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Abstract

For 0 < p <∞ and −2 ≤ α ≤ 0 we show that the Lp integral mean on rD of an analytic function in the unit
disk D with respect to the weighted area measure (1 − |z|2)α dA(z) is a logarithmically convex function of
r on (0, 1).
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1. Introduction
Let D denote the unit disk in the complex plane C and let H(D) denote the space of all
analytic functions in D. For any f ∈ H(D) and 0 < p <∞, the classical integral means
of f are defined by

Mp( f , r) =
1

2π

∫ 2π

0
| f (reiθ)|p dθ, 0 ≤ r < 1.

The well-known Hardy convexity theorem asserts that Mp( f , r), as a function of r
on [0, 1), is nondecreasing and logarithmically convex. Recall that the logarithmic
convexity of g(r) simply means that log g(r) is a convex function log r. The case p =∞

corresponds to the Hadamard three-circles theorem. See [1, Theorem 1.5] for example.
In this paper we will consider integral means of analytic functions in the unit disk

with respect to weighted area measures. Thus, for any real number α, we consider the
measure

dAα(z) = (1 − |z|2)α dA(z),

where dA is area measure on D. For any f ∈ H(D) and 0 < p <∞, we define

Mp,α( f , r) =

∫
rD | f (z)|p dAα(z)∫

rD dAα(z)
, 0 < r < 1,
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and call them area integral means of f .
The study of area integral means of analytic functions began in [6], where it was

shown that for α ≤ −1, the function Mp,α( f , r) is bounded in r if and only if f belongs
to the Hardy space Hp and, for α > −1, Mp,α( f , r) is bounded in r if and only if f
belongs to the weighted Bergman space Ap

α. See [1, 2] for the theories of Hardy and
Bergman spaces, respectively.

It was also shown in [6] that each function r 7→ Mp,α( f , r) is strictly increasing
unless f is constant. Furthermore, for p ≥ 1 and α ∈ {−1, 0}, the function log Mp,α( f , r)
is convex in log r. However, an example in [6] shows that log M2,1(z, r) is concave
in log r. Consequently, the following conjecture was made in [6]: the function
log Mp,α( f , r) is convex in log r when α ≤ 0 and it is concave in log r when α > 0.

It turned out that the logarithmic convexity of Mp,α( f , r) is much more complicated
than was conjectured in [6]. Somewhat surprisingly, the problem is highly nontrivial
even in the Hilbert-space case p = 2. More specifically, it was proved in [4] that
for p = 2 and any f ∈ H(D) the function M2,α( f , r) is logarithmically convex when
−3 ≤ α ≤ 0, and this range for α is best possible. It was also proved in [4] that when
p , 2 and f is a monomial, the function Mp,α(zk, r) is logarithmically convex for
−2 ≤ α ≤ 0.

Area integral means of analytic functions were also studied in [3, 5].
The main result of this paper is the following theorem.

Theorem 1.1. Suppose that 0 < p < ∞, −2 ≤ α ≤ 0, and f is analytic in D. Then the
function Mp,α( f , r) is logarithmically convex.

We have been unable to determine whether or not the range α ∈ [−2, 0] is best
possible. In other words, we do not know if there exists a set Ω properly containing
[−2, 0] such that Mp,α( f , r) is logarithmically convex on (0, 1) for all p ∈ (0,∞), all
α ∈ Ω, and all f ∈ H(D). It is certainly reasonable to expect that the logarithmic
convexity of Mp,α( f , r) for all f will depend on both p and α. The ultimate problem is
to find the precise dependence.

2. Preliminaries

The proof of Theorem 1.1 is ‘elementary’ but very laborious. It requires several
preliminary results that we collect in this section. Throughout the paper we use the
symbol ≡ whenever a new notation is being introduced.

The next lemma was stated in [4] without proof. We provide a proof here for the
sake of completeness.

Lemma 2.1. Suppose that f is positive and twice differentiable on (0, 1). Then:

(i) f (x) is convex in log x if and only if

f ′(x) + x f ′′(x) ≥ 0

for all x ∈ (0, 1);
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(ii) f (x) is convex in log x if and only if f (x2) is convex in log x;
(iii) log f (x) is convex in log x if and only if

D( f (x)) ≡
f ′(x)
f (x)

+ x
f ′′(x)
f (x)

− x
( f ′(x)

f (x)

)2
≥ 0

for all x ∈ (0, 1).

Proof. Let t = log x. Then y = f (x) = f (et). The convexity of y in t is equivalent to
d2y/dt2 ≥ 0. Since

dy
dt

= f ′(et)et

and
d2y
dt2 = f ′′(et)e2t + f ′(et)et = x(x f ′′(x) + f ′(x)),

we obtain the conclusion in part (i).
If g(x) = f (x2), then it is easy to check that

g′(x) + xg′′(x) = 4x[ f ′(x2) + x2 f ′′(x2)].

So, part (ii) follows from part (i).
Similarly, part (iii) follows if we apply part (i) to the function h(x) = log f (x). �

Recall that Mp,α( f , r) is a quotient of two positive functions. It is thus natural that
we will need the following result.

Lemma 2.2. Suppose that f = f1/ f2 is a quotient of two positive and twice-
differentiable functions on (0, 1). Then

D( f (x)) = D( f1(x)) − D( f2(x)) (2.1)

for x ∈ (0, 1). Consequently, log f (x) is convex in log x if and only if

D( f1(x)) − D( f2(x)) ≥ 0 (2.2)

on (0, 1).

Proof. Observe that

D( f (x)) =

( x f ′(x)
f (x)

)′
= (x(log f (x))′)′.

Since log f = log f1 − log f2, we obtain the identity in (2.1). By part (iii) of Lemma 2.1,
log f (x) is convex in log x if and only if inequality (2.2) holds. �

To simplify notation, we are going to write

x = r2, M(r) = Mp( f ,
√

r).

Without loss of generality, we assume throughout the paper that f is not a constant, so
that M and M′ are always positive.
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We also write

h = h(x) =

∫ r

0
Mp( f , t)(1 − t2)α2t dt =

∫ x

0
M(t)(1 − t)α dt

and
ϕ = ϕ(x) =

∫ r

0
(1 − t2)α2t dt =

∫ x

0
(1 − t)α dt.

By part (ii) of Lemma 2.1, the logarithmic convexity of Mp,α( f , r) on (0, 1)
is equivalent to the logarithmic convexity of h(x)/ϕ(x) on (0, 1). According to
Lemma 2.2, this will be accomplished if we can show that the difference

∆(x) ≡ D(h(x)) − D(ϕ(x)) (2.3)

is nonnegative on (0, 1). This will be done in the next section.
We will need several preliminary estimates on the functions h and ϕ. The next

lemma shows where and why we need the assumption −2 ≤ α ≤ 0.

Lemma 2.3. Suppose that −2 ≤ α ≤ 0 and x ∈ [0, 1). Then:

(i) 1 − (α + 1)ϕ(x) − (1 − x)ϕ′(x) = 0;
(ii) ϕ(x) − x ≥ 0;
(iii) g1(x) ≡ x(1 − x − αx) − (1 − x)ϕ(x) ≥ 0;
(iv) g2(x) ≡ (α + 2)ϕ2(x) − 2(1 + x + αx)ϕ(x) + 2x ≥ 0;
(v) g3(x) ≡ ϕ2(x) − (1 + x + αx)ϕ(x) + x ≥ 0.

Proof. If α , −1, part (i) follows from the facts that

ϕ(x) =
1 − (1 − x)α+1

α + 1
, ϕ′(x) = (1 − x)α.

If α = −1, part (i) follows from the fact that

ϕ′(x) =
1

1 − x
.

Part (ii) follows from the fact that (1 − t)α ≥ 1 for α ≤ 0 and t ∈ [0, 1).
A direct computation shows that

g′1(x) = 1 − 2x − 2αx + ϕ(x) − (1 − x)ϕ′(x).

It follows from part (i) that

g′1(x) = (α + 2)(ϕ(x) − x) − αx.

By part (ii) and the assumption that −2 ≤ α ≤ 0, we have g′1(x) ≥ 0 for x ∈ [0, 1). Thus,
g1(x) ≥ g1(0) = 0 for all x ∈ [0, 1). This proves (iii).

Another computation gives

g′2(x) = 2(α + 2)ϕ(x)ϕ′(x) − 2(α + 1)ϕ(x) − 2(1 + x + αx)ϕ′(x) + 2
= 2(α + 2)ϕ(x)ϕ′(x) − 2(1 + x + αx)ϕ′(x) + 2(1 − x)α+1

= 2(α + 2)(ϕ(x) − x)ϕ′(x).
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Since
α + 2 ≥ 0, ϕ(x) − x ≥ 0, ϕ′(x) = (1 − x)α ≥ 0,

we have g′2(x) ≥ 0 for all x ∈ [0, 1). Therefore, g2(x) ≥ g2(0) = 0 for all x ∈ [0, 1). This
proves (iv).

A similar computation produces

g′3(x) = 2ϕ(x)ϕ′(x) − (α + 1)ϕ − (1 + x + αx)ϕ′(x) + 1
= 2ϕ(x)ϕ′(x) − (1 + x + αx)ϕ′(x) + (1 − x)α+1

= (2ϕ(x) − (α + 2)x)ϕ′(x)
≥ 2(ϕ(x) − x)ϕ′(x) ≥ 0,

which yields g3(x) ≥ g3(0) = 0 for all x ∈ [0, 1). This proves (v) and completes the
proof of the lemma. �

Let us write

A = A(x) =
ϕ(x) − x
ϕ2(x)

,

B = B(x) = (1 − x − αx) + x(1 − x)
M′(x)
M(x)

,

C = C(x) = x(1 − x)α+1.

By the proof of Lemma 2.3, A(x) is positive on (0, 1). Also, B(x) is positive on (0, 1)
as α ≤ 0 and M′/M > 0. It is obvious that C(x) is positive on (0, 1) as well.

Lemma 2.4. We have B2 − 4AC > 0 on (0, 1).

Proof. We have

B2 − 4AC =

[
(1 − x − αx) + x(1 − x)

M′

M

]2
− 4x(1 − x)α+1ϕ − x

ϕ2 .

It follows from part (i) of Lemma 2.3 and the identity ϕ′(x) = (1 − x)α that

(α + 1)xϕ = x − x(1 − x)α+1.

Rewrite this as
−(1 − x − αx)ϕ + ϕ − x = −x(1 − x)α+1,

from which

−4x(1 − x)α+1ϕ − x
ϕ2 = −

4(ϕ − x)(1 − x − αx)
ϕ

+
4(ϕ − x)2

ϕ2 .

Combining this with the earlier expression for B2 − 4AC, we see that B2 − 4AC is
equal to the sum of [

(1 − x − αx) −
2(ϕ − x)

ϕ

]2
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and

x2(1 − x)2
( M′

M

)2
+ 2x(1 − x)(1 − x − αx)

M′

M
.

The first summand above is always nonnegative, while the second summand is always
positive, because α ≤ 0, M′ > 0, and M > 0. This proves the desired result. �

3. Proof of main result

This section is devoted to the proof of Theorem 1.1. As was remarked in the
previous section, we just need to show that the difference function ∆(x) defined in (2.3)
is always nonnegative on (0, 1). Continuing the convention in [4], we will also use the
notation A ∼ B to mean that A and B have the same sign.

Since
ϕ′ = (1 − x)α, ϕ′′ = −α(1 − x)α−1,

D(ϕ(x)) =
ϕϕ′ + xϕϕ′′ − x(ϕ′)2

ϕ2

=
(1 − x)α−1

ϕ2 [ϕ − x[(α + 1)ϕ + (1 − x)α+1]].

By part (i) of Lemma 2.3,

(α + 1)ϕ + (1 − x)α+1 = (α + 1)ϕ + (1 − x)ϕ′ = 1.

Therefore,

D(ϕ) =
ϕ(x) − x
ϕ2(x)

(1 − x)α−1.

On the other hand,
h′ = h′(x) = M(x)(1 − x)α

and
h′′ = h′′(x) = [(1 − x)M′(x) − αM(x)](1 − x)α−1.

It follows from simple calculations that

D(h) =
hh′ + xhh′′ − x(h′)2

h2 =
(1 − x)α−1M

h2 [hB −CM].

Therefore,

∆(x) =
(1 − x)α−1M

h2 (hB −CM) − (1 − x)α−1A ∼ M(hB −CM) − Ah2

= −Ah2 + MBh −CM2.

The function ∆(x) is continuous on [0, 1), so we just need to show that ∆(x) ≥ 0 for x
in the open interval (0, 1).
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For x ∈ (0, 1), we have A > 0 and M > 0, so

∆(x) ≥ 0⇐⇒ Ah2 + CM2 ≤ hBM

⇐⇒
h2

M2 +
C
A
≤

hB
MA

⇐⇒
h2

M2 −
hB
MA

+
B2

4A2 ≤
B2

4A2 −
C
A

⇐⇒

( h
M
−

B
2A

)2
≤

B2 − 4AC
4A2 .

Recall from Lemma 2.4 and the remark preceding it that A > 0 and B2 − 4AC ≥ 0.
Thus, the proof of Theorem 1.1 will be completed if we can show that

−

√
B2 − 4AC

2A
≤

h
M
−

B
2A
≤

√
B2 − 4AC

2A
. (3.1)

Since the function M is positive and increasing,

B(x) ≥ 1 − x − αx ≥ 0, h(x) ≤
∫ x

0
M(x)(1 − t)α dt = M(x)ϕ(x).

It follows from this, the proof of Lemma 2.4, part (ii) of Lemma 2.3, and the triangle
inequality that

B +
√

B2 − 4AC
2A

≥
(1 − x − αx) +

∣∣∣1 − x − αx − 2(ϕ−x)
ϕ

∣∣∣
2A

≥

2(ϕ−x)
ϕ

2A
= ϕ ≥

h
M
.

This proves the right half of (3.1).
To prove the left half of (3.1), we write

δ = δ(x) = h − M
B −
√

B2 − 4AC
2A

for x ∈ (0, 1) and proceed to show that δ(x) is always nonnegative. It follows from the
elementary identity

B −
√

B2 − 4AC
2A

=
2C

B +
√

B2 − 4AC

that δ(x)→ 0 as x→ 0+. If we can show that δ′(x) ≥ 0 for all x ∈ (0, 1), then we will
obtain

δ(x) ≥ lim
t→0+

δ(t) = 0, x ∈ (0, 1).

The rest of the proof is thus devoted to proving the inequality δ′(x) ≥ 0 for x ∈ (0, 1).
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By direct computation,

δ′(x) = Mϕ′ −
M′A − MA′

2A2 [B −
√

B2 − 4AC]

−
M
2A

[
B′ −

BB′ − 2(A′C + AC′)
√

B2 − 4AC

]
.

By part (ii) of Lemma 2.1 and Hardy’s convexity theorem, M is logarithmically
convex. According to part (iii) of Lemma 2.1, the logarithmic convexity of M is
equivalent to (

x
M′

M

)′
= D(M(x)) ≥ 0.

It follows that

B′ = −(α + 1) − x
M′

M
+ (1 − x)

(
x

M′

M

)′
≥ −(α + 1) − x

M′

M
≡ B0.

Therefore,

δ′ ≥ Mϕ′ −
M′A − MA′

2A2 [B −
√

B2 − 4AC] −
M
2A

[
B0 −

BB0 − 2(A′C + AC′)
√

B2 − 4AC

]
∼ x(1 − x)

[
2A2ϕ′ − A

( M′

M
B + B0

)
+ BA′

]√
B2 − 4AC

+ x(1 − x)
[
AB

( M′

M
B + B0

)
− A′B2 + 2AA′C

]
− 2x(1 − x)A2

(
2C

M′

M
+ C′

)
≡ d.

Here ∼ follows from multiplying the expression on its left by the positive function

2x(1 − x)A2

M
.

We will show that d ≥ 0 for all x ∈ (0, 1). To this end, we are going to introduce
seven auxiliary functions. More specifically, we let

y = x(1 − x)
M′

M
,

A1 = x(1 − x)A′(x)

=
x
ϕ3 [(α + 1)ϕ2 − (2 + x + 2αx)ϕ + 2x],

B1 = x(1 − x)
( M′

M
B + B0

)
= −(α + 1)x(1 − x) + (1 − 2x − αx)y + y2,

C1 = x(1 − x)
(
2C

M′

M
+ C′

)
= x(1 − (α + 1)ϕ)(1 − 2x − αx + 2y),
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E = 2A2C − AB1 + A1B,
F = ABB1 − A1B2 + 2AA1C − 2A2C1,

S =
√

B2 − 4AC.

Note that the computation for A1 above uses part (i) of Lemma 2.3; the computation for
B1 uses the definitions of y, B, and B0; and the computation for C1 uses the identities

C = x(1 − x)ϕ′,
C′ = (1 − x)α+1 − (α + 1)x(1 − x)α

= (1 − x)ϕ′ − (α + 1)xϕ′,
(1 − x)ϕ′ = 1 − (α + 1)ϕ.

In terms of these newly introduced functions, we can rewrite d = ES + F.
It is easy to see that we can write every function appearing in E, F, and S as a

function of (x, y, ϕ). In fact,

E =
x2

ϕ4 (1 − (α + 1)ϕ)[(α + 2)ϕ2 − 2(1 + x + αx)ϕ + 2x]

+
1
ϕ3 [(3x + 2αx − 1)ϕ2 − x(1 + 3x + 3αx)ϕ + 2x2]y −

ϕ − x
ϕ2 y2

and

F =
x2

ϕ5 (1 − (α + 1)ϕ)[(α + 2)ϕ2 − 2(1 + x + αx)ϕ + 2x][(1 + x + αx)ϕ − 2x]

+
1
ϕ4 [(1 − 2x + 5x2 − αx + 8αx2 + 3α2x2)ϕ3

− x(1 + 6x + 5x2 + 5αx + 10αx2 + 5α2x2)ϕ2

+ 4x2(1 + 2x + 2αx)ϕ − 4x3]y

+
1
ϕ3 [(2 − 4x − 3αx)ϕ2 + 4(α + 1)x2ϕ − 2x2]y2 +

ϕ − x
ϕ2 y3.

Note that we have verified the formulas above for E and F with the help of Maple.
Also, it follows from the proof of Lemma 2.4 that

S =

√
y2 + 2(1 − x − αx)y +

1
ϕ2 ((1 + x + αx)ϕ − 2x)2.

Another tedious calculation with the help of Maple shows that F2 − E2S 2 is equal to

4yx2

ϕ8 (ϕ − x)3(1 − (α + 1)ϕ)[ϕ2 − (1 + x + αx)ϕ + x](y − y0),

where

y0 =
[x(1 − x − αx) − (1 − x)ϕ][(α + 2)ϕ2 − 2(1 + x + αx)ϕ + 2x]

(ϕ − x)[ϕ2 − (1 + x + αx)ϕ + x]
.
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This, together with Lemma 2.3, tells us that

F2 − E2S 2 ∼ y − y0. (3.2)

By Lemma 2.3 again, we always have y0 ≥ 0.
Recall that E, F, and S are formally algebraic functions of (x, y, ϕ), where x ∈ (0,1),

y ≥ 0, and ϕ > 0. For the remainder of this proof, we fix x (hence ϕ as well) and think
of E = E(y), F = F(y), and S = S (y) as functions of a single variable y on [0,∞). Thus,
E is a quadratic function of y, F is a cubic polynomial of y, and S is the square root
of a quadratic function that is nonnegative for y ∈ [0,∞). There are two cases for us to
consider: 0 ≤ y ≤ y0 and y > y0.

Recall that

E(0) =
x2

ϕ4 (1 − (α + 1)ϕ)[(α + 2)ϕ2 − 2(1 + x + αx)ϕ + 2x].

It follows from Lemma 2.3 that E(0) ≥ 0. Also, direct calculations along with
Lemma 2.3 show that

E(y0) =
(1 − (α + 1)ϕ)(ϕ − x)4[(α + 2)ϕ2 − 2(1 + x + αx)ϕ + 2x]

ϕ4[ϕ2 − (1 + x + αx)ϕ + x]2

≥ 0.

Similarly, direct computations along with Lemma 2.3 give us

F(y0) =
(1 − (α + 1)ϕ)(ϕ − x)3[(α + 2)ϕ2 − 2(1 + x + αx)ϕ + 2x]

ϕ5[ϕ2 − (1 + x + αx)ϕ + x]3

× [x[ϕ2 − (1 + x + αx)ϕ + x]2 − (1 − (α + 1)ϕ)(ϕ − x)3]
∼ x[ϕ2 − (1 + x + αx)ϕ + x]2 − (1 − (α + 1)ϕ)(ϕ − x)3.

For x ∈ (0, 1) and α ∈ [−2, 0],

[ϕ2 − (1 + x + αx)ϕ + x] − (1 − (α + 1)ϕ)(ϕ − x)
= (α + 2)ϕ2 − 2(1 + x + αx)ϕ + 2x > 0

and

x[ϕ2 − (1 + x + αx)ϕ + x] − (ϕ − x)2

= ϕ[x(1 − x − αx) − (1 − x)ϕ] > 0.

It follows that F(y0) > 0.
Since E(y) is a quadratic function that is concave downward, it is nonnegative if and

only if y belongs to a certain closed interval. This closed interval contains 0 and y0, so
it must contain [0, y0] as well. Therefore, E(y) ≥ 0 for 0 ≤ y ≤ y0. It follows from this
and (3.2) that

d ≥ E(y)S (y) − |F(y)| ∼ E2(y)S 2(y) − F2(y) ∼ y0 − y ≥ 0

for 0 ≤ y ≤ y0.
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In the case when y > y0,

F2(y) − E2(y)S 2(y) ∼ y − y0 > 0.

In particular, F(y) is nonvanishing on (y0,∞). Since F(y) is continuous on [y0,∞) and
F(y0) > 0, we conclude that F(y) > 0 for all y > y0. Combining this with (3.2),

d ≥ F(y) − |E(y)|S (y) ∼ F2(y) − E2(y)S 2(y) ∼ y − y0 > 0.

This shows that d is always nonnegative and completes the proof of Theorem 1.1.

4. Further results and remarks

The proof of Theorem 1.1 in the previous section actually gives the following more
general result.

Theorem 4.1. Let 0 < p <∞ and −2 ≤ α ≤ 0. If M(x) is nondecreasing and log M(x)
is convex in log x for x ∈ (0, 1), then the function

x 7→ log

∫ x
0 M(t)(1 − t)α dt∫ x

0 (1 − t)α dt

is also convex in log x for x ∈ (0, 1).

The logarithmic convexity of Mp,α( f , r) is equivalent to following: if 0 < r1 < r2 <
1, 0 < θ < 1, and r = rθ1r1−θ

2 , then

Mp,α( f , r) ≤ (Mp,α( f , r1))θ(Mp,α( f , r2))1−θ.

Furthermore, equality occurs if and only if log Mp,α( f , r) = a log r + b for some
constants a and b, which appears to happen only in very special situations. For
example, if α = 0, then it appears that Mp,0( f , r) = cear (where c and a are constants)
only when f is a monomial.

Finally, we mention that for α < −2 and y < y0,

lim
x→1

[(α + 2)ϕ2 − 2(1 + x + αx)ϕ + 2x] = −∞.

Thus, E(y) < 0 for x close enough to 1. This implies that ES + F < 0 for x close
enough to 1, so d (and δ′) is not necessarily positive for all x ∈ [0, 1). Thus, the proof
of Theorem 1.1 breaks down here in the case α < −2. However, δ can still be positive.
It is just that our approach does not work any more.
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