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Abstract

In this paper, we explore the monotone Lindelöf property of two kinds of linearly ordered extensions
of monotonically Lindelöf generalized ordered spaces. In addition, we construct nonseparable
monotonically Lindelöf spaces using the Bernstein set, which generalizes Corollary 4 of Levy and
Matveev [‘Some more examples of monotonically Lindelöf and not monotonically Lindelöf spaces’,
Topology Appl. 154 (2007), 2333–2343].
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1. Introduction

Recently, Matveev introduced the concept of the monotone Lindelöf property. In [7]
and [4], Levy and Matveev investigated the monotone Lindelöf property in countable
spaces, and gave an example which is monotonically Lindelöf, but not monotonically
normal. In [1], Bennett et al. presented basic results about the monotone Lindelöf
property in the theory of generalized ordered spaces.

First, in this paper we show that the linearly ordered extension X∗ of a generalized
ordered (GO)-space X is monotonically Lindelöf if and only if X is monotonically
Lindelöf. However, it is not true for another linearly ordered extension L(X) of
a monotonically Lindelöf GO-space X (see Example 2.6). In addition, we prove
that if a GO-space X is monotonically Lindelöf and R ∪ L is a countable subset of
X , then L(X) is monotonically Lindelöf, where R = {x ∈ X | [x,→) ∈ τ − λ} and
L = {x ∈ X | (←, x] ∈ τ − λ}, τ is a generalized ordered topology on X and λ is the
interval topology on X . Second, we construct monotonically Lindelöf spaces using
the Bernstein set and apply them to generalize the result in [3, Corollary 4].

We reserve the symbols R,Q and Z for the sets of real numbers, rational numbers
and integers. For a set V and a collection U of sets, we write V ≺ U to mean that V is
a subset of some member of U .
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Recall that X is monotonically Lindelöf if there is an operator r assigning to every
open cover U a countable open refinement r U (still covering the space) in such a
way that r V refines r U whenever V refines U [3, 7]. In this case, r will be called a
monotone Lindelöf operator for the space X . A linearly ordered topological space
(LOTS) is a triple (X, λ,≤), where (X,≤) is a linearly ordered set and λ is the
interval topology on (X,≤). A GO-space is a triple (X, τ,≤), where (X,≤) is a
linearly ordered set and τ is a topology on (X,≤) such that λ⊆ τ and τ has a base
consisting of order convex sets, where a set A is called order convex if x ∈ A for
every x lying between two points of A. If a GO-space (X, τ,≤) can be topologically
embedded in a LOTS (Y, λ,l), then the LOTS (Y, λ,l) is called an orderable
extension of the GO-space (X, τ,≤); if ≤=l |X , then the LOTS (Y, λ,l) is called
a linearly ordered extension of the GO-space (X, τ,≤). In addition, if (X, τ,≤) is
dense (closed) in the space (Y, λ,l), then (Y, λ,l) is called a dense (closed) linearly
ordered extension of the GO-space (X, τ,≤). Let X = (X, τ,≤) be a GO-space and
λ= λ(≤) be the usual order topology on X . We set R = {x ∈ X | [x,→) ∈ τ − λ} and
L = {x ∈ X | (←, x] ∈ τ − λ}. Then X∗ is defined as follows:

X∗ = (X × {0}) ∪ {〈x, n〉 | x ∈ R, n < 0 and n ∈ Z}
∪ {〈x, m〉 | x ∈ L , m > 0 and m ∈ Z} ⊆ X × Z.

L(X) is defined as follows:

L(X)= (X × {0}) ∪ {〈x,−1〉 | x ∈ R} ∪ {〈x, 1〉 | x ∈ L} ⊆ X × {−1, 0, 1}.

Then X∗ and L(X) are LOTS equipped with the lexicographic order topologies
(see [5, 8]). Observe that X × {0} as a subspace of X∗ and L(X) is homeomorphic to
X , so that we may identify X × {0}with X and regard X as a subspace of X∗ and L(X)
in this paper without further explanation. Therefore, it follows from the definitions of
X∗ and L(X) that X is closed in X∗ and dense in L(X), so X∗ is a closed linearly
ordered extension of X and L(X) is a dense linearly ordered extension of X .

For undefined terminology and notation refer to [2, 5, 6].

2. Main results

In this section we investigate the relationship between linearly ordered extensions
and the monotone Lindelöf property. First, we have the following proposition that
allows us to use open convex sets instead of open sets in the definition of monotonically
Lindelöf spaces.

PROPOSITION 2.1. For a GO-space X, the following conditions are equivalent.

(1) X is monotonically Lindelöf.
(2) For any cover U of X consisting of open convex subsets, there exists a countable

open cover r U refining U such that if V is also such an open convex cover of X
that refines U , then r V refines r U .
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(3) For any cover U of X consisting of open convex subsets, there exists a countable
open cover r U which also consists of convex subsets refining U such that if V is
also such an open convex cover of X that refines U , then r V refines r U .

PROOF. That (1) implies (2) is obvious. To prove that (2) implies (3), let r U be the
refinement of U satisfying the conditions in (2). Then members of r U may not be
convex. For each member O of r U , define CO = {x ∈ X | ∃x1, x2 ∈ O such that x1 ≤

x ≤ x2}. Thus CO is convex and open such that if O ′ ⊂ O , then CO ′ ⊂ CO . Moreover,
if U is an open convex subset that contains O , then CO ⊂U . Put r ′U = {CO |

O ∈ r U}. Then r ′U satisfies the conditions in (3). Now we prove that (3) implies
(1). Suppose that U is an open cover of X whose members may not be convex.
For each member U of U , let O(U )= {O | O is a convex component of U }. Then
U ′ = ∪{O(U ) |U ∈ U} is an open cover of X consisting of convex subsets and it
refines U so that if V refines U , then V ′ refines U ′. By (3), r V ′ refines r U ′. Therefore,
X is monotonically Lindelöf. 2

LEMMA 2.2 [5]. Suppose that C is an open cover of a GO-space X by convex sets.
Let E = {x ∈ X | no element of C contains points on both sides of x}. Then for each
y ∈ X there is an open neighbourhood G(y) of y such that G(y) ∩ E ⊆ {y}.

Let S ⊆ X be convex in a GO-space X . In [5], Lutzer defined

S∼ = {〈x, k〉 ∈ X∗ | x ∈ I (S)} ∪ {〈x, 0〉 | x ∈ S − I (S)}

where
k ∈ Z and I (S)= {x ∈ S | ∃a, b ∈ S with a < x < b}.

Using L(X) in place of X∗, we define

S− = {〈x, k〉 ∈ L(X) | x ∈ I (S)} ∪ {〈x, 0〉 | x ∈ S − I (S)}

where k =−1, 0 or 1 and I (S) is defined as before.
It is well known that any nonvoid (open) subset G of a GO-space X can be uniquely

represented as a union of its maximal (open) convex subsets, which are called convex
components of G.

REMARK 2.3. Let G be a subset of a GO-space X . If G = ∅, let G∼ = ∅ (G− = ∅). If
G 6= ∅, let G = ∪{Si | i ∈ I } be the unique representation of G as a union of its convex
components. Put G∼ = ∪{S∼i | i ∈ I }(G− = ∪{S−i | i ∈ I }).

PROPOSITION 2.4 [5]. Let X be a GO-space.

(1) If G ⊆ H ⊆ X, then G∼ ⊆ H∼.
(2) If G is open in X, then G∼ is open in X∗.
(3) If C is a collection of convex subsets of X∗ and if G is a collection of subsets of

X which refines C, then so does the collection G∼ = {G∼ | G ∈ G}.
By definition, the LOTS X∗(L(X)) is a closed (dense) linearly ordered extension

of a GO-space X . It is interesting to investigate the following question.
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(†) Does the linearly ordered extension of a GO-space X have a property P when X
has the property P?

For the monotone Lindelöf property, we shall prove that a GO-space X is
monotonically Lindelöf if and only if X∗ is monotonically Lindelöf.

THEOREM 2.5. Let X be a GO-space. Then the following are equivalent:

(1) X is a monotonically Lindelöf space;
(2) X∗ is a monotonically Lindelöf space.

PROOF. (1) implies (2). Let C be an open cover of X∗. By Proposition 2.1, we may
assume that every member of C is convex. Then UC = {C ∩ X | C ∈ C} is an open
cover of X by convex sets, so by Proposition 2.1 there is a countable open cover r1UC
of X that refines UC , where r1 is a monotone Lindelöf operator for the space X and
every member of r1UC is convex. Define

EC = {x ∈ X | no element of r1UC contains points on both sides of x}.

By Lemma 2.2, EC is a closed discrete subspace of X . Since X is monotonically
Lindelöf, EC must be countable. Let HC = {V∼ | V ∈ r1UC}. By Proposition 2.4(2)
and (3), HC is a countable open collection of X∗, and HC refines UC and C since
r1UC refines UC . In addition, if 〈x, k〉 ∈ X∗ − ∪HC , then x ∈ EC , where x ∈ X and
k ∈ Z− {0}. Hence, X∗ − ∪HC is a countable set. Let r2C = {{〈x, k〉} | 〈x, k〉 ∈
X∗ − ∪HC}. Therefore, C has a countable refinement r C =HC ∪ r2C.

Finally, suppose that C and D are open covers of X∗ and C refines D. Similar
to before, for D, we may define HD, UD, r1UD, ED, r2D, r D corresponding to
HC, UC, r1UC, EC, r2C, r C. Hence, GC refines GD . Then UC refines UD and r1UC
refines r1UD . By Proposition 2.4(1), HC refines HD . Then EC ⊇ ED . So any member
of r2C is either a member of r2D or a subset of some member of HD . Hence, r C refines
r D. Therefore, X∗ is monotonically Lindelöf.

That (2) implies (1) follows directly from X being a closed subset of X∗. 2

From the following example we know that, for some monotonically Lindelöf GO-
spaces X , L(X) may not be monotonically Lindelöf.

EXAMPLE 2.6. There exists a GO-space X that is monotonically Lindelöf, but L(X)
is not so.

PROOF. Let X be ω1 + 1 with a topology such that every point of ω1 is isolated, and
every neighbourhood of ω1 is a usual neighbourhood.

(1) X is monotonically Lindelöf. For any open cover U of X , there is a first ordinal
α = α(U) such that the interval [α, ω1] is a subset of some member of U . Define
r U = {[α, ω1]} ∪ {{β} | β < α}. Clearly, r is a monotone Lindelöf operator for the
space X .

(2) L(X) is not monotonically Lindelöf. In fact, L(X) is homeomorphic to ω1 + 1
with the usual interval topology since L(X) may be regarded as being made from
ω1 + 1 by inserting a predecessor at each limit ordinal less than ω1, but these inserted
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‘predecessors’ play the role of the limit ordinals instead. By [1, Example 2.3], the usual
ordinal space ω1 + 1 is not monotonically Lindelöf. Thus L(X) is not monotonically
Lindelöf. 2

Example 2.6 motivates the following question.

(‡) Under what conditions on a monotonically Lindelöf GO-space X must L(X) be
monotonically Lindelöf?

We give an answer in Theorem 2.8 below.

PROPOSITION 2.7. Let X be a GO-space.

(1) If S ⊆ T is convex in X, then S− ⊆ T−.
(2) If S is convex in X, then S− is open in L(X) if and only if S is open in X.
(3) If H is convex in L(X) and if S ⊆ H, where S is convex in X, then S− ⊆ H.
(4) If G is open in X, then G− is open in L(X).
(5) If D is a collection of convex subsets of L(X) and if C is a collection of subsets

of X which refines D, then so does the collection C− = {C− | C ∈ C}.

PROOF. We only prove (2). The other results can be shown similarly to the proofs
of [5, Lemma 3.2 and Proposition 3.5]. Suppose that S is an open convex set in X .
Let 〈x, k〉 ∈ S−, where k = 0, 1, −1. If x ∈ I (S), choose points a, b ∈ S with a <
x < b. Then 〈x, k〉 ∈ (〈a, 0〉, 〈b, 0〉)⊆ S−. If x 6∈ I (S), then either x ∈ S ⊆ [x,→) or
x ∈ S ⊆ (←, x]. In either case, k = 0. For the first case, there are two subcases:

(i) x is an isolated point of X . Then {〈x, 0〉} is an open subset of L(X) which is
contained in S−.

(ii) x is not an isolated point of X . Since S is open in X , either x has an
immediate predecessor y ∈ X (in which case we let p = 〈y, 0〉), or else the point
p = 〈x,−1〉 ∈ L(X). By assumption, there are two points x1 and x2 ∈ S with
x < x1 < x2. Let q = 〈x1, 0〉. Then 〈x, 0〉 ∈ (p, q)⊆ S− and hence S− is open
in L(X).

The converse is clear because S− ∩ X = S. 2

THEOREM 2.8. If X is a monotonically Lindelöf GO-space and R ∪ L is countable,
then L(X) is monotonically Lindelöf.

PROOF. Suppose that C is an open cover of L(X). As in the proof of Theorem 2.5, we
have GC, UC, r1UC , where

GC = {G | G is a convex component of some member C of C}

and
UC = {G ∩ X | G ∈ GC},

and r1UC refines UC , where r1 is a monotone Lindelöf operator for the space X .
Let HC = {V− | V ∈ r1UC}. In the light of Proposition 2.7(2) and (5) and r1UC

refining GC , HC is a countable open collection of L(X) that refines GC . Since GC
refines C, HC refines C. If 〈x, k〉 ∈ L(X)− ∪HC , then k must be −1 or 1. So
either x ∈ R, if k =−1, or x ∈ L , if k = 1. By the definition of R (respectively L),
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x does not have an immediate predecessor (respectively, successor) in X , for every
x ∈ R (respectively x ∈ L). Hence, 〈x,−1〉 (respectively 〈x, 1〉) does not have an
immediate predecessor (respectively, successor) in L(X), for every x ∈ R (respectively
x ∈ L). Suppose that W is any well-order of the underlying set X . For every x ∈ R,
let YC1(x)= {y ∈ X | 〈y, 0〉 ∈ st (〈x,−1〉, GC), y < x}, where st (〈x,−1〉, GC)=
∪{G ∈ GC | 〈x,−1〉 ∈ G}. Let xC1 ∈ X be the W -first point of the set YC1(x). Then
there exists G ∈ GC such that (〈xC1, 0〉, 〈x,−1〉] ⊆ G. Similarly, for every x ∈ L ,
we define YC2(x), xC2 corresponding to YC1(x), xC1. Then there exists G ∈ GC
such that [〈x, 1〉, 〈xC2, 0〉)⊆ G. Define r C =HC ∪ {(〈xC1, 0〉, 〈x,−1〉] | x ∈ R} ∪
{[〈x, 1〉, 〈xC2, 0〉) | x ∈ L}. Then r C is a countable open cover of L(X), which refines
GC and C.

Suppose that C and D are open covers of L(X) and that C refines D. Clearly, HC
refines HD . Since GC refines GD , YC1(x)⊆ YD1(x).

We claim that xD1 ≤ xC1 for every x ∈ R. In fact, if xD1 > xC1, then xD1 ∈ YC1(x).
Hence, xD1 follows xC1 under the well-order W . However, xC1 follows xD1 under the
well-order W since xC1, xD1 ∈ YD1(x). This is a contradiction.

By the above claim, (〈xC1, 0〉, 〈x,−1〉] ⊆ (〈xD1, 0〉, 〈x,−1〉]. Similarly, for every
x ∈ L , we have [〈x, 1〉, 〈xC2, 0〉)⊆ [〈x, 1〉, 〈xD2, 0〉). Therefore, r C refines r D. 2

In Theorem 2.8, the condition ‘R ∪ L is countable’ is not necessary. For example,
let S be the Sorgenfrey line. Then S and L(S) are monotonically Lindelöf since they
are separable, but the subset R ⊆ S is uncountable.

Finally, we generalize the result of [3, Corollary 4] in Theorem 2.9. By [1,
Proposition 3.1], the Sorgenfrey line is monotonically Lindelöf and the Michael line
is not. In [3], Levy and Matveev showed that (R, E B) is monotonically Lindelöf,
where B is a Bernstein subset of the real line R with the usual topology E , and E B =

E ∪ {{b} | b ∈ B}. A subset A of R is called a Bernstein set if |A| = c (continuum) and
every compact set contained either in A or in R− A is countable.

THEOREM 2.9. Let A be a Bernstein set of the real line R and let λ be the usual
topology on R. If ρ is a generalized ordered topology on R that is stronger than the
usual topology λ and has a neighbourhood base at each point of A consisting of usual
open intervals, then Y = (R, ρ) is monotonically Lindelöf.

PROOF. Let U be an open cover of Y . Define r1U = {(a, b) | (a, b)≺ U and a, b ∈
Q}. Then r1U is a countable open collection and partially refines U . In addition,
r1U covers A and ∪ r1U is an open subset of R with respect to the usual interval
topology. Then the set R− ∪r1U is disjoint from A and a closed set of R with
respect to the usual interval topology. By the definition of a Bernstein set, R− ∪r1U
is countable. Define

r2U = {{y} | y ∈ R− ∪r1U, {y} ∈ ρ},
Y1(U)= {y ∈ R | y is not an isolated point and (←, y] ∈ ρ},

and
Y2(U)= {y ∈ R | y is not an isolated point and [y,→) ∈ ρ}.
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For every y ∈ Y1(U), let

F1(y, U)= {q ∈Q | q < y and (q, y] ≺ U},

and
G1(y, U)= {q ∈Q | ∃z > y and (q, z)≺ U}.

Then G1(y, U)⊆ F1(y, U). Let D1(y, U)= F1(y, U)− G1(y, U). Define

r3U = {(q, y] | y ∈ Y1(U), D1(y, U) 6= ∅ and q ∈ F1(y, U)}.

For every y ∈ Y2(U), analogously define F2(y, U), G2(y, U) and D2(y, U) and r4U =
{[y, q) | y ∈ Y2(U), D2(y, U) 6= ∅ and q ∈ F2(y, U)}. Let r U = ∪{ri U | 1≤ i ≤ 4}.
The remainder of the proof follows [1, Proposition 3.1]. 2

By Theorem 2.9 we have the same conclusion as [3, Corollary 4].

COROLLARY 2.10. Suppose that Y = R is topologized by isolating the points of
R− A and leaving the points of A with their usual neighbourhoods. Then Y is
monotonically Lindelöf.
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