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THE EXISTENCE OF CONTINUABLE SOLUTIONS OF 
A SECOND ORDER DIFFERENTIAL EQUATION 

G. J. BUTLER 

1. Introduction. A much-studied equation in recent years has been the 
second order nonlinear ordinary differential equation 

(1) y"(t) + q(t)f(y(t)) = 0, t> t0, 

where q and / are continuous on the real line and, in addition, / is monotone 
increasing with yf(y) > 0 for y ^ 0. Although the original interest in (1) lay 
largely with the case that q{t) ^ 0 for all large values of /, a number of 
papers have recently appeared in which this sign restriction is removed. It is 
then that questions of continuability of solutions become a serious matter, for 
Burton and Grimmer have shown [2] that if q(t) is allowed to take on negative 
values and provided that / satisfies a certain growth condition, there will 
always exist solutions of (1) which have a bounded maximal interval of 
existence. It is of some interest, therefore, to obtain some conditions on a sign-
varying function q(t) that will guarantee that there exists at least one non-
trivial solution of (1) which is continuable to [/0, °o), particularly in the con
text of oscillation criteria for (1) which are invariably prefaced by some 
assumption of continuability of solutions. Apparently, the only result of a 
general nature appearing in the literature which bears on this problem, is a 
rather complicated condition due to Kiguradze [6] for the function f(y) = 
3>2n+1, n a natural number. 

Throughout this paper, we shall use the term "continuable" for any non-
trivial solution of (1) which is continuable to [/0, °o ). 

When q(t) > 0 for all t, there is the useful result [3] that if q is of locally 
bounded variation, then all solutions of (1) are continuable in the case/(^) = 
y2n+1. This result is easily extended to any function/for which J^ f (u)du = oo . 
In [3], it was also shown that if the preceding condition on q is violated at even 
one point, then there may exist non-continuable solutions. 

If we only have q(t) ^ 0 for all /, then it is not at all clear whether or not 
the above condition on q is still sufficient even for there to exist one continuable 
solution; however it is still sufficient for the continuability of all solutions if, 
in addition, q(t) is piecewise monotone in the neighbourhood of each of its zeros. 

2. Statement of results. The purpose of this paper is to prove the following 

THEOREM. Let f be locally lipschitz with yf(y) > 0 for y ^ 0 and such that 

Received March 1, 1976 and in revised form, November 2, 1976. 

472 

https://doi.org/10.4153/CJM-1977-051-7 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1977-051-7


DIFFERENTIAL EQUATIONS 473 

\[m\y\_>œ f(y)/y = oo. Let q be continuous with isolated zeros, such that if I is 
any interval on which q(t) > 0 and $ is any solution of (1) with initial point in I, 
then <j> is continuable to the closure of I. 

Then (1) has infinitely many continuable solutions, and furthermore, if q 
oscillates (changes sign on every interval (ti, oo ) with tx ^ / 0 ) , then (1) has 
infinitely many (continuable) oscillatory solutions. 

COROLLARY. Let f be locally lipschitz with yf(y) > 0 for y ^ 0 and l i m ^ i ^ 
f(y)/y — °° • Let q be continuous with isolated zeros, and piecewise monotone on 
each bounded interval of R1. Then (1) has infinitely many continuable solutions. 
Moreover, if q oscillates, then (1) has infinitely many oscillatory solutions. 

Before proving the theorem in § 3, we introduce some notat ion. Throughout , 
we shall assume t h a t / and q satisfy the conditions required in the hypotheses 
of Theorem 1. If (a, y) G R 1 X R2, we shall denote by y (a, y; t) the solution 
of (1) with initial conditions y (a) = 71, y'(a) = 72, (7 = (71, 72)). The 
ordered pair (y(a, 7 ; t), y'(a, 7 ; /)) will be denoted by Z(a, 7 ; / ) . Where we 
may do so without fear of ambiguity, we shall use shorter forms to avoid 
onerous notat ion. Modulus signs will always denote the appropriate Euclidean 
norm. For a subset S of [/0, ° ° ) , we shall use 5 and dS for its closure and 
boundary, respectively. We shall use f(y) to denote the function m a x ^ i ^ 
\f(v)\. Since we shall frequently be making inferences from the continuous 
dependence of solutions on initial conditions, we shall use the abbreviation 
(CD) (see, for example [4, page 94]). 

3. Proof of t h e t h e o r e m . We shall require two lemmas. 

LEMMA 1. Let I = (a, b) and U = (a, 13) be open intervals and suppose that 
q(t) > Ofor t e I and that T = {p G R2 : p = y(s) = (yi(s), y2(s)), s Ç U) is 
a continuous arc in R2 which has the properties: 

(i) l i m b e r |7(5)| = 00, 
(ii) there are neighbourhoods of a and of (3 in which one of yi(s), y%(s) is non-

vanishing. 
Define N(s) and 7* (s) by 

N(s) = number of zeros of y (a, y (s); t) in I, and 

7 *( s ) = (y(a,y(s);b),y'(a,y(s);b)) = (yi*(s),y2*(s)). 
Then if arg 7* (s) is any continuous argument function on 

r* = {pe R*:p = y*(s),se u], 
we have 

(a) lims_>du N(s) = œ, 
(b) lims_,ac/ \y*(s)\ = 00, and 
(c) l i m ^ a ^ l a r g 7*(s) | = 00. 

LEMMA 2. Let q(t) < 0 for t Ç / = (a, b). Then for each s G R1, we may 

define an open interval V(s) such that 
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(a) y (a, (s, m); t) is continuable to I for ail m £ V(s). 
(b) V(s) is a maximal interval with this property. 
(c) V(s) satisfies the following continuity property: for each real s0, there exists 

an open V*(so) such that V(s) D V*(s0) for s sufficiently close to SQ, and 
V(s), V*(s) are non-empty. 

Proof of Lemma 1. Let C = max ^7 q(t). Choose any positive number 8 with 
Ô < min (2, %(b - a)). Define 

c(8) = min q(t), 

and define 

(2) m{8,B) = 8Cf(B) + 2B/8. 

Now choose a positive number C\ = C\{8) large enough that 

(3i) a+ 28 + 4/Ci < b. 

Because of the hypothesis \in\\y\^œf(y)/y = 00 , we may find B\ > 0 such that 

(40 |/(30| > CW\y\/c(ô), \y\ k \B,. 

We may clearly assume that B\ ^ C\. Denote m(8, B\) by fh\. Whenever 
d Ç [a, b], p E R2, the solution Z(d, p; t) is continuable to all of [a, b]. From 
(CD), it follows therefore, that given any R > 0, there exists M(8, R) > 0 
such that for any d £ [a, b — |<5], \Z(d + %8, p; d)\ S M(8, R), whenever 
\p\ ^ R. In the remainder of the proof of part (a) of this lemma, we shall 
suppress the initial conditions from the notation and shall use y(t), Z(t) 
throughout as abbreviations for y (a, 7; t), Zia, 7; t), respectively. 

We assert that if \y\ > M{8,\/2 mx), then 

(*) there exists h' £ [a + 8/2, a + 38/2] such that \y(h')\ ^ Bx. 

Suppose this to be false, so that 

(5) \y(t)\ < Bu t£[a + 8/2, a + 38/2]. 

From the definition of M, we see that \Z(a + 8/2) > \ / 2 w i , whenever 
M > M&^rhx). 

Let Z(a + 8/2) = (Çu f2) and consider first the case that |f2| è ^ 1 . If we 
have fi ^ 0, f2 ^ mi, we integrate (1) and use (5) to obtain the estimate 
y'(t) ^ f2 - 8Cf(B1), a + 8/2 ^ t ^ a + 38/2. Therefore, integrating again 
and using (2), 

y(a + 8) ^ fi + (r2 - 0 ^ ( ^ 0 ) 0 / 2 ^ fi + (mi - hCf{B1))b/2 è 5 i , 

contradicting (5). If f 1 ^ 0, f2 ^ -Wi , we use the fact that on subintervals of 
[a, b] on which y(t) is non-negative, it is a concave function, together with (5), 
to see that y(t) must vanish for some value of t = t\ with a + 8/2 < ti < a + 
8/2 + Bi/nti < a + 8, using (2) to obtain the last of these inequalities. 
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Furthermore, we have y'(h) ^ y'(a + 5/2) ^ —fhi, and integrating (1) we 
obtain / ( / ) ^ -mx + 5Çf(£i), l i ^ g a + 35/2, and ;y(/i + 5/2) g 
( - w i + ÔCf(Bl))ô/2 ^ -BL Since a + 5/2 ^ h + 5/2 ^ a + 35/2, we again 
have a contradiction of (5). 

The cases in which fi < 0, |f2| ^ Wi may be similarly dealt with, and if 
Ifrl < wi, we must have \y(a + 5/2)| = |fi| ^ Wi > 2£i/<5 > £ i , contra
dicting the assumption that (*) is false. Thus we have verified (*). We shall 
now, without any loss of generality, assume that y(ti) ^ 231. 

By virtue of (4i), it follows by way of the Sturm comparison theorem that 
there exists h" G (//, / / + 2/Ci) such that 

yiti") < *5i, ?(/) > 0> *i' < * < h". 

Using the mean value theorem and the concave behaviour of y(t), we infer 
that y (//') < - \BxCi g - i d 2 and that there exists h'" € (*i", *i" + 2/Ci) 
for which y(/) > 0, ^ < t < h'", y(h'") = 0 and y'(h'") < - i d 2 . We 
also note that a + 5/2 < / / " < a + 35/2 + 4/Ci < 6 - 5/2, by (3i). 
Arguing similarly, we see that if 8 is any positive number with 5 < min 
(2, 2{b — a)/I) and if we choose positive numbers Ci §: C2 so large that 

(32) C2
2/4 > M ( « , A / 2 W ( J B I ) ) , a + 75/2 + 4 ( C r 1 + C<rl) < b 

where Bi ^ Ci, B2 ^ C2 are such that 

(42) f(y) ^ Ct*ir*\y\/c(ô), \y\ è 5</2, * = 1, 2 

then whenever | *v I = ^f (5, y/2 m(B2))} y (a, 7; £) will have zeros at /1, /2, where 
a + 5/2 < *! < *2 < a + So + 4(C1-1 + d r 1 ) < b - 5/2, and \y'(a, 7 ; t2)\ > 
d 2 / 4 . 

Now we proceed inductively. Given a natural number N, choose any positive 
number ô with 

s<mi„(2,f-f). 
Then pick an increasing sequence Cn = C„(ô), n = 1, . . . , iV, such that 

(|Cn+i2 > M(«, V 2 f»(5»)), n = 1 TV - 1 

(3.) | (a^MJ 8 + 4 | j Cw-1<6_a 

where 23 n ^ Cw, w = 1, . . . , N, such that 

(4„) \f(y)\ ^ CnV\y\/c(ô), \y\ £ BJ2, n = 1, . . . , N. 

Whenever |7| ^ M(ô, y/2 m(BN)), the solution y {a, 7; i) of (1) has at least 
N zeros in (a, b). Part (a) of the lemma now follows on account of the hypo
thesis (i). 

Part (b) follows from the fact that \Z(b,p;a)\ ^ M(2(b - a),R), whenever 
\p\ ^ R, and on noting that if 7* = Z(a, 7; b), then 7 = Z(bt 7*; a). 
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As a preliminary to proving part (c) of the lemma, we make a few observa
tions concerning solutions of (1). Since the zero solution is unique, non-trivial 
solutions of (1) have only simple zeros; consequently, two solutions with the 
same number n of zeros on [a, b] and with (strictly) the same sign at a, will 
have the same sign on the open subintervals between their j th and (j + l)st 
zeros on [a, b] and on the open sub-interval between their last zero on [a, b] 
and b (this last statement being vacuous should either solution vanish at b). 
Further, it is easily verified that if a sequence yt of such solutions converges 
uniformly to the solution y on [a, b], with the additional condition that the 
values yt(a) be uniformly bounded away from zero, then y has either n or 
n + 1 zeros on [a, b]. Similar observations may be made concerning the zeros 
of derivatives of solutions of (1), since any such zeros in (a, b) will be simple. 

Proceeding with the proof of (c), suppose for definiteness, that there is an 
interval (/3', /3) in which 71 is non-vanishing, and let s, s' belong to this interval 
such that 71*(s) = 71* CO = 0, N(s') = N(s) + 1, while N(r) = N(s) for 
any r between 5 and s' for which 71*(r) = 0. We claim that arg 7* CO = arg 
7* (s) — ir. Again, for definiteness, we shall assume that s < s' and 72* (s) > 0. 
Then arg 7* (s) = 2k-w + TT/2 for some integer k, and y (a, y(s) ; t) < 0 in some 
left neighbourhood of b. For s < r < s', we either have N(r) = N(s), yi*(r) ^ 
0 (by the preceding preliminary observations) and 2kir + w/2 ^ arg y* (r) > 
2kir — 7r/2, or we have N(r) = N(s) — 1. Since l im^^ y (a, y(r); t) = 
y (a, 7(5'); t) uniformly on [a, b], and since N(s') = N(s) + 1, we must have 
N(r) = N(s) for r G (5, s') sufficiently close to s'. But arg y*(s') = 2k'V - TT/2 
for some integer k', and continuity then implies that k = k', and our claim is 
verified. Next, suppose that ft < s < sf < (3, 71* (s) = yi*(s') = 0, with 
N(s') = N(s) + m. Then arg 7*CO = arg 7*(s) — mw. For appealing to the 
preliminary remarks, we may find a sequence s = SQ < Si < . . . < sk = s' 
such that 71*(^-1) = 7i*(*<) = 0, \N(Si) - Nisi-Jl = 1, and N(r) = N(s/) 
for all r Ç (^z-i, st) for which 71*(r) = 0, where 

, = (s^!, HN(st) =iV(^_i) + 1 
Si \st1 UNist-!) =N(st) + 1. 

Applying the preceding argument m times, we obtain the result arg 7*(s') = 
arg 7* (s) — m-K. Using this, together with part (a) of the lemma, yields the 
result that l i m ^ arg y*(s) = —00, in the event that 71 is non-vanishing in 
some neighbourhood of /3. If, instead, 72 is non-vanishing near 0, we may argue 
analogously in terms of the derivatives of solutions of (1). 

This completes the proof of (c) and hence the lemma. 

COROLLARY. Let s, sf be in a neighbourhood of 13 in which either 71 or y2 is 
non-vanishing and let N(s') = N(s) + m. Then arg y*(s') ^ arg 7* (s) — 
(m — \)ir. A corresponding result holds in any appropriate neighbourhood of a. 

Proof. We consider only the case that 71 is non-vanishing near /3 and s < sf \ 
the other cases are similar. Let n = N(s). We can find Si, s2 with s ^ Si ^ 
S2 ̂  s', yi(si) = 71(^2) = 0 and iV(^i) = n + 1, N(s2) = n + m. Then the 
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proof of par t (c) of Lemma 1 implies t ha t 

arg Y * 0 ) ^ arg y*(si) = arg y*(s2) + (m - 1)TT ^ arg y*(s'). 

Remarks. 1) S ta tements similar to Proposition (a) have appeared in [1] 

and [5]. 
2) T h e existence of a continuous argument function on r*, a t least for values 

of 5 sufficiently close to dU, is guaranteed by (b). 

Proof of Lemma 2. First we show tha t for each s there exists m* = m*(s) 
for which y (a, (s} m*)\ t) is continuable to I. For it is clear t ha t given s > 0, 
say, y (a, (s, m)\ t) will become negative somewhere in I , provided t h a t m is 
sufficiently negative, whereas it will never assume negative values if m is posi
tive. Now define w* to be inf {m: y (a, (s, m)\ t) does not assume negative 
values in / } . 

If y (a, (s, m*)\ t) were not continuable to I , this solution would have a 
maximal interval of existence [a, b*) with b* ^ b and lim^&* y (a, (s, m*) ; i) = 
co . From (CD) and the definition of m*, we find t h a t ^ ( / ) = y (a, (s,m*)\t) ^ 0 
on [a, b*). Because of the uniqueness of the zero solution and the behaviour of 
y(t) in a neighbourhood of b*, we see tha t y(t) must in fact be bounded away 
from zero in [a, b*). (CD) indicates tha t this is a contradiction of the defini
tion of w* and so y (a, (s, m*) ; i) will be continuable to J ; again using (CD), it is 
easy to deduce the existence of V(s) containing m*(s) and satisfying (a), (b) 
and (c). If s < 0, we define m* to be sup \m\ y (a, (s, m)\ t) does not assume 
positive values in 1}, and argue similarly. 

Remark. From (c), we see tha t U S ^ R I {S} X V(s) is an open subset of R2, 
and we may construct a continuous arc A = {p G R2 : p = (s,\(s)), s £ R1} 
with \(s) G V(s). 

Proof of the theorem. If q(t) ^ 0 for every /, there is nothing to prove as 
regards existence, on account of the basic hypothesis concerning q. If q(t) < 0 
for every /, arguments similar to those employed in the construction of m* in 
the proof of Lemma 2 point to the existence of m = m (s) such t ha t 
y (a, (s, m); t) is continuable. Therefore we concentrate our a t tent ion on the 
case t h a t there exist intervals Ii = (th tj+i) with ( — l)jq(t) < 0 for t G /;-, 
j = 0, 1, .. . . . 

In [2], it was shown tha t (1) will have solutions with initial point in I2j, bu t 
not continuable to I2j if and only if either 

(I) I (1 + F(u))~hu < oo 
•/ o 

or 

(II) | (1 + F(u)pdu > - o o , 
•/ o 

where 
rv 

F(y) = I f(u)du. 
J o 
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We shall assume t h a t both (I) and ( I I ) hold, since there is nothing to prove 
if neither holds, and the modifications required if jus t one of the conditions 
holds are trivial. 

When (I) and (II ) do both hold, it is easy to deduce via [2] t h a t the sets 
V(s) defined by Lemma 2 are bounded. We shall use V2j(s) to denote V(s) 
when applying Lemma 2 with I = I2j and A2j will denote the corresponding 
curve A (see remark following the proof of Lemma 2) . Sj will denote [/0, tj+i\. 

Let M2j(s) = supmeV2j{s) |m|. Fix yQ Ç i?1, and abbrevia te y (to, (yo, m ) ; t) 
to y(m\ t). Then y(m\ t) is continuable to J0 (and therefore to Si) for m (E 
Vo(y0). Let UQ = UIx be V0(yo) and define 70(m) = y ^(rn) by 

7o(w) = (y(m;ti),yf(m;h)), m 6 U0. 

I t may be verified, using the maximali ty of UQ, t h a t 

I V = {p G R 2 : £ = yo(m),m Ç C/0} 

satisfies the conditions of Lemma 1. (In fact, \yo(m)\—> 00, arg 7o(m) —* 
7r/2 (mod 7r) as m —•» d[/o-) Therefore we may choose Wn < m i 2 with 
[mu, W12] C £7o and such t h a t 

(i) |arg7o*(mi 2) - a r g 7 0 * ( w n ) | = 2?r, 
(ii) |7o*(w)| ^ 2M 2 (0 ) , m e [ % , % ] 

where 70* (m) = 7 / 1 *(m) , m G 17o, m the notat ion of Lemma 1. Define T0* to 
be {p G R2 : p = 70*(m), m £ £/0}. On account of (i) and (ii), it m a y be seen 
t h a t the restriction of the curve T0* to the parameter interval [mu, m i 2] and 
the curve A2 will have a point of intersection. Using (c) of Lemma 2 as well, 
we shall be able to find m i / < m i / with [ran', m i / ] C (mu, m i 2 ) such t h a t 
y(m\t) is continuable to 72 (and thus t o S 3 ) form £ ( m i / , mi2 ' ) and ( m i / , m i / ) 
is a maximal such interval. 

We now pu t Ix = £7/8 = ( m i / , m i / ) , 71 = y n(m) = (^(m; *3), / ( m ; J3)), 
m G ÇA, and r i = r / 3 = {p £ R 2 : p = 71 (m), m G Z7i}, and verify t h a t r x 

satisfies the conditions of Lemma 1. 
We may proceed inductively to obtain sequences m w / , mn2 such t h a t 

mn\ < rnn+i,i < mn+ij2 < mn2 and y(m; t) is continuable to S2n+i for m £ 
(m„/ , mj) = Ww, say. We have W = Pl"=i Ww ^ 0- Now for m G PF, 
y(m\t) is a continuable solution of (1). 

The general case (( — l)jq(t) ^ 0 on 7;-) needs only a minor modification of 
the above argument . The question of existence is thus deal t with. 

Finally, given any sequence ln of real numbers , we may use Lemma 1 to 
modify our construction to ensure t h a t for m £ Wn, y(m; t) has a t least ln zeros 
in S2rH_i, and this proves the final assertion of the theorem. 

The corollary follows from the theorem and the discussion in § 1. 
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