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Let A" be a complex Banach space. We denote by B(X) the algebra of all bounded
linear operators on X. Let T = (7j, . . . , 7̂ ,) be a commuting /r-tuple of operators on X.
And let oT{T) and a"{T) by Taylor's joint spectrum and the doubly commutant spectrum
of T, respectively. We refer the reader to Taylor [8] for the definition of oT(t) and
o"{T). A point z = (z,, . . . , z,,) of C" is in the joint approximate point spectrum on{t) of
t if there exists a sequence {xk} of unit vectors in X such that

z , - ) j t f c | | — » 0 a s k—>™ f o r i = l , 2 , . . . , n .

A point z = (Z[,. . . , z,,) of C" is in the joint approximate defect spectrum o6{T) of T if
there exists a sequence {fk} of norm one functionals in X* (dual space of X) such that

||(7;--*,)7*l|->0 as A : ^ » for i = 1, 2,. . . , n.

A point z = (z,, . . . , zn) of C" is said to be a joint eigenvalue of t if there exists a
non-zero vector x such that

TjX = ZjX f o r / = 1 , 2 , . . . , « .

It is well known that on(T) U o6{f) c crr(f) c o"(f).
We denote by n the subset of the Cartesian product X xX* defined by

n = {(*,/): H/ll =/(*) = |M| = i}.
The joint numerical range V(T) of T" = (T1,, . . . , 7;,) is defined by

V(f) = {(f(TlX),...J(Tnx)):(x,f)eU}.

Let S e B(X) and A be a commutative Banach subalgebra containing S. The usual
spectrum of S, the spectrum of 5 in A and (spatial) numerical range of 5 are denoted by
cr(S), oA(S) and K(5), respectively. We refer the reader to Bonsall and Duncan [1],

The joint operator norm, joint spectral radius and joint numerical radius of
f = (Tu . . . , Tn), denoted by \\t\\, r(f) and v(f) respectively, are defined by

and

respectively.
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Given E, let co E and E denote the convex hull and the closure of E, respectively.
For (x,f) e II, a functional fx in B(X)* is defined by

fAS)=f(Sx) for SeB(X).

THEOREM 1. Let A be a commutative Banach subalgebra of B{X). Then $>A a
w*-cl co{fx: (x, / ) e II}, where <&A is the carrier space of A.

We shall need the following two facts.

THEOREM A (Crabb [5]). Let S e B(X). Then co o(S) c V(S).

THEOREM B (Dekker [6]). Let S e B(X) and A be a commutative Banach subalgebra
containing S. Then co oA(S) = co o(S).

Proof of Theorem 1. Let 0 e $>A. We assume that

^w*-c lco{£: ( j t , / )e l l} .

By the separation theorem for convex set, this implies the existence of 5 eA such that

sup Re/(Sx)<Re0(-S).

Hence (p(S)^V(S). On the other hand 4>(S)eoA(S)ccooA(S) = coo(S)<=V(S), by
Theorem B and Theorem A.

This yields a contradiction. So the proof is complete.

This fact yields the following result.

THEOREM 2. Let T = (Tu . . . , Tn) be a commuting n-tuple of operators on X. Then
or(f)czo"(t)ceo V(f).

COROLLARY 3. Let T = (TU . . . ,Tn) be a commuting n-tuple of operators on X. Then
2{tW"
A Banach space X will be said to be uniformly convex if to each e, 0 g e ̂  2, there

corresponds a <5 > 0 such that the conditions

imply

mi—
THEOREM C (Theorem 1 in Clarkson [4]). The Cartesian product of finitely many

uniformly convex Banach spaces can be given a uniformly convex norm.

THEOREM 4. Let X be uniformly convex and T = (Tu . . . , Tn) be a commuting n-tuple
of operators on X. Then
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Proof. Let z e V(f) and \z\ = \\t\\. We may assume that \z\ = \\f\\ = 1. Then there
exist (xk,fk) e n such that

(fk(TiXk), . . . ,fk(Tnxk)) -> z as * : - » » .
Since

2 li/fo
and

^ (2
\n i n \ 1/2

( j
_ 1/2

it follows that ( £ Hz,^ + 7i-jc*||2) -»2 as A;^<». So by Theorem C, we have

n \ 1/2

2 ||(z,-7;K||2 ^ 0 as k - » .

Therefore, z e a^(T). So the proof is complete.

COROLLARY 5. If X is uniformly convex and v(t) = \\f\\, then r(t) = \\t\\.

A Banach space X is said to be strictly convex if and only if x and y are linearly
dependent whenever

LEMMA 6. Let X be a strictly convex Banach space. Let (xu . . . ,xn) and (yu . . . ,yn)
be vectors in X X . . . X X. Then the relation

/ n \ 1/2 t n \ 1

=ZWI2 + 2 INI2
\ = 1 ' V=l '

implies that (xl; . . . ,xn) and (y,, . . . ,yn) are linearly dependent.

Proof. The relation
1/2 in \ 1/2 / n \ 1/2

2

in — 1 \ 1/2 in — 1 \ 1/2implies that
r m — \ \ 1/2 /n —1 \ 1/2 /«—1 \ 1

(2 lfc+*lla) =(2 Ikll2 + (2 \\y\\2)
by Holder's inequality. So it is easy to verify by induction.

THEOREM 7. Let X be a strictly convex Banach space, and let t = (Tu . . . ,Tn) be a
commuting n-tuple of operators on X. Let z = (z,, . . . , zn) e V(t) and let \z\ = \\T\\. Then
z is a joint eigenvalue of T.
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Proof. We may assume that ||f|| = |z| = l. Then there exists (x,f)ell such that
(f(TlX),...,f(Tnx)) = z. Therefore,

1/2 / n \ 1/2 / n \ 1/2

( ) ( )

1/2

^ (S [f(7» + z/(*)|2 =2.
V

This implies that
n v 1/2 / n \ 1/2 , n \ 1/2

2 \\TiX + ziX\\A = Zl l^ l l 2 + 2
,-=1 / \,=1 / \,=1

and so (TIJC, . . . , T^) and (zxx, . . . , 2^c) are linearly dependent. It is easy to show that

TiX = Zi.x f o r i = l , 2 , . . . , n .

So the proof is complete.

PROBLEM. Let t = (Tj,. . . , Tn) be a commuting n-tuple of operators on X. Is it
then true that oT(f) c V(T)7

It is easy to verify that on(T) U o6(f) a V(f).
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