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ON BASIS CONSTANTS AND DUALITY 
IN BANACH SPACES 

BY 

LEONARD E. DOR (12) 

ABSTRACT. Every Banach space with a non-shrinking (uncondi
tional) basis (Xj) can be renormed so that the biorthogonal sequence 
(xf) has a much smaller (unconditional) basis constant than (xt). On 
the other hand, if the unconditional constant of (xf) is C < 2 then 
the unconditional constant of (xt) is at most C/(2 —C). This estimate 
is sharp. 

1. Let (Xi) be a basis for a Banach space X. As is well known, the 
biorthogonal functional (xf) are then a basic sequence in X*, whose basis 
constant is dominated by that of (xt). Thus, the two constants coincide in the 
case when (xt) is shrinking, i.e. when [xf] = X* (since the biorthogonal func
t ional (xf*) for (xf) may be then identified with (xt)). We show here in 
Theorem 1 that if (xt) is non-shrinking, then X can be renormed so that the 
basis constant of (xf ) is less than 2, while that of (x )̂ (and of any permutation of 
(Xj)) is as large as we wish. Thus, the basis (xj) is shrinking if and only if its 
basis constant equals the basis constant of its biorthogonal basis under all 
possible renormings of its span X. This result characterizes an isomorphic 
property of a basis by the permanence of an isometric property under all 
possible renormings of its span. In this sense it is analogous to the result of 
Davis and Johnson [2] who showed that a space X is reflexive if (and only if) 
under every renorming X is isometric to a dual space. 

The first example of a basis (x;) whose basis constant is larger than that of 
(xf ) was given by I. Singer [4]. His (and our) examples show that even if the 
basis constant of (xf) is 1, no conclusion can be drawn about the basis constant 
of (x(). 

Against this background, it is interesting to realize that if the unconditional 
constant of (xf) is C < 2 and (xt) is a basis for X, then the unconditional 
constant of (xt) is bounded by a function of C. This is the content of Theorem 2 
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where we present a sharp estimate on the unconditional constant and the basis 
constant of the basis (xt) given the unconditional constant of (xf). 

Before continuing, let us recall some notation (we follow [3] generally). 
Given a basis (xn), we put 

PAx = X x?(x)Xi, xeX, 

for every finite set A ç N , and put 

n 

Pn* = Z X?(x)*i> XeX 

i = l 

for every neN. The basis constant of (xt) is defined as supnG^ ||Pn||. If (xt) is 
unconditional, we can introduce the unordered basis constant (sometimes called 
the "suppression constant") defined as sup f in i t eAsN ||PA||, or, alternatively, as the 
supremum of the basis constants of all the permutations of (xf). Larger by a 
factor between 1 and 2 is the unconditional constant of (x^), defined as sup ||Te||, 
with s ranging over {-1,1}N, where for such s we put 

Tex= Z e(0xf(x)Xi, ^ X . 
i = l 

A basis is called monotone (respectively unordered monotone, unconditionally 
monotone), if its (unordered, unconditional) basis constant equals 1. A basis is 
called spreading (sometimes called subsymmetric) if it is equivalent to all its 
subsequences. (Some authors require a subsymmetric basis to be unconditional 
by definition; therefore we prefer to use the term "spreading" here.) 

In Theorem 1 we present the result mentioned above together with its 
unconditional analogue and with a refinement in a special case: If (x() is a 
spreading, non-weakly-null basis for X, then X can be renormed to make the 
basis constant of (xt) arbitrarily large, while making (xf) monotone, or even 
unordered monotone in the case when (xt) is unconditional. (In the latter case 
(Xj) is necessarily equivalent to the usual lx-basis.) 

Our other result goes in the opposite direction. We show in Theorem 2 that 
if (Xi) is a basis for X, and if the unconditional constant of (xf) is C < 2 , then 
the basis constant of (xt) is at most 1/(2 —C) and its unconditional constant at 
most C/(2 —C). In particular, if (xf) is unconditionally monotone, then so is 
(Xi). Both of these estimates are sharp, as shown by the renormings presented 
in Theorem 1. 

The author wishes to thank Professors R. Huff and P. Morris for bringing the 
problem to his attention, and for useful conversations on the topic. 

2. Our first result characterizes shrinking bases in terms of renormings. The 
basic renorming method for dual spaces used here is known (see [2], e.g.). 
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THEOREM 1. Let (xt) be a non-shrinking (respectively, an unconditional 
non-shrinking) basis for X 

(i) Given 0 < o < l and O < 0 < 1 , there is an equivalent norm on X under 
which the basis constant (respectively, the unconditional constant) of (xf) is less 
than (2 — 8)16, while the basis constant of any permutation of (xt) is larger than 
0/8. 

(ii) If, moreover, (xt) is spreading and is not weakly null, then for each K<<*> 
there is an equivalent norm on X under which (xf) is a monotone (respectively, 
unordered monotone) basic sequence, while the basis constant of any permutation 
of (xt) is larger than K. 

Proof, (i). Choose 0<8, 0 < 1 . (Typically, consider 0 close to 1). Without 
loss of generality, (xt) is monotone (respectively unconditionally monotone). By 
our assumption, [xf] j= X, so there is 0 ^ cj> e X* satisfying 

(1) II4>N <*(<*>, [ x f ] ) ^ p -

Then for all x* e [xf] and all scalars a, 

||x*||<IMI+||x*-«4>|| 

< ^ d ( a < k [ x f ] ) + ||x*-a4>|| b y ( l ) 

2 
<-||jc*-a</>|| since x*e[xf] 

0 

so we have, taking infimum over all a, 

(2) <i(x*,[>])>|| |x*||, a l lx*e[xf] . 

We define a new norm /—H/| ° n ^ * by 

(3) l/l = (2-2S)d(f , [^] ) + S||/||, / € X * . 

We clearly have 

(4) S | | / | |< l / l<(2-8) ||/||, / G X * . 

so | • | is a norm on X* which is equivalent to || • ||. Now by the Hahn-Banach 
theorem, 

(5) d(/,[<H) = sup{/(x); ||x||<l,<fr(x) = 0}, for all / e X * . 

Therefore d( • ,[</>]), and hence also | • |, is lower-semicontinuous for the weak* 
topology, and thus | • | induces a predual norm | • | on X, which by (4) is 
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equivalent to the original one. We shall show that this norm satisfies the 
conclusions of (i). 

First notice that for x*e[xf] , we have, using (2) and the definition (3), 

\x*\*{2-28)%*\\ + 8\\x*\\ 
(6) ^ 

= (ô-es+s)||x*||>(?||x*||. 
This, together with (4), shows that the (unconditional) basis constant of (xf) in 
the new norm is (2 — 8)16 at most, since the corresponding constant in the old 
norm was 1. 

On the other hand, |<M = 8||*II, while limn__ |Pf <£|> fllim^ \\F*<t>\\>6 H\\ 
(the first inequality holds by (6), since Pf</>e[xf], all n; the second inequality 
holds since <t> = (w*) l i m ^ P f (</>). Thus l i m n _ \Pn\ ̂ l i m ^ \K<t>\l\<l>\ ^ 0/8. 
This argument applies to any reordering of (xt), thus concluding the proof of 

(i). 
(ii). For each strictly increasing function cr:N-*N let S^ be the operator on 

X given by 5^(^=1 aixi) = YT=i «î o-co- I* follows from our assumption on (xf) 
that sup{||S<T||;cr:N-^N strictly increasing}<œ. 

Thus, replacing the original norm by the norm x—^sup^ WS^xW we may 
assume that each S^ is a contraction of X onto [xff(i);]GN], and that (xt) is a 
normalized basis with basis constant 1 (respectively, unconditional constant 1). 

CLAIM. There is a functional $ e X * satisfying <f>(xi) = l, all i. 

In fact, there is i / /eX* such that ^'(x^-j^O. Then there are a scalar c and a 
subsequence (xff(0) of (xf) satisfying 

£ | a / / ( * C T ( 0 ) - l | < l . 
i = l 

Taking i// = S*(ct//) we see that XT=i |iKxf) —1|< 1- Now for any n, and any 
*=Zr=i«i*i> we have |a i |<2| |x | | , all i < n , and so Î ZP̂ ^ o:£ — i/̂ (jc)|r^ 
£r=i l<*i(l~~*K*i))l — 2 ||x|| and so the functional <£> :YT=i aixi~^YT=i ai is well 
defined on X, ||<f>||<||i|r||4-2 and <t>(Xi) = 1, all i, proving the Claim. 

Now if x* = î r = 1 apcf, then for all X G X , 

| « ( X ) | = | ^ ( S ^ ) | = | ( * - X * ) ( S ^ ) | < | | ^ - J C * | | W , 

where we take a : i —» i + n. 
Consequently, ||<£|| = d(<k [xf]), and so we have (2) with 0 = 1. As in the 

proof of (i), we define an equivalent dual norm | • | on X* by (3), with 8<K~l. 
By the argument there, the basis constant of (xt) taken in any order is at least 
6 _ 1 > K under the new norm. We claim that 

(7) d(t cdxT, [<*>]) ^ dÇf aiXf, [<*>]) 
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for all n, a l 5 . . . , an+l. This will show that (xf) is a monotone basic sequence 
under the new norm | • |. To prove (7) we use (5): let x e X satisfy ||x|| = 1 and 
<p(x) = 0 and let <r(i) = i for i<ft and = i + l for i>ft. Then <t>(S(rx) = 0 also, 
and we have 

( £ Oixf)(x)|= | ( | ; e ^ x f ^ x ) ^ | ( n f « ^ ( S ^ l ^ d ^ f a ^ M 

by (5) and since HS^xH^||x|| = 1. Applying (5) again, we obtain (7). 
If (Xi) is in addition unconditional, and was assumed to be unordered 

monotone, the same renorming (3) will leave (xf ) unordered monotone, since 
4> is invariant under permutations of (xt) and therefore (7) holds for all 
permutations of (xf). 

3. It is conceivable that every non-shrinking (respectively, unconditional 
non-shrinking) basis (x;) can be renormed so that (xf) is (unordered) monotone 
while (Xi) has a large basis constant. In fact, we have shown in Theorem l(ii) 
above that many of them can be so renormed. The next result shows that an 
analogous renorming is never possible with regard to the unconditional con
stant. 

THEOREM 2. Let 1 < C < 2. If (xt) is a basis for a Banach space X, and if (xf) 
has unconditional constant C, then 
(i) The unordered basis constant of (xt) is at most 1/(2 — C) 

(ii) the unconditional basis constant of (xt) is at most C/(2 —C). 
In particular, if (xf) is unconditionally monotone, then so is (x(). 

Proof. Let f e X * . Then for each me^J, 

\\Ptf\\^W\\H\\Ptf-(i-Pt)f\\ 

<è||/|| + èsup||P*/-(Pf-P*)/|| 

=s| ll/ll+f sup | |P* /+(P*-P*) / | | 

^ l l / l l+^sup | |P* / | | . 

The second inequality holds since g = P*/'—(I"—P*)/ is the weak* limit of 
(Pf g) as ft->o°, and the third one holds by the unconditionality of (xf). Taking 
supremum on the left hand side, we get that 

(8) SUP||P*/||<; 1 ' " " 
2 - C , u " ' 

so | |Pn | |<l/(2—C) for all n, and since our assumptions are invariant under 
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permutations of (xt), we see that the unordered basis constant of (xt) is at most 
1/(2-C), which proves (i). (ii) follows from (i) and the following simple 
observation: if (xt) is a basis for X with basis constant K, then the natural map 
S of X into [xf]* satisfies | |S| |<1 and | |S _ 1 | |<K Thus the unconditional 
constant of (xt) is at most K times the unconditional constant of (Sx^) which in 
turn is less than or equal the unconditional constant of (xf), since (Sxt) is the 
biorthogonal sequence to (xf) in [xf ]*. 

REMARKS, (a) To see that the constants of Theorem 2 are the best possible, 
consider the usual basis (xt) of Jx under the renorming presented in the proof of 
Theorem l(ii). Namely, the dual norm on L is given by 

\(at)\ = 8 sup \at\ 4-(1 -ô){sup at - inf at} 
i i i 

for all (ai) G L. Then for x* e c0 we have that ||x*m < |x*| < (2 - 8) ||x*|U so that 
the unconditional constant C of (xf) is at most (2 — 8). On the other hand for 
<p= ( 1 ,1 ,1 , . . . ) , we have |<p| = ô, |Pf<p| = |xf| = Ô + ( l - ô ) = l, while | 7 > | = 
8 + (2 — 28) = 2 — 8 for any non-trivial choice of signs. Thus the basis constant 
of (Xi) is at least 1/6 > 1/(2- C), while the unconditional constant of (xt) is at 
least (2 — 8)/8>C/(2 — C). Thus the inequalities of Theorem 2 become 
equalities in this case (and C = 2 — 8). 

(b) In Theorem 2 we assumed that (Xj) was a basis for X The following 
problem is open: Let (xt, xf) be a biorthogonal system in X x X * . Assume that 
[ x J ^ X and that (xf) has an unconditional constant C < 2 . Is (xt) a (necessarily 
unconditional) basis for X? What if C = 1? A related problem is: Let (x1? xf ) 
be a biorthogonal system in X x X * . If [ x J ^ X , and if (xf) is a boundedly 
complete basic sequence, is (xt) a basic sequence? 

It was observed by I. Singer that there is a biorthogonal system (xh xf) in 
X x X * with [Xi] = X so that (xf) is a basic sequence and (xt) is not. This 
follows easily from the existence of examples such as in Theorem l(i). 

(c) Let (Xi) be a basis for X, and let S be the natural map of X into [xf]*. In 
his discussion of basis constants in [5] I. Singer asked the following question: 
Assume that the basis constants of (x() and of (xf) are equal. Is S necessarily 
an isometric embedding? (i.e., does it follow that [xf ] precisely norms X ) It is 
easy to construct a counter-example: Fix C > 1 . Let (y1? y2) be a basis of 
constant C for the two dimensional space Y, and let (zt) be a basis for a 
Banach space Z, so that the basis constant of (zt) is C while that of (zf) is 1. 
Let X = ( Y 0 Z ) 2 , and let (x<) be the sequence (yl9 y2, zu z2, z3,....) in X. The 
basis constants of (x^ and (xf) are both C, but | |S - 1 | |>C. 

ADDED IN PROOF: After this paper had been typeset, the author has dis
covered another result related to Theorem 1 : If X is a non-reflexive Banch space, 
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and K<°° , then there is a basic sequence (yt) in X such that the basis constant 
of (yt) is larger than K, while the basis constant of the dual sequence (yf) in 
[yd* is less than 10 
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