Bull. Aust. Math. Soc. **85** (2012), 114–120 doi:10.1017/S000497271100270X

NOTE ABOUT LINDELÖF Σ -SPACES vX

J. KĄKOL and M. LÓPEZ-PELLICER[™]

(Received 14 May 2011)

Dedicated to the Memory of Professor Klaus D. Bierstedt

Abstract

The paper deals with the following problem: characterize Tichonov spaces X whose realcompactification νX is a Lindelöf Σ -space. There are many situations (both in topology and functional analysis) where Lindelöf Σ (even K-analytic) spaces νX appear. For example, if E is a locally convex space in the class \mathfrak{G} in sense of Cascales and Orihuela (\mathfrak{G} includes among others (*LM*)-spaces and (*DF*)-spaces), then $\nu(E', \sigma(E', E))$ is K-analytic and E is web-bounded. This provides a general fact (due to Cascales–Kakol–Saxon): if $E \in \mathfrak{G}$, then $\sigma(E', E)$ is K-analytic if and only if $\sigma(E', E)$ is Lindelöf. We prove a corresponding result for spaces $C_p(X)$ of continuous real-valued maps on X endowed with the pointwise topology: νX is a Lindelöf Σ -space if and only if X is strongly web-bounding if and only if $C_p(X)$ is web-bounded. Hence the weak* dual of $C_p(X)$ is a Lindelöf Σ -space if and only if $C_p(X)$ is a covered by a family { $A_{\alpha} : \alpha \in \Omega$ } of bounded sets for some nonempty set $\Omega \subset \mathbb{N}^{\mathbb{N}}$.

2010 *Mathematics subject classification*: primary 46A50; secondary 54H05, 28A05. *Keywords and phrases*: countable tightness, *K*-analytic, Lindelöf Σ -spaces, locally convex spaces, realcompactification, spaces of continuous real-valued maps, web-bounded spaces.

1. Introduction

There are many situations where one should decide if the realcompactification νX of a (Tichonov) space X is a Lindelöf Σ -space (or K-analytic); see [1, 7] for references. For separable X the space νX is Lindelöf if and only if every base in X is complete [2]. When exactly is νX a Lindelöf Σ -space? The following, see [1, 13], shows the link between Lindelöf Σ -spaces νX and envelopes Z of spaces $C_p(X)$.

PROPOSITION 1.1. The space υX is a Lindelöf Σ -space if and only if there exists a Lindelöf Σ -space Z such that $C_p(X) \subset Z \subset \mathbb{R}^X$.

A Tichonov space *X* is called a *Lindelöf* Σ -space if there is an upper semicontinuous compact-valued map from a nonempty subset $\Omega \subset \mathbb{N}^{\mathbb{N}}$ covering *X*; see [1, 12]. If the

This research is supported by the project of Ministry of Science and Higher Education, Poland, grant no. N 201 2740 33 and project MTM2008-01502 of the Spanish Ministry of Science and Innovation. © 2011 Australian Mathematical Publishing Association Inc. 0004-9727/2011 \$16.00

same holds for $\Omega = \mathbb{N}^{\mathbb{N}}$, then *X* is called *K*-analytic. The space *X* is *quasi-Suslin* if there exists a set-valued map *T* from $\mathbb{N}^{\mathbb{N}}$ into *X* covering *X* which is quasi-Suslin, that is, if $\alpha_n \to \alpha$ in $\mathbb{N}^{\mathbb{N}}$ and $x_n \in T(\alpha_n)$, then $(x_n)_n$ has a cluster point in $T(\alpha)$; see [15]. Note that a space is *K*-analytic if and only if it is Lindelöf and quasi-Suslin, and also the fact that *K*-analytic implies Lindelöf Σ .

Suppose we have a family $\{A_{\alpha} : \alpha \in \mathbb{N}^{\mathbb{N}}\}\$ of (compact) subsets of *X* covering *X* such that $A_{\alpha} \subset A_{\beta}$ if $\alpha \leq \beta$; such a family is called a (compact) resolution on *X*. A space *X* which has a compact resolution is quasi-Suslin by [3, Proposition 1]. Then its realcompactification νX is *K*-analytic. Indeed, if $T : \alpha \mapsto T(\alpha)$ is a quasi-Suslin set-valued map on $\mathbb{N}^{\mathbb{N}}$, every $T(\alpha)$ is countably compact, so its closure $\overline{T(\alpha)}$ in νX is compact. Then $\alpha \mapsto \overline{T(\alpha)}$ is upper semicontinuous, so $Z := \bigcup \overline{T(\alpha)}$ is *K*-analytic. Since $X \subset Z \subset \nu X$, then $Z = \nu Z = \nu X$ is *K*-analytic. Thus every Lindelöf space with a compact resolution is *K*-analytic. A resolution $\{A_{\alpha} : \alpha \in \mathbb{N}^{\mathbb{N}}\}$ in a locally convex space is a *bounded resolution* if all A_{α} are bounded.

A locally convex space *E* belongs to the class \mathfrak{G} if there is a resolution $\{A_{\alpha} : \alpha \in \mathbb{N}^{\mathbb{N}}\}$ of subsets in $(E', \sigma(E', E))$ such that each sequence in any A_{α} is equicontinuous; see [6]. All (LM)-spaces (hence metrizable locally convex spaces), dual metric spaces (hence (DF)-spaces), the space of distributions $D'(\Omega)$ and real analytic functions $A(\Omega)$ for open $\Omega \subset \mathbb{R}^{\mathbb{N}}$, belong to the class \mathfrak{G} ; see [6, 10].

In [10] we proved that the *weak*^{*} dual $(E', \sigma(E', E))$ of a locally convex space *E* in \mathfrak{G} is quasi-Suslin. Hence (by the above argument) we have the following general property.

(*) If a locally convex space E belongs to the class \mathfrak{G} then $\upsilon(E', \sigma(E', E))$ is K-analytic.

This provides an alternative approach to the result from [4] stating that for any locally convex space *E* in the class (6, the space $(E', \sigma(E', E))$ is *K*-analytic if and only if $(E', \sigma(E', E))$ is realcompact if and only if $(E, \sigma(E, E'))$ has countable tightness. Consequently, the *weak*^{*} dual of an (LF)-space is *K*-analytic.

In this note, motivated by these facts about the class \mathfrak{G} , we prove the following theorem.

THEOREM 1.2. For a Tichonov space X the following are equivalent.

- (i) νX is a Lindelöf Σ -space.
- (ii) X is strongly web-bounding.
- (iii) $C_p(X)$ is web-bounded.
- (iv) $L_p(X)$, the weak^{*} dual of $C_p(X)$, is web-bounded.
- (v) $C_p(X)$ is a dense subspace of a locally convex space which is a Lindelöf Σ -space.
- (vi) $L_p(vX)$ is a Lindelöf Σ -space.

At the first glance, Theorem 1.2 looks somewhat technical but it covers many concrete cases. Theorem 1.2 contains the equivalence between (i) and (ii) in [8, Theorem 10] and can be applied to describe the following general property for any locally convex space E in the class \mathfrak{G} .

COROLLARY 1.3. If *E* is a locally convex space in the class \mathfrak{G} , then *E* is web-bounded. Consequently, *E* is covered by a family of bounded sets $\{A_{\alpha} : \alpha \in \Omega\}$ for some nonempty $\Omega \subset \mathbb{N}^{\mathbb{N}}$.

On the other hand, for any uncountable discrete space X the space $C_p(X) = \mathbb{R}^X$ is not in the class (5 by [5] and does not admit a bounded resolution by [11, Corollary 1] as a nonmetrizable Baire locally convex space. In fact a Baire locally convex space is web-bounded if and only if it is metrizable; see [8] or [11, Theorem 1].

A space (respectively a locally convex space) *E* is *strongly web-bounding* [14] (respectively *web-bounded* [3]) if there is a family $\{A_{\alpha} : \alpha \in \Omega\}$ of sets covering *E* (for some nonempty $\Omega \subset \mathbb{N}^{\mathbb{N}}$) such that if $\alpha = (n_k) \in \Omega$ and $x_k \in C_{n_1, n_2, ..., n_k} := \bigcup \{A_{\beta} : \beta = (m_k) \in \Omega, m_j = n_j, j = 1, ..., k\}$, then $(x_k)_k$ is functionally bounded (respectively bounded). Clearly if *E* is web-bounded, then the sets A_{α} are bounded. It is easy to see that a locally convex space *E* with a bounded resolution is web-bounded. A cosmic space *X* is σ -compact if and only if $C_p(X)$ has a bounded resolution [9]. A webbounded space $C_p(X)$ is angelic. Indeed, by Theorem 1.2 the space νX is a Lindelöf Σ -space. Then $C_p(\nu X)$ is angelic [14] and $C_p(X)$ is angelic by [7, Note 4].

2. Proof of theorem and corollaries

We shall need the following result of Nagami [12] (see also [1, Proposition IV.9.2]) and Proposition 2.2.

PROPOSITION 2.1. A space X is a Lindelöf Σ -space if and only if there exists a compactification bX of X and a countable family \mathcal{F} of compact sets in bX such that if $x \in X$ and $y \in bX \setminus X$ there exists $B \in \mathcal{F}$ for which $x \in B$ and $y \notin B$.

PROPOSITION 2.2. For a locally convex space E the following are equivalent.

- (a) *E is web-bounded.*
- (b) $(E, \sigma(E, E'))$ is embedded in a locally convex Lindelöf Σ -space $(W, \sigma(W, E'))$, where $E \subset W \subset (E')^*$.
- (c) $(E', \sigma(E', E))$ is web-bounded.
- (d) $(E', \sigma(E', E))$ is embedded in a locally convex Lindelöf Σ -space $(Z, \sigma(Z, E))$, where $E' \subset Z \subset E^*$ and E^* denotes the algebraic dual of E.

PROOF. Indeed, (a) implies (d): assume that *E* is web-bounded and $\{A_{\alpha} : \alpha \in \Sigma\}$ is a covering of *E* such that if $\alpha = (n_k) \in \Sigma$ and $x_k \in C_{n_1 n_2 \cdots n_k}$, then $(x_k)_k$ is bounded. Clearly for each $\alpha \in \Sigma$ and each $x' \in E'$ there exists $k \in \mathbb{N}$ such that $x'(C_{n_1 n_2 \cdots n_k}) \subset [-k, k]$.

Set

$$Z := \{ x' \in E' : \forall \alpha = (n_i) \in \Sigma, \exists k \in \mathbb{N}, x'(C_{n_1 n_2 \cdots n_k}) \subset [-k, k] \}.$$

Since $(C_{n_1,n_2,...,n_k})_k$ is decreasing, then Z is a vector subspace of E^* and $E' \subset Z \subset E^* \subset \mathbb{R}^E$. Using a proof similar to that used in the next page for showing that (ii) implies (i), we find that $(Z, \sigma(Z, E))$ is a Lindelöf Σ -space. The fact that (d) implies c) is obvious. The fact that (c) implies (b) is proved as follows: by hypothesis $(E', \sigma(E', E))$ is web-bounded and if we apply to this space the fact that (a) implies

(d) we find that $(E, \sigma(E, E'))$ is embedded in a Lindelöf Σ locally convex space $(W, \sigma(W, E'))$. The proof that (b) implies (a) is trivial. The proposition has thus been proved.

We are ready to prove Theorem 1.2; the proof is motivated by [1, Proposition IV.9.3].

PROOF. (ii) \Rightarrow (i). Assume *X* is strongly web-bounding and that $\{A_{\alpha} : \alpha \in \Sigma\}$ is a covering of *X* verifying the web-bounding condition. Then for each $f \in C(X)$ and each $\alpha = (n_k) \in \Sigma$ there exists $k \in \mathbb{N}$ such that $f(C_{n_1n_2\cdots n_k}) \subset [-k, k]$. Then the set

$$Z := \{ f \in \mathbb{R}^X : \forall \alpha = (n_i) \in \Sigma, \exists k \in \mathbb{N}, f(C_{n_1 n_2 \cdots n_k}) \subset [-k, k] \}$$
(2.1)

satisfies the following condition:

$$C_p(X) \subset Z \subset \mathbb{R}^X. \tag{2.2}$$

Endow *Z* with the topology induced by \mathbb{R}^X . Let $\overline{\mathbb{R}} = \mathbb{R} \cup \{-\infty, +\infty\}$ be the natural compactification of \mathbb{R} . Then $\overline{\mathbb{R}}^X$ is a compactification of *Z*. For each $\alpha = (n_i) \in \Sigma$ and $k \in \mathbb{N}$ let $F_{\alpha|k} = F_{n_1n_2\cdots n_k}$ be the closure in $\overline{\mathbb{R}}^X$ of the set

$$\{f \in \mathbb{R}^X : f(C_{n_1 n_2 \cdots n_k}) \subset [-k, k]\}.$$

Now $S := \{F_{\alpha|k}, \alpha \in \Sigma, k \in \mathbb{N}\}$ is a countable family of compact subsets of \overline{R}^X . Clearly

$$\overline{\mathbb{R}}^X \setminus Z = (\overline{\mathbb{R}}^X \setminus \mathbb{R}^X) \cup (\mathbb{R}^X \setminus Z).$$

Take $g \in \overline{Z}^{\mathbb{R}^X} \setminus Z$. If $g \in \mathbb{R}^X \setminus \mathbb{R}^X$, then there exists $a \in X$ such that $g(a) \in \{-\infty, +\infty\}$. There exists $\alpha = (n_i) \in \Sigma$ such that $a \in A_{\alpha}$. Then from $g(C_{n_1n_2\cdots n_k}) \cap \{-\infty, +\infty\} \neq \emptyset$ it follows that $g \notin F_{\alpha|k}$ for each $k \in \mathbb{N}$.

If $g \in \mathbb{R}^X \setminus Z$, then there exists $\alpha = (n_i) \in \Sigma$ such that $g(C_{n_1n_2\cdots n_k}) \notin [-k, k]$ for each $k \in \mathbb{N}$. Also $g \notin F_{\alpha|k}$ for each $k \in \mathbb{N}$. Therefore, if $f \in Z$ and $g \in \overline{\mathbb{R}^X} \setminus Z$, then there exists $\alpha = (n_i) \in \Sigma$ such that $g \notin F_{\alpha|k}$ for each $k \in \mathbb{N}$, and from the definition of Z it follows that for this α there exists a $k \in \mathbb{N}$ such that $f \in F_{\alpha|k}$. Therefore by Proposition 2.1 it follows that Z is a Lindelöf Σ -space. Finally we apply Proposition 1.1 to show that νX is a Lindelöf Σ -space.

(i) \Rightarrow (ii). For the converse implication, assume that νX is a Lindelöf Σ -space. Then there exists $\Sigma \subset \mathbb{N}^{\mathbb{N}}$ and an upper semicontinuous map T from Σ into compact sets in νX covering νX . Set $A_{\alpha} := T(\alpha) \cap X$ for $\alpha = (n_k) \in \Sigma$. Take a sequence $x_k \in C_{n_1, n_2, \dots, n_k}$. Then there exists a sequence $(\alpha_k)_k$ in Σ which converges to α such that $x_k \in T(\alpha_k)$ for each $k \in \mathbb{N}$. Since T is upper semicontinuous, then the set $\{x_k : k \in \mathbb{N}\}$ is countably compact; hence it is functionally bounded in νX , and then also in X.

(iii) \Rightarrow (i). Replace X in (2.1) and (2.2) by $C_p(X)$. If $C_p(X)$ is web-bounded, one gets (analogously as above) that there exists a Lindelöf Σ -space Z such that $L_p(X) \subset Z \subset \mathbb{R}^{C_p(X)}$. Since $X \subset L_p(X)$, then $X \subset Z \subset \mathbb{R}^{C_p(X)}$.

118

Now note that the space νX is a Lindelöf Σ -space. Indeed, if *Y* is the closure of *X* in *Z*, then *Y* is Lindelöf Σ . Since every real-valued function on *X* can be continuously extended to $\mathbb{R}^{C_p(X)}$, then $\nu X = \nu Y = Y$ is Lindelöf Σ .

(i) \Rightarrow (iii). If νX is Lindelöf Σ , then by Proposition 1.1 there exists a Lindelöf Σ -space *Z* such that $C_p(X) \subset Z \subset \mathbb{R}^X$ and then $C_p(X)$ is web-bounded.

To prove the equivalence of (iii) and (v) we apply Proposition 2.2.

(iii) \Leftrightarrow (iv). Since $L_p(X)' = C_p(X)$ we again apply Proposition 2.2.

(i) \Rightarrow (vi). This implication follows from [1, Proposition 0.5.13].

(vi) \Rightarrow (i). This implication follows from the fact that vX is closed in $L_p(vX)$. \Box

COROLLARY 2.3. The following conditions are equivalent.

(i) $C_p(X)$ is web-bounded and X is Lindelöf.

(ii) $L_p(X)$ is a Lindelöf Σ -space.

(iii) $C_p(X)$ is a web-bounded space with countable tightness.

PROOF. (i) \Rightarrow (ii). Assume $C_p(X)$ is web-bounded and X Lindelöf. By Theorem 1.2 the space $X = \nu X$ is a Lindelöf Σ -space, and then by [1, Proposition 0.5.13] the space $L_p(X)$ is a Lindelöf Σ -space.

(ii) \Rightarrow (i). If $L_p(X)$ is a Lindelöf Σ -space, then $X \subset L_p(X)$ as a closed subspace [1, Proposition 0.5.9] is also a Lindelöf Σ -space. By Theorem 1.2 the space $C_p(X)$ is web-bounded.

(iii) \Rightarrow (i). This implication follows from [1, Theorem II.1.1].

(i) \Rightarrow (iii). By (ii) the space $X \subset L_p(X)$ is Lindelöf Σ . Since countable products of Lindelöf Σ -spaces are Lindelöf Σ , we apply [1, Theorem II.1.1] to show that $C_p(X)$ has countable tightness.

EXAMPLE 2.4. There is a web-bounded space $C_p(X)$ not having countable tightness.

PROOF. Take a quasi-Suslin space *X* which is not *K*-analytic; see [3, 4, 15] for such examples. Then *X* is not Lindelöf and $C_p(X)$ does not have countable tightness [1, Theorem II.1.1]. The space *X* is strongly web-bounding. Indeed, *X* as quasi-Suslin admits a resolution $\{A_{\alpha} : \alpha \in \mathbb{N}^{\mathbb{N}}\}$ of relatively countably compact sets (hence functionally bounded). If $x_k \in C_{n_1n_2\cdots n_k}$ for each $k \in \mathbb{N}$ there exists $\beta_k = (m_n^k)_n \in \mathbb{N}^{\mathbb{N}}$ such that $x_k \in A_{\beta_k}$, $n_j = m_j^k$ for $j = 1, 2, \ldots, k$. Let $a_n = \max\{m_n^k : k \in \mathbb{N}\}$, for $n \in \mathbb{N}$ and $\gamma = (a_n)$. Since $\gamma \ge \beta_k$ for every $k \in \mathbb{N}$, then $A_{\beta_k} \subset A_{\gamma}$, so $x_k \in A_{\gamma}$ for all $k \in \mathbb{N}$. Then $C_p(X)$ is web-bounded by Theorem 1.2.

The following corollary is a version of Corollary 2.3.

COROLLARY 2.5. Let *E* be a barrelled space. Then *E* is web-bounded and $(E, \sigma(E, E'))$ has countable tightness if and only if $(E', \sigma(E', E))$ is a Lindelöf Σ -space.

PROOF. Assume $(E, \sigma(E, E'))$ has countable tightness. We show that the space $F := (E', \sigma(E', E))$ is realcompact. By the Corson criterion, see [15, p. 137], it is enough to show that every linear functional f on E which is $\sigma(E, E')$ -continuous

119

on each $\sigma(E, E')$ -closed separable vector subspace is continuous. Note that the kernel $K := f^{-1}(0)$ is closed in *E*. Indeed, if $y \in \overline{K}$, there is a countable $D \subset K$ with $y \in \overline{D}$ (the closure in $\sigma(E, E')$). By assumption, $f|\overline{\text{lin}(D)}$ is $\sigma(E, E')$ -continuous; hence $f(y) \in \overline{f(\text{lin}(D))} \subset \overline{f(K)} = \{0\}$, so $y \in K$ and $f \in E'$. Let *E* be web-bounded. By Proposition 2.2 the space $(E', \sigma(E', E))$ is also web-bounded. Hence *E'* is covered by a family $\{A_{\alpha} : \alpha \in \Omega\}$ of sets such that each sequence $x'_k \in C_{n_1,\dots,n_k}$ is $\sigma(E', E)$ -bounded. By assumption each $(x'_n)_n$ is equicontinuous, so $\sigma(E', E)$ -relatively compact. Hence *F* is strongly web-bounding and $F = v(E', \sigma(E', E))$ is a Lindelöf Σ -space by Theorem 1.2. Now assume that *F* is a Lindelöf Σ -space. Then *E* is web-bounded by Theorem 1.2. We again apply [1, Theorem II.1.1] to deduce the countable tightness of $C_p(F)$. Hence $(E, \sigma(E, E')) \subset C_p(F)$ has countable tightness.

The next corollary follows from Theorem 1.2 and Proposition 1.1 and supplements Proposition 1.1.

COROLLARY 2.6. The space $C_p(X)$ is web-bounded if and only if there is a Lindelöf Σ -space Z such that $C_p(X) \subset Z \subset \mathbb{R}^X$.

Every (*LF*)-space, that is, the inductive limit of a sequence of metrizable and complete locally convex spaces, is a quasi-(*LB*)-space, that is, has a resolution consisting of Banach discs, and the strong dual of an (*LF*)-space is also a quasi-(*LB*)-space; see [16]. Clearly every locally complete locally convex space with a bounded resolution is a quasi-(*LB*)-space, and every locally convex space that has a fundamental sequence (*S*_n)_n of bounded sets has a bounded resolution: set $A_{\alpha} := S_{n_1}$ for $\alpha = (n_k) \in \mathbb{N}^{\mathbb{N}}$. We do not know if any locally convex space in the class \mathfrak{G} has a bounded resolution; nevertheless Theorem 1.2 yields Corollary 1.3 listed in the Introduction. We provide a simple proof of this.

PROOF. We see that $F := (E', \sigma(E', E))$ is quasi-Suslin by [10]. Hence F is strongly web-bounding. By Theorem 1.2 the space $C_p(F)$ is web-bounded. Hence $(E, \sigma(E, E')) \subset C_p(F)$ is web-bounded.

The following question is motivated by the property labelled (*) in the Introduction and Corollary 1.3.

PROBLEM 2.7. Let *E* be a web-bounded locally convex space. Is $v(E', \sigma(E', E))$ *K*-analytic?

References

- A. V. Arkhangel'skii, *Topological Function Spaces*, Mathematics and its Applications, 78 (Kluwer, Dordrecht, 1992).
- [2] J. L. Blasco, 'Complete bases in topological spaces II', *Studia Sci. Math. Hungar.* **24** (1989), 447–452.
- [3] B. Cascales, 'On K-analytic locally convex spaces', Arch. Math. (Basel) 49 (1987), 232–244.
- [4] B. Cascales, J. Kakol and S. A. Saxon, 'Weight of precompact subsets and tightness', J. Math. Anal. Appl. 269 (2002), 500–518.

- B. Cascales, J. Kakol and S. A. Saxon, 'Metrizability vs. Fréchet–Urysohn property', *Proc. Amer. Math. Soc.* 131 (2003), 3623–3631.
- [6] B. Cascales and J. Orihuela, 'On compactness in locally convex spaces', *Math. Z.* **195** (1987), 365–381.
- [7] B. Cascales and J. Orihuela, 'On pointwise and weak compactness in spaces of continuous functions', *Bull. Soc. Math. Belg.* (1988), 331–352.
- [8] J. C. Ferrando, 'Some characterization for νX to be Lindelöf or *K*-analytic in terms of $C_p(X)$ ', *Topology Appl.* **156** (2009), 823–830.
- [9] J. C. Ferrando and J. Kąkol, 'A note on spaces $C_p(X)$ K-analytic-framed in \mathbb{R}^X ', Bull. Aust. Math. Soc. **78** (2008), 141–146.
- [10] J. C. Ferrando, J. Kąkol, M. López Pellicer and S. A. Saxon, 'Quasi-Suslin weak duals', J. Math. Anal. Appl. 339 (2008), 1253–1263.
- [11] J. Kakol and M. López Pellicer, 'Compact coverings for Baire locally convex spaces', J. Math. Anal. Appl. 332 (2007), 965–974.
- [12] K. Nagami, 'Σ-spaces', Fund. Math. 61 (1969), 169–192.
- [13] O. G. Okunev, 'On lindelöf σ -spaces of continuous functions in the pointwise topology', *Topology Appl.* **49** (1993), 149–166.
- [14] J. Orihuela, 'Pointwise compactness in spaces of continuous functions', J. Lond. Math. Soc. (2) 36 (1987), 143–152.
- [15] M. Valdivia, *Topics in Locally Convex Spaces*, North-Holland Mathematics Studies, 67 (North-Holland, Amsterdam, 1982).
- [16] M. Valdivia, 'Quasi-LB-spaces', J. Lond. Math. Soc. (2) 35 (1987), 149–168.

J. KĄKOL, Faculty of Mathematics and Informatics, A Mickiewicz University, 61-614 Poznań, Poland e-mail: kakol@amu.edu.pl

M. LÓPEZ-PELLICER, Depto. de Matemática Aplicada and IUMPA, Universitat Politècnica de València, E-46022 Valencia, Spain e-mail: mlopezpe@mat.upv.es [7]