For psychiatric imaging to be something more than basic neuroscience more studies such as the one by Bodnar et al are urgently required in the high-risk and early schizophrenia literature, to selectively link basic research and clinical outcomes. These new third-generation neuroimaging approaches will sustain a research enterprise that it is hoped will improve and create therapeutic options for early schizophrenia and ultimately help in the treatment of our patients.

Third-generation psychiatric imaging

There is, therefore, an urgent need for psychiatric imaging to move towards third-generation paradigms in line with Bodnar et al’s study. Studies need to move away from simple investigations of the neurobiology underlying the early phases of schizophrenia, towards imaging that translates into clinically useful information, targeting longitudinal outcomes including transition, remission and response to preventive interventions. Third-generation psychiatric imaging in early psychosis will benefit from utilising even more complex techniques including multimodal approaches, multicenter analyses or automated diagnostic methods (support vector machines (SVMs)). In particular, multivariate pattern recognition methods such as SVM are able to predict progression through different disease stages and categorize individual brain scans by separation of images from different groups, taking into account the interregional dependencies of different pathologies. Support vector machines use information from all voxels to reflect differences between groups in order to create models that allow predictions of clinical outcomes in individual patients (i.e. prediction of subsequent conversion to psychosis) with an accuracy of 82%.

Future third-generation imaging studies in early schizophrenia will also benefit from the incorporation of new sources of neurobiological information such as whole genome sequencing, proteomic, lipidomic and expression profiles and cellular models derived from recent research on induced pluripotent stem cells. For psychiatric imaging to be something more than basic neuroscience more studies such as the one by Bodnar et al are urgently required in the high-risk and early schizophrenia literature, to selectively link basic research and clinical outcomes. These new third-generation neuroimaging approaches will sustain a research enterprise that it is hoped will improve and create therapeutic options for early schizophrenia and ultimately help in the treatment of our patients.

Funding

SB was supported by the Swiss National Science Foundation (No. 3232B0_119382).

References


