Effect of dietary arginine on growth, intestinal enzyme activities and gene expression in muscle, hepatopancreas and intestine of juvenile Jian carp (Cyprinus carpio var. Jian)

Gangfu Chen1, Lin Feng1,2,3, Shengyao Kuang1,4, Yang Liu1,2,3, Jun Jiang1,2,3, Kai Hu1,2,3, Weidan Jiang1,2,3, Shuhong Li1, Ling Tang1,4 and Xiaoqiu Zhou1,2,3*

1Animal Nutrition Institute, Sichuan Agricultural University, Sichuan, Ya’an 625014, People’s Republic of China
2Fish Nutrition and Safety in Production Sichuan University Key Laboratory, Sichuan Agricultural University, Sichuan, Ya’an 625014, People’s Republic of China
3Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Sichuan, Ya’an 625014, People’s Republic of China
4Animal Nutrition Institute, Sichuan Academy of Animal Science, Chengdu 610066, People’s Republic of China

(Submitted 14 March 2011 – Final revision received 30 August 2011 – Accepted 6 September 2011 – First published online 21 October 2011)

Abstract
The present study was conducted to test the hypothesis that dietary arginine promotes digestion and absorption capacity, and, thus, enhances fish growth. This improvement might be related to the target of rapamycin (TOR) and eIF4E-binding protein (4E-BP). A total of 1200 juvenile Jian carp, Cyprinus carpio var. Jian, with an average initial weight of 6.33 (±0.03) g, were fed with diets containing graded concentrations of arginine, namely, 9.8 (control), 12.7, 16.1, 18.5, 21.9 and 24.5 g arginine/kg diet for 9 weeks. An real-time quantitative PCR analysis was performed to determine the relative expression of TOR and 4E-BP in fish muscle, hepatopancreas and intestine. Dietary arginine increased (P < 0.05): (1) glutamate-oxaloacetate transaminase and glutamate-pyruvate transaminase activities in muscle and hepatopancreas; (2) intestine and hepatopancreas protein content, folds height, and trypsin, chymotrypsin, lipase, Na+/K+ATPase, alkaline phosphatase, γ-glutamyl transpeptidase and creatine kinase activities in intestine; (3) Lactobacillus counts; (4) relative expression of TOR in the muscle, hepatopancreas and distal intestine (DI); (5) relative expression of 4E-BP in proximal intestine (PI) and mid-intestine (MI), as compared with the control group. In contrast, dietary arginine reduced (P < 0.05): (1) plasma ammonia content; (2) Aeromonas hydrophila and Escherichia coli counts; (3) relative expression of TOR in PI and MI; (4) relative expression of 4E-BP in the muscle, hepatopancreas and DI. The arginine requirement estimated by specific growth rate using quadratic regression analysis was found to be 18.0 g/kg diet. These results indicate that arginine improved fish growth, digestive and absorptive ability and regulated the expression of TOR and 4E-BP genes.

Key words: Arginine; Intestinal enzyme activities; Target of rapamycin; Cyprinus carpio var. Jian

Arginine is an essential amino acid for optimal fish growth(1). Dietary arginine deficiency causes growth reduction and poor protein retention, as shown in coho salmon (Oncorhynchus kisutch), European sea bass (Dicentrarchus labrax) and Indian major carp (Cirrhinus mrigala)(2–4). Protein deposition in fish is mainly associated with amino acid metabolism(5). Glutamate oxaloacetate transaminase (GOT) and glutamate pyruvate transaminase (GPT) are two important amino acid metabolic enzymes of fish(6). Furthermore, ammonia was found to correlate with fish amino acid metabolism(7,8). An increase in plasma ammonia nitrogen concentration was observed in the European sea bass fed with plant protein diets under a moderate or large excess of dietary arginine(9). However, no study addressed the effects of arginine on GOT and GPT in fish. Recently, our laboratory reported that supplementation with methionine hydroxy analogue to practical diets decreased plasma ammonia levels and increased GOT and GPT activities in Jian carp (Cyprinus carpio var. Jian) hepatopancreas and muscle(10). Accordingly, further studies are required to address the effect of arginine on amino acid metabolism in fish.

Abbreviations: γ-GT, γ-glutamyl transpeptidase; 4E-BP, eIF4E-binding protein; AKP, alkaline phosphatase; CK, creatine kinase; DI, distal intestine; FE, feed efficiency; FI, feed intake; GOT, glutamate oxaloacetate transaminase; GPT, glutamate pyruvate transaminase; IEC, intestinal epithelial cells; ISI, intestosomatic index; MI, mid-intestine; PAC, plasma ammonia content; PI, proximal intestine; PRV, protein retention value; RGL, relative gut length; SGR, specific growth rate; TOR, target of rapamycin.

*Corresponding author: Dr X. Zhou, fax +86 835 2885968, email zhouxq@sicau.edu.cn; qxzhouqq@tom.com
Fish growth rate is dependent on digestive and absorptive ability\(^{(11,12)}\). Digestion ability and absorption function were found to correlate with the growth and development of digestive organs\(^{(13)}\). Several studies\(^{(14–17)}\) demonstrated that arginine and its intermediate had a beneficial influence on the pancreas and intestine by promoting tissue integrity and cell proliferation. However, studies on the effects of dietary arginine on the growth and development of fish digestive organs are limited. Digestion and absorption of nutrients depend on the activity of digestive enzymes and brush-border membrane enzymes\(^{(18)}\). Fish exocrine pancreas synthesises and secretes a large number of digestive enzymes into the intestinal lumen, such as trypsin, chymotrypsin, lipase and amylase\(^{(19,20)}\). Alkaline phosphatase (AKP), Na\(^{+}\)K\(^{+}\)-ATPase and creatine kinase (CK) are considered to be involved in the absorption of nutrients in fish\(^{(21)}\). However, few studies have been conducted to investigate the effects of dietary arginine on fish intestinal enzyme activities. Synthesis and secretion of digestive enzymes from pancreatic exocrine tissue are sensitive to the redox state, which can be regulated by NO\(^{(22–25)}\). Moreover, studies have indicated that arginine residues have an important role in digestive and absorptive enzymes\(^{(20–32)}\). Studies from our laboratory have shown that glutamine, lysine and methionine improve digestive and brush-border membrane enzyme activities\(^{(33–35)}\). Hence, it is necessary to address the relationship between arginine and fish intestinal enzyme activities.

The intestinal microbiota contributes to host health status, and alterations in the microbial balance may produce detrimental effects in hosts\(^{(36,37)}\). A recent study has found that dietary methionine and protein improved Lactobacillus counts and reduced Escherichia coli and Aeromonas counts in juvenile Jian carp\(^{(38)}\). Furthermore, dietary arginine supplementation decreased the frequency of Helicobacter spp. and Clostridium perfringens in rabbit ileum\(^{(39)}\). However, few studies have evaluated the effects of arginine on fish intestinal microbial populations.

Protein synthesis is a key component of the processes involved in growth response\(^{(40)}\). The limiting step in protein synthesis is translation initiation, which is regulated by the signalling pathway of target of rapamycin (TOR) through eIF4E-binding protein (4E-BP) 1 and ribosomal protein S6 kinase\(^{(41)}\). TOR and 4E-BP genes were cloned in our laboratory\(^{(42)}\). Similarly, the mRNA expression of TOR decreased with dietary Thr and Trp levels in the intestine and muscle and increased with Gln supplementation in intestinal epithelial cells (IEC) of Jian carp (L Tang, L Feng and XQ Zhou, unpublished results). However, no study has addressed the effects of arginine on TOR and 4E-BP expression in fish tissues or organs. Moreover, the nutritional regulation of major kinases involved in the TOR pathway has been elucidated in fish. Re-feeding was found to enhance the phosphorylation of TOR in rainbow trout (Oncorhynchus mykiss) muscle and liver and promote the phosphorylation of 4E-BP1 in rainbow trout muscle\(^{(42,43)}\). Therefore, arginine might be related to the expression of TOR and 4E-BP genes in fish, which needs to be investigated.

Jian carp is the first variety of common carp\(^{(44)}\). Its gross production is approximately more than 30% greater than other varieties of common carp, and it has a high flesh quality\(^{(44,45)}\). Interestingly, it has become one of the most popular species for fish culture in China\(^{(46)}\). The present study was designed to test the hypothesis that dietary arginine promotes digestion and absorption capacity that can enhance Jian carp growth, which might be related to the expression of TOR and 4E-BP genes.

Materials and methods

Experimental diets and procedure

The composition of the tested diets is given in Table 1. Fishmeal, rice gluten meal and crystalline amino acids were used as the main protein sources and were found to be limiting in arginine. Crystalline amino acids (Donboo Amino Acid, Nantong, Jiangsu, China) were used to simulate the amino acid profile of diets with 34% whole chicken egg protein, except for arginine. The experimental diets were supplemented with L-arginine hydrochloride to provide arginine at the concentrations of 9±0, 12±0, 15±0, 18±0, 21±0 and 24±0 g/kg of diet. All diets were made iso-nitrogenous and iso-energetic (16±5 kJ/g of gross energy) with the addition of appropriate amounts of glycine. Zn, Fe, pyridoxine, pantothenic acid, inositol, riboflavin and thiamin were formulated to meet the nutrient requirements of Jian carp according to previous studies conducted in our laboratory\(^{(47–53)}\). The levels of other nutrients met the requirements for common carp according to the National Research Council\(^{(54)}\). The pH of each diet was adjusted to 7±0 by gradually adding 6±0 M-NaOH\(^{(10)}\). Pellets were produced and stored at −20°C until use\(^{(55)}\). The arginine concentrations in experimental diets were determined to be 9±8 (control), 12±7, 16±1, 18±5, 21±9 and 24±5 g arginine/kg diet, as described by Wu et al.\(^{(56)}\) using an Agilent 1100 series HPLC (Agilent Technologies, Palo Alto, CA, USA).

All experimental protocols were approved by the Animal Care Advisory Committee of Sichuan Agricultural University. Juvenile Jian carp were obtained from the Tong Wei Hatchery (Sichuan, China). After an acclimatisation period of 4 weeks to laboratory conditions, 1200 carp, with a mean initial weight of 6±33 (SE 0±03) g, were randomly distributed into twenty-four glass aquaria (90 × 30 × 40 cm\(^3\)), resulting in fifty juveniles in each aquarium. Each experimental diet was randomly assigned to aquaria in quadruplicate. Fish were fed with their respective diets to apparent satiation six times per d for the first 4 weeks and four times per d from the fifth to the ninth week. Uneaten feed was removed by siphoning at 30 min after feeding, dried and weighted to measure feed intake (FI). Water quality, closed water recirculating and oxygen auto-supplemented system were maintained as previously described by our laboratory\(^{(51)}\). Briefly, the water flow rate in each aquarium was maintained at 1·2 litres/min; water was drained through biofilters to remove solid substances and reduce ammonia concentration. Water temperature, pH and dissolved oxygen were 26±1°C, 7±0±3 and 5±0 (SD 0±3) mg/l, respectively. The experimental units were maintained under a natural light and dark cycle.
folds, according to Lin & Zhou(33). The digesta of another
tni determination. The intestines of another four fish from
nised syringes, at 6 h after the last feeding, for plasma ammo-
obtaining blood samples from the caudal vein with hepari-
four fish from each aquarium were randomly collected for
determine intestinal microbial populations.

At the end of the feeding trial, four fish from each aquarium were anaesthetised in a benzocaine bath (50 mg/l),
were collected and frozen for estimating the final carcass proximate composition. A total of fifteen fish from each
feeding trial. At the beginning of the experiment, thirty fish
were counted and weighed at the beginning and at the end of the

The procedures of sample collection were similar to those
previously described in other studies conducted in our labora-
ty(57). After 12-h fasting, fish from each aquaria were
were collected and frozen for estimating the counts of
were extruded for estimating the counts of

Intestinal enzyme activities altered by arginine 197

Table 1. Composition (g/kg dry diet) of experimental diets used for determining the effects of dietary arginine on the growth and biochemical activities of Jian carp (Cyprinus carpio var. Jian)

<table>
<thead>
<tr>
<th>Ingredients</th>
<th>Diet 1</th>
<th>Diet 2</th>
<th>Diet 3</th>
<th>Diet 4</th>
<th>Diet 5</th>
<th>Diet 6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fishmeal</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>Rice gluten meal</td>
<td>162</td>
<td>162</td>
<td>162</td>
<td>162</td>
<td>162</td>
<td>162</td>
</tr>
<tr>
<td>Amino acid mix†</td>
<td>135-6</td>
<td>135-6</td>
<td>135-6</td>
<td>135-6</td>
<td>135-6</td>
<td>135-6</td>
</tr>
<tr>
<td>α-Starch</td>
<td>320</td>
<td>320</td>
<td>320</td>
<td>320</td>
<td>320</td>
<td>320</td>
</tr>
<tr>
<td>Maize starch</td>
<td>153-3</td>
<td>155-4</td>
<td>157-6</td>
<td>159-7</td>
<td>161-9</td>
<td>161-0</td>
</tr>
<tr>
<td>Fish oil</td>
<td>21-8</td>
<td>21-8</td>
<td>21-8</td>
<td>21-8</td>
<td>21-8</td>
<td>21-8</td>
</tr>
<tr>
<td>Soya bean oil</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>Mineral premix†</td>
<td>31-6</td>
<td>31-6</td>
<td>31-6</td>
<td>31-6</td>
<td>31-6</td>
<td>31-6</td>
</tr>
<tr>
<td>Vitamin premix‡</td>
<td>11-3</td>
<td>11-3</td>
<td>11-3</td>
<td>11-3</td>
<td>11-3</td>
<td>11-3</td>
</tr>
<tr>
<td>Ethoxyquin</td>
<td>0-5</td>
<td>0-5</td>
<td>0-5</td>
<td>0-5</td>
<td>0-5</td>
<td>0-5</td>
</tr>
<tr>
<td>α-Cellulose</td>
<td>30</td>
<td>30</td>
<td>30</td>
<td>30</td>
<td>30</td>
<td>30</td>
</tr>
<tr>
<td>L-Arg-HCL</td>
<td>0</td>
<td>3-6</td>
<td>7-3</td>
<td>10-9</td>
<td>14-5</td>
<td>18-2</td>
</tr>
<tr>
<td>L-Gly</td>
<td>25-9</td>
<td>20-2</td>
<td>14-3</td>
<td>8-6</td>
<td>2-8</td>
<td>0</td>
</tr>
<tr>
<td>Nutrient content§</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Calculated crude protein 340-0
Analysed crude protein 330-0
Gross energy (kJ/g) 16-5
Arg 9-8

† Mineral mixture (g/kg mixture): FeSO₄·7H₂O, 45·767 g; CuSO₄·5H₂O, 1·201 g; ZnSO₄·7H₂O, 14·113 g; MnSO₄·H₂O, 4·089 g; KI, 2·895 g; NaSeO₃, 2·500 g; CaCO₃, 929-436 g; Ca (H₂PO₄)₂, 21·6 g/kg dry diet.
‡ Vitamin mixture (g/kg mixture): retinyl acetate (172 mg/g), 0·800 g; cholecalciferol (12·5 mg/g), 0·480 g; D, L-α-tocopherol acetate (50 %), 20·000 g; menadione (23 %), 0·220 g; thiamine hydrochloride (90 %), 0·113 g; riboflavin (80 %), 0·625 g; pyridoxine hydrochloride (81 %), 0·749 g; cyanocobalamin (1 %), 0·100 g; niacin (99 %), 4·165 g; β-biotin (2 %), 0·000 g; mescino-inositol (99 %), 52·323 g; folic acid (96 %), 0·521 g; ascorbyl acetate (93 %), 7·161 g; calcium-pantothenate (90 %), 2·558 g; choline chloride, 1·3 g/kg dry diet.
§ Nutrient content: lysine, 20; methionine + cystine, 15; n-3 + n-6, 20; available phosphorus, 6. Gross energy was calculated on the basis of fuel values 19·14, 13·65, 24·27, 16·02, 14·81 and 37·65 kJ/g for fishmeal, rice gluten meal, amino acids, α-starch, maize starch and fat, respectively.

Sample collection and analysis

The procedures of sample collection were similar to those
previously described in other studies conducted in our labora-
tory(57). After 12-h fasting, fish from each aquaria were
counted and weighed at the beginning and at the end of the
feeding trial. At the beginning of the experiment, thirty fish
from the same population used in the experiment were
collected to determine the initial carcass proximate composition.
At the end of the feeding trial, four fish from each aquarium
were collected and frozen for estimating the final carcass
proximate composition. A total of fifteen fish from each
aquarium were anaesthetised in a benzocaine bath (50 mg/l),
as described by Berdikova Bohne et al.(58), with a minor modi-
fication; then, the hepatopancreas, intestine and muscle were
quickly collected and stored at −70°C until analysis. Another
four fish from each aquarium were randomly collected for
obtaining blood samples from the caudal vein with hepari-
nised syringes, at 6 h after the last feeding, for plasma ammo-
nia determination. The intestines of another four fish from
each aquarium were used to measure the height of intestinal
folds, according to Lin & Zhou(53). The digesta of another
three fish collected from each aquarium were sampled to
determine intestinal microbial populations.

Proximate analysis of diets and whole body samples were
performed according to methods of the Association of Official
Analytical Chemists(59). Muscle, intestine and hepatopancre-

physiological saline solution and centrifuged at 6000 g for
20 min at 4°C; then, the supernatant was stored. GOT and
GPT activities in muscle and hepatopancreas were deter-
mined according to Bergmeyer & Bernt(60,61). Blood was
centrifuged at 4000 g for 15 min; then, the supernatant
fluid was collected for ammonia determination, as described
by Tantikitti & Chimsung(62). Trypsin and chymotrypsin activi-
ties were determined according to Hummel(63). Amylase and
lipase activities were measured, as described by Furné et al.(64). AKP, Na⁺/K⁺-ATPase, γ-glutamyl transpeptidase
(γ-GT) and CK activities in the intestine were determined
according to Bessey et al.(65), McCormick(66), Bauermeister et al.(67) and Tanzer & Gilvarg(68), respectively. The intestinal
content was extruded for estimating the counts of Lactobacillus, E. coli and Aeromonas using standard techniques, as described by Refstie et al.(69).

Analysis of target of rapamycin and elf4E-binding protein
gene expression in muscle, hepatopancreas and intestine

Total RNA was extracted from muscle, hepatopancreas, prox-
imal-intestine (PI), mid-intestine (MI) and distal intestine (DI)
using an RNAiso plus kit (Takara, Dalian, Liaoning, China).
The quality of total RNA was judged by spectrophotometry
at 260 and 280 nm. Subsequently, complementary DNA was
synthesised using a PrimeScript™ RT reagent Kit (Takara),
according to the manufacturer’s instructions. Briefly, oligo
tT primers (50 µM) were used to reverse transcribe respective
RNA in the presence of PrimeScript™ RT enzyme mix I, 5× PrimeScript™ buffer, random 6 mers (100 μM) and RNase-free distilled water at 37°C for 15 min, following inactivation at 85°C for 5 s. Specific primers for TOR and 4E-BP genes were designed with Primer Premier software (Premier Biosoft International, Palo Alto, CA, USA) according to sequences of Jian carp (Genbank accession no. FJ899680 and HQ010440, respectively) cloned in our laboratory. Real-time PCR were performed for TOR and 4E-BP according to standard protocols with the primers indicated in Table 2. Briefly, complementary DNA (2 μl) was reacted with forward and reverse primers, SYBR Premix Ex Taq™ II (2×; 7.5 μl; Takara) and RNase-free distilled water in a 15 μl final reaction volume. PCR were performed using a Chromo 4™ continuous fluorescence detector (Bio-Rad, Hercules, CA, USA). The thermocycling conditions for TOR and 4E-BP were the following: forty cycles at 95°C for 10 s, 95°C for 5 s, 60°C for 53 s and 95°C for 10 s, 95°C for 5 s, 59.5°C for 30 s, respectively. The expression levels of the TOR and 4E-BP genes were normalised to the expression levels of a housekeeping common carp gene, β-actin. Each assay was performed with five replications. The concentration of the target gene was calculated based on the threshold cycle number (cycle threshold). The cycle threshold for each sample was determined by using MJ Opticon Monitor Software (version 3.1; Bio-Rad, Hemel Hempstead, Herts, UK). In addition, the complementary DNA concentration in each sample was determined according to gene-specific standard curves. Standard curves were generated for both target and endogenous control genes based on 10-fold serial dilutions. All standard curves exhibited correlation coefficients higher than 0.99, and the corresponding real-time PCR efficiencies ranged between 0.90 and 1.10.

Calculations and statistical analysis

Data on initial body weight, final body weight, FI, proximate composition of feed and carcass, hepatopancreas and intestine weight, intestine and body length, and hepatopancreas and intestine protein were used to calculate the following parameters:

- Feed efficiency (FE) = (g weight gain/g FI) × 100;
- Specific growth rate = ([ln final weight – ln initial weight]/number of d) × 100;
- Protein efficiency ratio = g weight gain/g protein intake;
- Protein retention value (PRV) = (final total body protein – initial body protein)/total protein intake;
- Ash retention value = g fish ash gain/g ash intake;
- Intestosomatic index (ISI) = (g wet intestine weight/g wet body weight) × 100;
- Hepatosomatic index = (g wet hepatopancreas weight/g wet body weight) × 100;
- Relative gut length (RGL) = digestive tract length (cm)/total body length (cm);
- Intestine protein content = (g intestine protein/g wet intestine weight) × 100;
- Hepatopancreas protein content = (g hepatopancreas protein/g wet hepatopancreas weight) × 100;

All data were subjected to a one-way ANOVA. Differences between the treatment mean values were determined using a Duncan’s multiple-range test at a P < 0.05 level of significance. A quadratic regression model was used to determine the optimal level of dietary arginine.

Results

Growth performance

Dietary arginine did not have a significant effect on the survival rate (>97%) of juvenile Jian carp. No pathological signs were observed during the trial. As shown in Table 3, the lowest specific growth rate (SGR) was found in fish fed with the basal diet (P < 0.05). FI significantly increased with higher levels of dietary arginine up to 16.1 g arginine/kg diet and decreased thereafter (P < 0.05; Table 3). Quadratic regression analysis showed that SGR and FI increased with increasing levels of dietary arginine. The following equations were obtained for SGR and for FI, respectively:

\[Y = 2.531 + 0.0862x - 0.0024x^2, \quad R^2 = 0.930, \quad P < 0.05 \]
\[Y = 55.250 + 2.5749x - 0.0762x^2, \quad R^2 = 0.942, \quad P < 0.05 \]

The basis of the aforementioned quadratic regression equation, the arginine requirement for the juvenile carp was estimated to be 18.0 g/kg diet, corresponding to 55.0 g/kg dietary protein (Fig. 1). Values of FE, protein efficiency ratio and PRV were the highest for fish fed with diets containing 18.5 g arginine/kg diet and the lowest for fish fed with diets containing 12.7 g arginine/kg diet (P < 0.05). The ash retention value increased with dietary arginine levels up to 18.5 g/kg diet (P < 0.05), whereas higher arginine levels resulted in a plateau-like response (P > 0.05). The following equations were obtained for PRV and for ash retention value, respectively:

\[Y = 26.646 + 0.772Lx - 0.0198x^2, \quad R^2 = 0.699 \]
\[Y = 30.496 + 0.557Lx - 0.0129x^2, \quad R^2 = 0.738 \]

Glutamate oxaloacetate transaminase and glutamate pyruvate transaminase activities in muscle and hepatopancreas

GOT and GPT activities in muscle and hepatopancreas, as well as plasma ammonia content (PAC) are given in Table 4. GOT activities in muscle and hepatopancreas were the highest for fish fed with diets containing 18.5 g arginine/kg diet and the lowest for fish fed with the basal diet.

<table>
<thead>
<tr>
<th>Table 2. Real-time PCR primer sequences</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
</tr>
<tr>
<td>------------------------</td>
</tr>
<tr>
<td>TOR</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>4E-BP</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>β-Actin</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

TOR, target of rapamycin; 4E-BP, eIF4E-binding protein.

Glutamate oxaloacetate transaminase and glutamate pyruvate transaminase activities in muscle and hepatopancreas

GOT and GPT activities in muscle and hepatopancreas, as well as plasma ammonia content (PAC) are given in Table 4. GOT activities in muscle and hepatopancreas were the highest for fish fed with diets containing 18.5 g arginine/kg diet and the lowest for fish fed with the basal diet.
Intestinal enzyme activities altered by arginine

Table 3. Growth, feed intake (FI) and conversion efficiency of juvenile Jian carp (Cyprinus carpio var. Jian) fed with diets containing graded levels of dietary arginine

(Mean values with their standard errors for four replicates)

<table>
<thead>
<tr>
<th>Dietary Arg levels (g/kg)</th>
<th>9-8</th>
<th>12-7</th>
<th>16-1</th>
<th>18-5</th>
<th>21-9</th>
<th>24-5</th>
</tr>
</thead>
<tbody>
<tr>
<td>IBW (g)</td>
<td>6.34</td>
<td>6.34</td>
<td>6.35</td>
<td>6.33</td>
<td>6.31</td>
<td>6.34</td>
</tr>
<tr>
<td>FBW (g)</td>
<td>46.2</td>
<td>47.7</td>
<td>50.7</td>
<td>50.7</td>
<td>50.7</td>
<td>47.0</td>
</tr>
<tr>
<td>SGR (%)</td>
<td>3.155</td>
<td>3.203</td>
<td>3.297</td>
<td>3.304</td>
<td>3.243</td>
<td>3.179</td>
</tr>
<tr>
<td>FL (g)</td>
<td>52.9</td>
<td>56.0</td>
<td>57.5</td>
<td>56.1</td>
<td>55.0</td>
<td>52.8</td>
</tr>
<tr>
<td>FE</td>
<td>75.4</td>
<td>73.9</td>
<td>77.2</td>
<td>79.3</td>
<td>77.2</td>
<td>77.2</td>
</tr>
<tr>
<td>PER</td>
<td>2.298</td>
<td>2.252</td>
<td>2.352</td>
<td>2.416</td>
<td>2.353</td>
<td>2.348</td>
</tr>
<tr>
<td>PRV</td>
<td>32.7</td>
<td>32.5</td>
<td>34.0</td>
<td>34.8</td>
<td>33.8</td>
<td>33.7</td>
</tr>
<tr>
<td>ARV</td>
<td>35.2</td>
<td>35.2</td>
<td>36.1</td>
<td>37.6</td>
<td>36.7</td>
<td>36.6</td>
</tr>
</tbody>
</table>

(P<0.05). In addition, GOT activity in muscle showed a quadratic response to increasing dietary arginine concentrations (Y = -1119.5 + 431.29x - 11.778x², R² = 0.882, P<0.05).

Hepatopancreas and intestine enzyme activities

As shown in Table 5, the hepatopancreas weight was the lowest for fish fed with the basal diet, followed by 24.5 and 21.9 g arginine/kg diet, and it was the highest for fish fed with diets containing 12.7 g arginine/kg diet (P<0.05). PAC was the lowest for fish fed with diets containing 18.5 g arginine/kg diet (P<0.05).

Hepatopancreas and intestine growth and development

As shown in Table 5, the hepatopancreas weight was the lowest for fish fed with the basal diet, followed by 24.5 and 21.9 g arginine/kg diet, and it was the highest for fish fed with diets containing 12.7 g arginine/kg diet (P<0.05). The hepatosomatic index and protein content were the highest for fish fed with diets containing 12.7 g arginine/kg diet (P<0.05). The hepatopancreas weight and protein content, respectively: Y = 4+010 0+1535x - 0.0045x², R² = 0.756 and Y = 0.7226 + 0.0325x - 0.0007x², R² = 0.810. Intestine length significantly increased with increasing dietary arginine levels up to 12.7 g arginine/kg diet (P<0.05), and there were no differences between 12.7 and 21.9 g arginine/kg diet levels (P>0.05). The RGL showed a non-significant tendency towards the improvement of dietary arginine levels above 12.7 g arginine/kg diet (P>0.05), with the only exception of fish fed with 18.5 g arginine/kg diet. Similar patterns were found for intestine weight. The ISI was the highest for fish fed with the basal diet and the lowest for fish fed with a diet containing 21.9 g arginine/kg diet (P<0.05). The intestine protein content was the highest for fish fed with a diet containing 16.1 g arginine/kg diet (P<0.05) and the lowest for fish fed with the basal diet. Quadratic regression analysis showed that intestine length, RGL, intestine weight and ISI increased or decreased with higher levels of dietary arginine. The following equations were obtained for intestine length, RGL, intestine weight and ISI, respectively: Y = 0.0540 + 1.6692x - 0.0482x², R² = 0.811; Y = 105.15 + 6.6738x - 0.1953x², R² = 0.777; Y = 0.7446 + 0.1236x - 0.0037x², R² = 0.757; and Y = 4.8646 - 0.1580x + 0.0037x², R² = 0.9369, P<0.05.

Hepatopancreas and intestine enzyme activities

The trypsin activity in the intestine was compared across dietary treatments (Table 6). The activity was responsive to dietary arginine by increasing with graded levels of arginine up to 16.1 g/kg diet (P<0.05), and there was no difference between 16.1 and 18.5 g/kg diet (P>0.05), and was positively related to the activity of the hepatopancreas (r = 0.939, P<0.01). Similarly, the chymotrypsin activity in the hepatopancreas was the highest for fish fed with a diet containing 16.1 g arginine/kg diet and the lowest for fish fed with the diet containing 24.5 g arginine/kg diet (P<0.05; Table 6). The chymotrypsin activity in the intestine was the highest for fish fed with diets containing 18.5 g arginine/kg diet (P<0.05). Lipase activities in hepatopancreas showed a non-significant tendency towards the improvement of dietary arginine levels (P>0.05), with the only exception for fish fed with 24.5 g arginine/kg diet, exhibiting significantly lower values (P<0.05). In the intestine, lipase activities increased with higher levels of dietary arginine up to 18.5 g arginine/kg diet (P<0.05) and decreased thereafter. The following equations were obtained for trypsin activities and for lipase activities, respectively, in the hepatopancreas: Y = 1.4137 + 0.2803x - 0.0081x², R² = 0.836, P<0.05 and Y = 1.0983 + 98.428x - 3.0784x², R² = 0.858, P=0.05. Amylase activities in the hepatopancreas increased with higher levels of dietary arginine up to

![Fig. 1. Quadratic regression analysis of specific growth rate (SGR, %/d) according to dietary arginine levels (y = -0.0023x² + 0.0862x + 2.531, R² = 0.930). Each point represents the mean of four groups of Jian carp with fifty fish per group. Arginine requirement estimated from SGR was 18.0 g/kg diet.](https://www.cambridge.org/core)
was the highest for fish fed with a diet containing 18·5 g arginine concentrations (Table 6). In the MI, the Na content in fish fed with a diet containing 24·5 g arginine/kg diet (P < 0·05). Quadratic regression analysis showed that the populations of intestinal microbiota increased or decreased with higher levels of dietary arginine. The following equations were obtained for Aeromonas, E. coli and Lactobacillus, respectively: Y = 10·206 – 0·2213x + 0·0063x2, R2 = 0·992, P < 0·05; Y = 10·343 – 0·3479x + 0·0100x2, R2 = 0·938, P < 0·05; and Y = 1·6435 + 0·5783x – 0·0150x2, R2 = 0·972, P < 0·01.

Table 5. Hepatopancreas and intestinal activities of Jian carp (Cyprinus carpio var. Jian) fed with diets containing graded levels of dietary arginine (Mean values with their standard errors for four replicates)

<table>
<thead>
<tr>
<th>Dietary Arg levels (g/kg)</th>
<th>9-8</th>
<th>12-7</th>
<th>16-1</th>
<th>18-5</th>
<th>21-9</th>
<th>24-5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Glu-oxaloacetate transaminase activities (U/g tissue)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Muscle</td>
<td>2015a</td>
<td>42·9</td>
<td>2407b,c</td>
<td>81·7</td>
<td>2657c</td>
<td>75·2</td>
</tr>
<tr>
<td>Hepatopancreas</td>
<td>176ba</td>
<td>66·3</td>
<td>1988b,c</td>
<td>60·2</td>
<td>2033c</td>
<td>55·3</td>
</tr>
<tr>
<td>Glu-pyruvate transaminase activities (U/g tissue)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Muscle</td>
<td>456a</td>
<td>3·31</td>
<td>522b,c</td>
<td>18·0</td>
<td>612d</td>
<td>18·2</td>
</tr>
<tr>
<td>Hepatopancreas</td>
<td>574b</td>
<td>9·51</td>
<td>604b,c</td>
<td>11·7</td>
<td>642c</td>
<td>21·8</td>
</tr>
<tr>
<td>Ammonia content (μmol/l)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Plasma</td>
<td>233d</td>
<td>4·80</td>
<td>122a</td>
<td>3·92</td>
<td>110b</td>
<td>4·80</td>
</tr>
</tbody>
</table>

а,b,c,d Mean values within a row with unlike superscript letters were significantly different (P < 0·05).
Table 6. Enzymatic activities in hepatopancreas and intestine of juvenile Jian carp (Cyprinus carpio var. Jian) fed diets containing graded levels of dietary arginine
(Mean values with their standard errors for four replicates)

<table>
<thead>
<tr>
<th>Dietary Arg levels (g/kg)</th>
<th>9·8</th>
<th>12·7</th>
<th>16·1</th>
<th>18·5</th>
<th>21·9</th>
<th>24·5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enzymatic activities in hepatopancreas (U/g tissue)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trypsin</td>
<td>0·53a</td>
<td>0·10</td>
<td>0·54a</td>
<td>0·02</td>
<td>0·54a</td>
<td>0·01</td>
</tr>
<tr>
<td></td>
<td>(Mean SE)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chymotrypsin</td>
<td>4·72b</td>
<td>0·20</td>
<td>4·75a,b</td>
<td>0·01</td>
<td>4·59a,b</td>
<td>0·00</td>
</tr>
<tr>
<td></td>
<td>(Mean SE)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lipase</td>
<td>1783b</td>
<td>4·19</td>
<td>1837b</td>
<td>3·42</td>
<td>1839b</td>
<td>3·42</td>
</tr>
<tr>
<td></td>
<td>(Mean SE)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Amylase</td>
<td>1113a</td>
<td>2·03</td>
<td>1242a,b,c</td>
<td>3·64</td>
<td>1275c</td>
<td>5·18</td>
</tr>
<tr>
<td></td>
<td>(Mean SE)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Enzymatic activities in intestine (U/g tissue)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trypsin</td>
<td>1·29b</td>
<td>0·07</td>
<td>1·47b</td>
<td>0·05</td>
<td>1·72c</td>
<td>0·05</td>
</tr>
<tr>
<td></td>
<td>(Mean SE)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chymotrypsin</td>
<td>2·53a</td>
<td>0·11</td>
<td>2·86a,b</td>
<td>0·10</td>
<td>2·86a,b</td>
<td>0·11</td>
</tr>
<tr>
<td></td>
<td>(Mean SE)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lipase</td>
<td>1513a</td>
<td>6·14</td>
<td>1594a,b,c</td>
<td>49·8</td>
<td>1730c</td>
<td>54·0</td>
</tr>
<tr>
<td></td>
<td>(Mean SE)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Amylase</td>
<td>1196</td>
<td>2·5</td>
<td>1225</td>
<td>2·33</td>
<td>1246</td>
<td>10·0</td>
</tr>
<tr>
<td></td>
<td>(Mean SE)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Folds height (μm)

Proximal	43·95a	2·51	470a	3·35	488d	2·46
Mid	282a	4·77	298b, 300	3·35	309c	3·17
Distal	265a	1·70	283b	3·49	294c	2·96

Na+, K+-ATPase activities in intestine (μmol P released/g tissue per h)

Proximal	83·6b	2·14	157a	5·62	267d	6·09
Mid	115a	1·58	124a	4·04	200c	7·38
Distal	124a,c	4·53	132b	4·64	166d	6·36

Alkaline phosphatase activities in intestine (mmol nitrophenol released g/tissue per h)

Proximal	8·63a,c	0·15	10·9c	0·33	12·8d	0·19
Mid	13·7a,b	0·42	16·7c	0·71	23·5d	0·43
Distal	5·67a,b	0·21	7·50a,c	0·22	7·83c	0·17

3-Glutamyl transpeptidase activities in intestine (mmol 5-amino-2-nitrobenzoate released g/tissue per min)

| Proximal | 5·90a,b,c | 0·11 | 6·48a,b | 0·01 | 7·22d | 0·15 |
| Distal | 265a | 1·70 | 283b | 4·39 | 294c | 2·96 |

Table 7. Intestine flora of Jian carp (Cyprinus carpio var. Jian) fed diets containing graded levels of dietary arginine
(Mean values with their standard errors for four replicates)

<table>
<thead>
<tr>
<th>Dietary Arg levels (g/kg)</th>
<th>9·8</th>
<th>12·7</th>
<th>16·1</th>
<th>18·5</th>
<th>21·9</th>
<th>24·5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intestine flora (log CFU/g intestine content)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aeromonas hydrophila</td>
<td>8·65b</td>
<td>0·01</td>
<td>8·40a</td>
<td>0·05</td>
<td>8·26a</td>
<td>0·03</td>
</tr>
<tr>
<td>Escherichia coli</td>
<td>7·96a,b</td>
<td>0·02</td>
<td>7·45a,b</td>
<td>0·02</td>
<td>7·31a</td>
<td>0·06</td>
</tr>
<tr>
<td>Lactobacillus</td>
<td>5·90a</td>
<td>0·11</td>
<td>6·48a,b</td>
<td>0·01</td>
<td>7·22d</td>
<td>0·15</td>
</tr>
</tbody>
</table>

CFU, colony-forming units.

a,b,c,d Mean values within a row with unlike superscript letters were significantly different (P < 0·05).
The importance of dietary arginine for normal growth of Jian carp was demonstrated in the present study. SGR increased with higher dietary arginine concentrations up to an optimum level. Similar observations have been reported in Indian major carp (Cyprinus carpio var. Jian), black sea bream (Sparus macrocephalus) (72), rainbow trout (73) and channel catfish (Ictalurus punctatus) (1). In the present study, FI and FE increased with higher arginine levels up to a level similar to those found in other fish species (74–77). SGR was positively related to FI and FE (r < 0.48, P < 0.05; r < 0.85, P < 0.05). This result indicates that the enhancement of fish growth was partly attributed to the increment in FI and FE. Fish growth mainly involves protein retention in muscle, epithelial and connective tissue (78). A continuous supply of amino acids is required for protein synthesis because proteins are continually used for animal growth and tissue repair (79). In the present study, PRV significantly increased with higher levels of dietary arginine up to an optimum arginine level that supported the highest SGR. Besides protein synthesis, the improvement of fish growth with arginine supplementation might be due to its role as a secretagogue of growth-regulating hormones (76). Fish fed with diets containing arginine above the optimum level did not exhibit additional growth. Similar results have been obtained in a few studies in rainbow trout (77) and Nile tilapia (Oreochromis niloticus) (78), whereas such results were not observed in other species such as carp (79), sea bass (80) and channel catfish (Ictalurus punctatus) (80). The reduction in weight gain with arginine levels above the requirement level might be due to (1) extra energy expenditure for deamination; (2) disturbance of absorption and utilisation of other amino acids; (3) lower palatability of the diet; or (4) toxic effects and stress (81). A reduction in FI was regarded as the primary factor responsible for the depressed growth observed in Atlantic salmon fry (82) and European sea bass (83). The arginine requirement estimated from SGR by using a quadratic regression analysis was 18.0 g/kg diet, which corresponded to 5.5 g/kg of dietary protein (Fig. 1). This value was higher than that of channel catfish with 33–38 g/kg of dietary protein (84) and Japanese flounder (Paralichthys olivaceus) with 41–4.5 g/kg of dietary protein (85) and lower than that of black sea bream with 77–81.3 g/kg of dietary protein (72).

Protein deposition was mainly associated with amino acid metabolism in fish (5). Unbalanced dietary amino acid influenced ammonia formation and decreased amino acid metabolism in fish (5).
utilisation and protein retention\(^{96}\). In the present study, the PAC was lower for fish fed with optimum dietary arginine levels, supporting a higher protein efficiency ratio in this group. Therefore, amino acids were available in an appropriate balance for body protein synthesis with the optimal arginine level. Higher PAC was found in Jian carp fed with a moderate excess of arginine than those fed with the optimal level. Similarly, Tulli \textit{et al.} \(^{99}\) observed that there was an increase in plasma ammonia nitrogen concentration in European sea bass fed with plant protein diets under a moderate or large excess of dietary arginine. This higher PAC might be the result of amino acid imbalance and/or catabolism of excessive arginine\(^{177,85}\). This scenario might explain the poor growth performance in fish fed with diets containing 21·9 and 24·5 g arginine/kg diet. Moreover, Guouillou-Coustans \textit{et al.} \(^{87}\) showed that the plasma urea concentration was responsive to arginine intake in turbot \(\text{(Psetta maxima)}\). Hence, a more extensive study is necessary to investigate the effects of arginine on nitrogen excretion.

Pelletier \textit{et al.} \(^{98}\) found that amino acid metabolism correlated with growth rates in Atlantic cod \(\text{(Gadus morhua)}\). Moreover, GOT and GPT are considered to be the most important amino acid catabolism enzymes of teleostean fish\(^{10}\). In the present study, GOT and GPT activities in muscle and hepatopancreas significantly increased with higher dietary arginine concentrations until a certain point; then, the activities decreased with further increases in dietary arginine levels, supporting the PRV results. Similar observations were reported for juvenile Jian carp supplementation with methionine hydroxy analogue in practical diets\(^{10}\). The present results indicate an efficient use of dietary amino acids for growth when fish are fed with an optimal dietary arginine concentration.

Fish growth is mainly associated with digestive and absorptive ability\(^{11,12}\). Digestion and absorption of nutrients depend on the activity of digestive enzymes and brush-border membrane enzymes, which are responsible for breaking down and assimilating food\(^{18}\). Fish exocrine pancreas synthesises and secretes a large number of digestive enzymes into the intestinal lumen, such as trypsin, chymotrypsin, lipase and amylase\(^{19,20}\). The potential energy of the Na\(^+\)/K\(^+\)-ATPase is used by many transport systems to move, for example, phosphate, amino acids or glucose into the cells\(^{89}\). AKP, an important enzyme in the absorptive process in fish, is considered to be a general marker of nutrient absorption\(^{90}\), and \(\gamma\)-GT is involved in peptide transport\(^{91}\). CK has a key role in the energy metabolism of cells, because it catalyses the transfer of phosphate to creatine in an ATP-dependent manner\(^{92}\). In the present study, trypsin, chymotrypsin and amylase activities in hepatopancreas significantly increased with higher levels of dietary arginine. Similarly, activities of Na\(^+\)/K\(^+\)-ATPase, AKP, \(\gamma\)-GT and CK in the intestine significantly increased with dietary arginine levels. In addition, SGR was positively related to the activity of these enzymes \(r_{\text{trypsin}} +0.895, P<0.05\); \(r_{\text{chymotrypsin}} +0.889, P<0.05\); \(r_{\text{amylase}} +0.854, P<0.05\); \(r_{\text{Na}^+\text{/K}^+\text{-ATPase}} +0.957, P<0.01\); \(r_{\text{AKP}} +0.921, P<0.01\); \(r_{\text{\(\gamma\)-GT}} +0.877, P<0.05\). These results demonstrate that the higher growth performance in fish fed with optimal arginine levels was related to a higher activity of enzymes involved in digestion and absorption. Furthermore, studies from our laboratory found that glutamine\(^{53}\) and lysine\(^{34}\) improved digestive and absorptive enzyme activities in juvenile Jian carp. To date, information regarding the effect of arginine on the activity of digestion and absorption enzyme is scarce. Evidence from a structural analysis has shown that arginine residues have an important role in digestion and absorption enzymes\(^{28,29,31,32}\). In addition, arginine metabolites, such as polyamines and NO, might be involved in the beneficial effects on digestive and absorptive enzyme activities. Péres \textit{et al.}\(^{93}\) showed that supplementing spermine to microparticulate diets increased pancreatic enzyme activities in sea bass larvae. Fish exocrine pancreas is the main site for digestive enzyme synthesis and secretion\(^{19,20}\). Studies on mice and pigs indicated that NO has an active role in pancreatic secretion\(^{24,25}\). Moreover, the enhancement of digestive and absorptive enzyme activities with arginine might be related to the integrity, growth and development of fish digestive organs, which are the foundation of digestion and absorption. Lovett & Felder\(^{94}\) reported that the activity of the digestive enzymes was correlated with the growth and development of the hepatopancreas in white shrimp \(\text{(Penaeus setiferus)}\). In the present study, the hepatopancreas weight and protein content showed a similar trend with the digestive enzyme activities, suggesting a beneficial effect of arginine on hepatopancreas growth and development. The hepatosomatic index of sea bass was increased significantly up to a point and decreased thereafter as dietary arginine levels increased\(^{2}\). Intestine length, weight and protein content increased with increasing dietary arginine concentrations, suggesting that arginine also stimulated fish intestinal growth and development. Furthermore, folds height was responsive to dietary arginine in the present study, which indicates the improvement of intestinal morphometric integrity. The beneficial effect of arginine on the integrity, growth and development of fish hepatopancreas and intestine might be related to polyamines. Polyamines (putrescine, spermidine and spermine), important products of arginine degradation in cells, are essential for cell proliferation and differentiation\(^{95}\). Like other intestinal mucosal cells\(^{96}\), fish brush-border membrane might depend on polyamines for proliferation and differentiation. However, more studies are required to elucidate a more detailed mode in which arginine mediates the digestive and absorptive ability in fish.

Intestinal microbiota has an important role in fish health status\(^{56}\), and alterations in microbial balance might result in detrimental effects to hosts\(^{37}\). In the present study, \textit{Aeromonas} and \textit{E. coli} gradually decreased with dietary arginine levels, whereas \textit{Lactobacillus} gradually increased. Although limited information is available regarding the effects of arginine on fish intestinal microbial populations, similar observations were reported in juvenile Jian carp supplemented with methionine\(^{39}\). The underlying mechanism needs to be further investigated.

In the present study, the hepatopancreas and intestine protein content increased with increasing dietary arginine,
suggested the improvement of protein synthesis. Translation initiation, the limiting step in protein synthesis, is regulated by the TOR signalling pathway. A study from our laboratory indicated that TOR was involved in the regulation of fish IEC protein synthesis with Gin supplementation (J Jiang and XQ Zhou, unpublished results). Fish growth consists primarily of an increase in body muscle mass by protein synthesis and accretion. Seiliez et al. showed that re-feeding induces the activation of the TOR pathway in rainbow trout muscle by enhancing the phosphorylation of TOR and 4E-BP1. In liver, a protein anabolic response was accompanied by increased phosphorylation of 4E-BP1 in human and rats after a protein meal and elevated phosphorylation of TOR in rainbow trout. Moreover, arginine regulated 4E-BP1 phosphorylation through the mTOR signalling pathway in IEC6 and in IEC18 rat intestinal epithelial and intestinal porcine epithelial cell -1. These studies indicate a stimulation of an amino acid-sensitive target of a rapamycin signalling pathway involved in regulating protein accretion in mammals and fish. To our knowledge, the present study is the first to determine the effect of dietary arginine on the mRNA expression of major kinases involved in the TOR pathway in a fish species. Extending these observations, we reported here that patterns of difference in mRNA levels of 4E-BP1, the inhibitor of translation, were properly opposite to TOR mRNA levels in the hepatopancreas, muscle and intestine, suggesting that arginine might decrease the inhibition of translation and increase TOR activity, thus improving the synthesis of proteins. These results suggest that arginine might improve protein synthesis in fish through the TOR pathway. These novel findings might explain our observation that arginine enhanced fish protein retention, intestinal enzyme activities and hepatopancreatic and intestinal growth. It is worth noting, however, that patterns of difference in TOR and 4E-BP1 mRNA levels in the PI and MI were opposite to that in hepatopancreas, muscle and DI. Understanding the underlying mechanisms require further studies.

Therefore, we conclude that arginine could improve fish growth and intestinal enzyme activities and maintain an intestinal microbial balance by promoting the growth of health-promoting bacteria and decreasing the growth of harmful bacteria in juvenile Jian carp. The arginine requirement of Jian carp was estimated by using a quadratic regression analysis of amino acid requirements in constant darkness. The results indicate that TOR was involved in the regulation of protein synthesis and accretion. Seiliez et al. showed that re-feeding induces the activation of the TOR pathway in rainbow trout muscle by enhancing the phosphorylation of TOR and 4E-BP1. In liver, a protein anabolic response was accompanied by increased phosphorylation of 4E-BP1 in human and rats after a protein meal and elevated phosphorylation of TOR in rainbow trout. Moreover, arginine regulated 4E-BP1 phosphorylation through the mTOR signalling pathway in IEC6 and in IEC18 rat intestinal epithelial and intestinal porcine epithelial cell -1. These studies indicate a stimulation of an amino acid-sensitive target of a rapamycin signalling pathway involved in regulating protein accretion in mammals and fish. To our knowledge, the present study is the first to determine the effect of dietary arginine on the mRNA expression of major kinases involved in the TOR pathway in a fish species. Extending these observations, we reported here that patterns of difference in mRNA levels of 4E-BP1, the inhibitor of translation, were properly opposite to TOR mRNA levels in the hepatopancreas, muscle and intestine, suggesting that arginine might decrease the inhibition of translation and increase TOR activity, thus improving the synthesis of proteins. These results suggest that arginine might improve protein synthesis in fish through the TOR pathway. These novel findings might explain our observation that arginine enhanced fish protein retention, intestinal enzyme activities and hepatopancreatic and intestinal growth. It is worth noting, however, that patterns of difference in TOR and 4E-BP1 mRNA levels in the PI and MI were opposite to that in hepatopancreas, muscle and DI. Understanding the underlying mechanisms require further studies.

Therefore, we conclude that arginine could improve fish growth and intestinal enzyme activities and maintain an intestinal microbial balance by promoting the growth of health-promoting bacteria and decreasing the growth of harmful bacteria in juvenile Jian carp. The arginine requirement of Jian carp was estimated by using a quadratic regression analysis of SGR data to dietary arginine levels reported to be at 18-0 g/kg diet, corresponding to 55-0 g/kg dietary protein for the maximum growth of this fish. Finally, TOR and 4E-BP1 mRNA levels in different tissues might explain the arginine-enhanced fish growth and digestive and absorptive ability.

Acknowledgements

The present study was supported by the National Department Public Benefit Research Foundation (Agriculture) of China (20100303020), the Program for New Century Excellent Talents in University (NCET-08-0905) and the Key Project of Chinese Ministry of Education (208120). G. C. was responsible for the feeding trial, statistical analysis and preparing the manuscript. L. F. prepared the manuscript and proofread the manuscript. Y. L. prepared the manuscript and edited the manuscript. We thank J. J., K. H. and Wu Pei for their technical assistance for the real time-quantitative PCR analysis. W. J. prepared the manuscript and created the tables. L. S. researched the references and created the figures. X. Z. provided valuable advice on the study design and discussion. The authors declare no conflicts of interest.

References

Intestinal enzyme activities altered by arginine

205

 and leucine regulate p70 S6 kinase and eIF-4E-BP1 in intestinal

 proliferation and prevents endotoxin-induced death of
 intestinal cells. Amino Acids 38, 1227–1235.

 dietary arginine accelerates intestinal mucosal regeneration
 and enhances bacterial clearance following radiation enter-

 nutrition. In Modern Nutrition in Health and Disease, 10th ed.,
 pp. 1115–1142 [ME Shils, JA Olson, M Shike and AC Ross, editors].
 Baltimore: Lippincott Williams and Wilkins.

 gastrointestinal tract of marine fish larvae. Comp Biochem
 Physiol C Toxicol Pharmacol 130, 477–487.

 space of pancreatic acinar cells and the synthetic pathway
 of zymogen in Scophyodon acrofa L.: ultrastructural aspects.
 Tissue Cell 40, 7–20.

 Intestinal alkaline phosphatase of the fish Cyprinus carpio:
 regional distribution and membrane association. J Exp Zool 279,
 347–355.

 effects of L-arginine-nitric oxide-producing pathway in rats

 stimulated pancreatic secretion is differentially regulated
 by constitutive nitric oxide synthase isoforms in mice.
 Am J Physiol Gastrointest Liver Physiol 286, G206–G213.

 amino acid metabolism of juvenile Jian carp (Cyprinus carpio var. Jian).
 Aquacult Nutr 13, 457–461.

 oxide in neurally induced pancreatic exocrine secretion
 in pigs. Am J Physiol Gastrointest Liver Physiol 266,
 G206–G213.

 enzymes from carp (Cyprinus carpio) – I purification and
 physical properties of trypsin, chymotrypsin, elastase and
 carboxypeptidase. B Comp Biochem Physiol B Biochem Mol
 Biol 69, 639–646.

 and characterization of alpha-amylase from Atlantic salmon
 (Salmo salar L.). Comp Biochem Physiol A Mol Integr Physiol 145,
 479–492.

 and expression in Escherichia coli of three creatine kinase
 muscle isozyme cDNAs from carp (Cyprinus carpio)

29. Chen XW & Shi ZY (2007) cDNA sequence analysis and
 tertiary structure prediction of alkaline phosphatase from
 Paralichthys olivaceus. Chin J Mol Bio Mol Biol 23,
 442–449.

 (1977) An essential arginine residue in the ATP-binding
 centre of Na⁺ + K⁺)-ATPase. Biochim Biophys Acta 482,
 213–227.

 of Na,K-ATPase residue a1-Arg⁵⁴⁴ in the segment
 Arg⁵⁴⁴ – Asp⁵⁴⁷ for high-affinity binding of ATP, ADP, or
 MgATP. Biochemistry 41, 1451–1456.

32. Stole E & Meister A (1991) Interaction of γ-glutamy trans-
 peptidase with glutathione involves specific arginine and
 lysine residues of the heavy subunit. J Biol Chem 266,
 17850–17857.

33. Lin Y & Zhou XQ (2006) Dietary glutamine supple-
 mentation improves structure and function of intestine of
 juvenile Jian carp (Cyprinus carpio var. Jian). Aquaculture
 256, 389–394.

34. Zhou XQ, Zhao CR & Lin Y (2007) Compare the effect of
 diet supplementation with uncoated or coated lysine
 on juvenile Jian Carp (Cyprinus carpio var. Jian). Aquacult
 Nutr 13, 475–481.

 on intestinal enzymes activities, microflora and humoral
 immune of juvenile Jian carp (Cyprinus carpio var. Jian).

 Aquac Res 41, 1553–1573.

37. Trust TJ (1975) Facultative anaerobic bacteria in the digestive
 tract of chum salmon (Oncorhynchus keta) maintained in fresh
 water under defined culture conditions. Appl Environ Microbiol 29,
 663–668.

 levels on the growth performance, digestive capacity and
 amino acid metabolism of juvenile Jian carp (Cyprinus carpio var. Jian).
 Aquaculture 340, 1073–1082.

 supplementation with glutamine and a combination of
 glutamine-arginine on intestinal health in twenty-five-day-

40. Holz MK, Ballif BA, Gygi SP, et al. (2005) mTOR and S6K1
 mediate assembly of the translation preinitiation complex
 through dynamic protein interchange and ordered phos-

 and in vitro assessment of TOR signaling cascade in rainbow
 trout (Oncorhynchus mykiss). Am J Physiol Regul Integr Physiol

 trout genetically selected for greater muscle fat content
 display increased activation of liver TOR signaling and lipogenic
 gene expression. Am J Physiol Regul Integr Physiol 297,
 R1421–R1429.

 genetic characteristic of Jian carp (Cyprinus carpio var. Jian)

44. Dong ZJ & Yuan XH (2002) The utilizations of heterosis
 genetic characteristic of Jian carp (Cyprinus carpio var. Jian).
 Jpn J Breed 52, 276–277.

 effect of dietary protein levels on the growth performance,
 digestive capacity and amino acid metabolism of young Jian carp

46. Cheng HL, Sun SP, Peng YX, et al. (2011) Growth, body compo-
 sition and intestinal enzyme activities of juvenile Jian carp
 (Cyprinus carpio var. Jian) fed graded levels of dietary

 levels on growth, body composition and intestinal
 enzyme activities of juvenile Jian carp (Cyprinus carpio

