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Carles Casacuberta, Javier J. Gutiérrez and Jǐŕı Rosický

Abstract

A theorem due to Ohkawa states that the collection of Bousfield equivalence classes of

spectra is a set. We extend this result to arbitrary combinatorial model categories.

Introduction

Ohkawa proved in [Ohk89] that the homotopy category of spectra has only a set (that is, not a

proper class) of distinct homological acyclic classes. The homological acyclic class or Bousfield

class 〈E〉 of a spectrum E consists of all E∗-acyclic spectra, where E∗ is the reduced homology

theory represented by E. In other words, 〈E〉 is the collection of spectra X such that E ∧X = 0

in the homotopy category. The original source of this terminology is [Bou79].

Bousfield classes are closely related with localizations. The earliest form of localization

in homotopy theory [Sul74] was a technique to split homotopy types into their p-primary

components for all primes p, thereby introducing the use of Hasse principle methods in topology,

both for spaces and for spectra. A decade later, it was discovered that every p-local spectrum

could be further resolved into vn-periodic components for n > 0. The resulting chromatic

towers and their associated spectral sequences became major tools to compute stable homotopy

groups [Rav86].

All these are special cases of homological localizations. For each reduced homology theory

E∗ defined on spaces or spectra there is an E∗-localization functor [Bou79], which transforms

the E∗-equivalences (that is, maps X → Y inducing isomorphisms Ek(X) ∼= Ek(Y ) for all k) into

homotopy equivalences in a universal way. Localization at a prime p is obtained by letting E∗
be ordinary homology with p-local coefficients, and the nth stage of the chromatic resolution is

E(n)∗-localization, where E(n) = K(0) ∨ · · · ∨K(n) is a wedge of Morava K-theories [JW75].

Two spectra E and F are called Bousfield equivalent if E∗-localization is equivalent to

F∗-localization. This happens precisely when the classes of E∗-acyclic spectra and F∗-acylic

spectra coincide, that is, when the Bousfield classes 〈E〉 and 〈F 〉 are identical. Thus, according

to Ohkawa’s theorem, Bousfield equivalence classes of spectra form a set. A shorter proof of

this fact was given by Dwyer and Palmieri in [DP01], and some consequences were described

in [HP99].

In a different direction, Neeman proved in [Nee92] that Bousfield classes form a set in the

derived category of any commutative Noetherian ring. In this context, the Bousfield class of a
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chain complex A is defined as the collection of chain complexes X such that the derived tensor

product A ⊗ X is zero. Dwyer and Palmieri proved the same result in [DP08] for the derived

category of a truncated polynomial ring on countably many generators over a countable field.

They asked in [DP08, Question 5.9] if Ohkawa’s theorem is in fact true in the derived category

of every commutative ring. This was answered in the affirmative by Stevenson in [Ste11] and by

Iyengar and Krause in [IK13], and it also follows from the results of the present paper.

Both the homotopy category of spectra and the derived category of a commutative ring are

homotopy categories of combinatorial model categories, and their tensor product comes from a

closed monoidal structure in the model category. In this paper we prove that the collection

of Bousfield classes is a set under these general assumptions. This extends the validity of

Ohkawa’s theorem, for example, to categories of motivic spaces or motivic spectra over any

base scheme [MV99], and to categories of modules over (ordinary or motivic) ring spectra. Thus,

Okhawa’s theorem also holds in the derived category of motives over any field k of characteristic

zero, since these are modules over a motivic Eilenberg–Mac Lane spectrum [RØ08].

Specifically, we show that in every combinatorial model category M (neither necessarily

stable nor pointed), for every sufficiently large regular cardinal λ there is only a set of distinct

acyclic classes A(H) for functors H : M→M preserving λ-filtered colimits and such that the

terminal object of M is H-acyclic. An object X of M is called H-acyclic if HX is weakly

equivalent to the terminal object, and we denote by A(H) the collection of all H-acyclic objects.

If a model category M is closed monoidal, combinatorial and pointed, then, since left adjoints

preserve all colimits and there are cofibrant replacement functors on M preserving λ-filtered

colimits for sufficiently large λ, it follows that Bousfield classes in the homotopy category of M
form a set.

In contrast to this fact, in the derived category of Z or in the homotopy category of spectra

there is a proper class of distinct acyclic classes for nullification functors; see [Sta10, § 8] for

terminology and details. Each nullification functor PA preserves λ-filtered colimits for λ big

enough, although the size of λ increases with A.

Our method of proof of Ohkawa’s theorem for combinatorial model categories generalizes the

argument given in [DP01]. A similar argument was used in [Ste11] for compactly generated tensor

triangulated categories. Using a different approach, it was shown in [IK13, Theorem 3.1] that

every well generated tensor triangulated category has only a set of Bousfield classes. This result

is consistent with the fact that homotopy categories of stable combinatorial model categories are

well generated.

Nevertheless, we emphasize that Ohkawa’s theorem is by far not exclusively a result about

triangulated categories. For example, Corollary 3.8 below implies that there is only a set of

homological acyclic classes of simplicial sets or motivic spaces for every base scheme, and our

proof just relies on the fact that these categories are locally presentable and homology functors

preserve filtered colimits.

1. Combinatorial model categories

We assume that regular cardinals are infinite. For a regular cardinal λ, a small category K is

λ-filtered if it is nonempty and, given any set of objects {ki | i ∈ I} where |I| < λ, there is an

object k and a morphism ki → k for each i ∈ I, and, moreover, given any set of parallel arrows

between two fixed objects {αj : k → k′ | j ∈ J} where |J | < λ, there is a morphism γ : k′ → k′′

such that γ ◦ αj is the same morphism for all j ∈ J .
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An object X of a category C is λ-presentable if the functor C(X,−) from C to sets preserves
λ-filtered colimits. A cocomplete category C is locally λ-presentable if the collection of
isomorphism classes of λ-presentable objects is a set and every object of C is a λ-filtered colimit
of λ-presentable objects. A category is called locally presentable if it is locally λ-presentable
for some regular cardinal λ. See [AR94, § 1.B], [GU71] or [MP89] for further information about
locally presentable categories.

The essentials of Quillen model categories can be found in [Hov99] or [Qui67]. A model
category is pointed if it has a zero object, that is, if the initial object and the terminal object
are isomorphic.

A model categoryM is called combinatorial if it is cofibrantly generated [Hir03, Hov99] and
the underlying category is locally presentable. Dugger proved in [Dug01] that a model category
is combinatorial if and only if it is Quillen equivalent to a left Bousfield localization of a category
of diagrams of simplicial sets equipped with the projective model structure. Hence, many model
categories of interest in various contexts are combinatorial. Examples relevant to the present
paper are pointed or unpointed simplicial sets, pointed or unpointed motivic spaces [DRØ03,
MV99], symmetric spectra over simplicial sets [HSS00, § 3.4] or over motivic spaces [Jar00],
module spectra over a ring spectrum [SS00, Theorem 4.1], and bounded or unbounded chain
complexes of modules over a ring [Hov99, § 2.3].

Lemma 1.1. IfM is a combinatorial model category, then for every ordinal α there is a regular
cardinal λ > α with the following properties:

(i) M is locally λ-presentable;

(ii) there are sets of generating cofibrations and generating trivial cofibrations in M whose
domains and codomains are λ-presentable;

(iii) there are fibrant and cofibrant replacement functors onM that preserve λ-filtered colimits;

(iv) the terminal object of M is λ-presentable.

Proof. Take first a regular cardinal µ > α such that M is locally µ-presentable. This is possible
since, by [AR94, Theorem 1.20], if M is locally ν-presentable and ν ′ > ν then M is also locally
ν ′-presentable. Next, pick a set I of generating cofibrations and a set J of generating trivial
cofibrations in M and choose a regular cardinal λ > µ big enough so that all the domains and
codomains of morphisms in I and J are λ-presentable, and such that the terminal object ofM is
λ-presentable as well. Such a choice is possible by [AR94, Proposition 1.16 and Remark 1.30(1)].
Finally, (iii) is a consequence of (i) and (ii), as shown in [Dug01, § 7] or [Ros05, § 3]. 2

For a combinatorial model categoryM and a sufficiently big regular cardinal λ (as provided
by Lemma 1.1), we use the term λ-combinatorial structure on M to designate a choice of the
following items: a set Mλ of representatives of isomorphism classes of λ-presentable objects,
including the terminal object, such that every object of M is a λ-filtered colimit of objects
in Mλ; a set I of generating cofibrations and a set J of generating trivial cofibrations whose
domains and codomains are inMλ; and a fibrant replacement functor and a cofibrant replacement
functor both preserving λ-filtered colimits.

Suppose that a category C is locally λ-presentable and its terminal object is λ-presentable.
Then, if we endow C with the discrete model structure, where the weak equivalences are the
isomorphisms and all morphisms are fibrations and cofibrations, the resulting model category has
a λ-combinatorial structure where the set I of generating cofibrations is the set of all morphisms
between members of the chosen set Cλ; cf. [Ros09, Example 4.6]. Recall that locally presentable
categories are cocomplete by definition and they are also complete by [AR94, Corollary 1.28].
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The condition that the terminal object be λ-presentable holds automatically when it is a

zero object, but may fail otherwise, as exemplified by the category SetI of I-sorted sets (i.e.,

functors I → Set), where I is any infinite set. This category is locally ℵ0-presentable by [AR94,

Corollary 1.54], yet its terminal object is not ℵ0-presentable.

2. Main result

Let M be a combinatorial model category and suppose given a λ-combinatorial structure on it

for a suitable regular cardinal λ. Recall that, if I is the given set of generating cofibrations, then

a morphism f : X → Y is a trivial fibration in M if and only if it has the right lifting property

with respect to all the morphisms in I.

An object X of M is called contractible if the unique morphism from X to the terminal

object ∗ is a weak equivalence. For a functor H : M →M, an object X is called H-acyclic if

HX is contractible. We denote by A(H) the collection of all H-acyclic objects in M.

Given a functor H : M→M and a triple (σ,A, f) where σ : P → Q is in I and

f : P −→ RHA

is a morphism with A ∈ Mλ, where R is the given fibrant replacement functor, we denote by

TH(σ,A, f) the set of all morphisms t : A→ B with B ∈Mλ for which there exists a morphism

g : Q→ RHB such that RHt ◦ f = g ◦ σ.

P

σ

��

f // RHA
RHt // RHB

Q

g

44

Note that, since the terminal object ∗ is inMλ, if H(∗) is contractible then the morphism A→ ∗
is in TH(σ,A, f) for every (σ,A, f).

Finally, let T (H) denote the set whose elements are all the distinct sets TH(σ,A, f) with

A ∈Mλ, σ : P → Q in I, and f : P → RHA.

Theorem 2.1. Suppose given a λ-combinatorial structure on a model categoryM for a regular

cardinal λ. Let H1 and H2 be endofunctors of M that preserve λ-filtered colimits. Then, if

T (H2) ⊆ T (H1) and the terminal object of M is H2-acyclic, it follows that A(H1) ⊆ A(H2).

Proof. Let X be H1-acyclic. In order to prove that X is H2-acyclic, we need to show that for

every σ : P → Q in I and every f : P → RH2X there is a morphism g : Q → RH2X such that

g ◦ σ = f .

Write X ∼= colimKD for a diagram D : K →M where K is λ-filtered and Dk is inMλ for all

k ∈ K. Then H1X ∼= colimK (H1 ◦D) and H2X ∼= colimK (H2 ◦D). Suppose given f : P → RH2X

for a morphism σ : P → Q in I. Since P is λ-presentable, f factors as

P
f ′ // RH2Dk

RH2δk // RH2X

for some k ∈ K, where δk : Dk→ X denotes the corresponding cocone morphism. Thus, we may

consider the set TH2(σ,Dk, f ′) in T (H2), which is nonempty since Dk → ∗ is in it, as H2(∗) is

contractible.
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By assumption, TH2(σ,Dk, f ′) is then a member of T (H1), so there is an object A ∈ Mλ

and there are morphisms τ : U → V in I and u : U → RH1A such that

TH2(σ,Dk, f ′) = TH1(τ,A, u). (2.1)

This forces, by definition, that A = Dk.
Since H1X is contractible, the morphism RH1X → ∗ is a trivial fibration and hence there is

a morphism v : V → RH1X such that v ◦ τ = RH1δk ◦ u. Since V is λ-presentable, there is an
object k′ ∈ K such that v factors as

V
w // RH1Dk

′ RH1δk′ // RH1X.

Since K is filtered, there is an object k′′ ∈ K together with morphisms α : k→ k′′ and β : k′→ k′′.
Furthermore, since U is λ-presentable and

RH1δk′′ ◦RH1Dα ◦ u = RH1δk′′ ◦RH1Dβ ◦ w ◦ τ,
there is an object k′′′ ∈ K and a morphism γ : k′′ → k′′′ such that the two composites

U
u // RH1Dk

RH1D(γ◦α) // RH1Dk
′′′

and
U

τ // V
w // RH1Dk

′ RH1D(γ◦β) // RH1Dk
′′′

coincide. Then D(γ ◦ α) is in TH1(τ,Dk, u) and therefore, by (2.1), it is also in TH2(σ,Dk, f ′),
which means that the composite

P
f ′ // RH2Dk

RH2D(γ◦α) // RH2Dk
′′′

factors through σ : P → Q. Hence f : P → RH2X also factors through σ and this fact concludes
the proof. 2

3. Consequences

Corollary 3.1. If a model category M admits a λ-combinatorial structure for a regular
cardinal λ, then there is only a set of distinct classes A(H) where H runs over all functors
M→M that preserve λ-filtered colimits and such that the terminal object is H-acyclic.

Proof. Suppose that there is a proper class of functors Hi preserving λ-filtered colimits, such
that the classes A(Hi) are all distinct and contain the terminal object. Then, by Theorem 2.1,
after any choice of a λ-combinatorial structure on M the sets T (Hi) will be distinct. This is
impossible, since all sets T (Hi) are contained in the power set of the union of M(A,B) for
all A,B ∈ Mλ, where Mλ denotes the chosen set of representatives of isomorphism classes of
λ-presentable objects in M. 2

Observe that this argument yields a bound on the cardinality of the set of distinct classes
A(H) for each sufficiently large regular cardinal λ, namely 22

κ
where κ is the cardinality of the

set of all morphisms between objects of Mλ.
As pointed out in [DP01], the cardinality of the set of homological acyclic classes in the

homotopy category of spectra is bounded above by 22
ℵ0 , since there are only countably many

isomorphism classes of finite spectra. Homological acyclic classes of spectra form a lattice, whose
precise size is not known. Its cardinality is at least 2ℵ0 , since distinct sets of primes J yield distinct

897

https://doi.org/10.1112/S0010437X13007616 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X13007616


C. Casacuberta, J. J. Gutiérrez and J. Rosický

acyclic classes represented by Moore spectraMZ[J−1]. Another set of distinct homological acyclic
classes of spectra of cardinality 2ℵ0 was displayed in [DP01, Lemma 3.4], namely those represented
by

∨
n∈AK(n) for every subset A of N ∪ {∞}. Lattices of homological acyclic classes have been

calculated in several localized categories of spectra, including the harmonic category; see [Wol13].

Corollary 3.2. If M is a pointed combinatorial model category, then there is only a set of
distinct classes A(H) where H : M→M has a right adjoint.

Proof. Left adjoints preserve all colimits and, in particular, the initial object (which is also
terminal, since M is pointed). Hence, we may pick a regular cardinal λ such that M admits a
λ-combinatorial structure and the result follows from Corollary 3.1. 2

Let M be a monoidal model category in the sense of [Hov99, § 4.2], so we tacitly assume
that it is closed, but not necessarily symmetric. For an object E of M, the Bousfield class 〈E〉
is the class of all objects X such that the derived tensor product of E and X is isomorphic to
the terminal object in the homotopy category Ho(M). Thus, the following statement generalizes
Ohkawa’s theorem.

Corollary 3.3. If M is a pointed combinatorial monoidal model category, then there is only
a set of distinct Bousfield classes in Ho(M).

Proof. Let λ be a regular cardinal such thatM has a λ-combinatorial structure and let Q be the
chosen cofibrant replacement functor that preserves λ-filtered colimits onM. For each object E,
consider the functor HE : M→M defined as HEX = QE ∧QX. Then HE preserves λ-filtered
colimits for all E, since the functor QE ∧ (−) has a right adjoint Hom`(QE,−) and hence it
preserves all colimits, including the zero object. Moreover, the Bousfield class 〈E〉 is equal to
A(HE), as QE ∧QX represents the derived tensor product of E and X. Since, by Corollary 3.1,
there is only a set of distinct classes A(H) where H preserves λ-filtered colimits and the zero
object, the claim follows. 2

Corollary 3.4. For every commutative ring R there is only a set of distinct Bousfield classes
in the derived category D(R).

Proof. For every ring R, the category D(R) is the homotopy category of the model category
Ch(R) of unbounded chain complexes of R-modules with the standard model structure [Hov99,
Definition 2.3.3]. This structure is combinatorial [Hov99, Theorem 2.3.11] and it is symmetric
monoidal if the ring R is commutative [Hov99, Proposition 4.2.13]. 2

According to [EKMM97, IV.2] or [SS03, Theorem 5.1.6], the category D(R) is equivalent
to the homotopy category of (strict) HR-module spectra for each commutative ring R, where
HR denotes the Eilenberg–Mac Lane spectrum of ordinary cohomology with coefficients in R.
Thus, the following result extends Corollary 3.4. By a commutative ring spectrum we mean a
commutative monoid in the category of symmetric spectra over simplicial sets [HSS00].

Corollary 3.5. For every commutative ring spectrum E there is only a set of distinct Bousfield
classes in the homotopy category of E-module spectra.

Proof. Modules over a commutative ring spectrum E admit a symmetric monoidal model
category structure which is combinatorial; see [SS00, Theorem 4.1] for details. 2

Let S be a Noetherian scheme of finite Krull dimension and denote by Sm/S the category of
smooth schemes of finite type over S. Let MS be the category of pointed simplicial presheaves
on Sm/S, that is, contravariant functors from Sm/S to pointed simplicial sets. Each pointed
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simplicial set is viewed as a constant presheaf, and each object of Sm/S is treated as a discrete
simplicial presheaf via the Yoneda embedding, with an added disjoint basepoint.

Since Sm/S is equivalent to a small category, MS is locally finitely presentable by [AR94,
Corollary 1.54]. Furthermore, as shown in [DRØ03, § 2] or [Jar00, Theorem 1.2], the Nisnevich
topology on Sm/S endows MS with a proper, cofibrantly generated, monoidal model category
structure (with objectwise smash product), whose associated homotopy category is equivalent
to the pointed motivic homotopy category H∗(S) of Morel and Voevodsky [MV99, Voe98] over
the base scheme S.

The category MS can be stabilized into a monoidal stable model category by considering
motivic symmetric spectra with respect to the Thom space T = A1

S/(A1
S −{0}) of the trivial line

bundle over S as in [Jar00], or motivic S-modules as in [Hu03], or motivic functors as in [DRØ03].
All these stable model categories are Quillen equivalent, and their homotopy categories are
equivalent to the stable motivic homotopy category SH(S).

It is important to make a distinction between Bousfield classes and homological acyclic classes
in the motivic context. Namely, if E and X are motivic spectra, the reduced E-homology groups
of X are defined for p, q ∈ Z as

Ep,q(X) = πp,q(E ∧X) = [Sp−qs ∧ Sqt , E ∧X],

where S1
s is the simplicial circle ∆1/∂∆1 and S1

t is the algebraic circle A1
S − {0}, and no

notational distinction is made between a motivic space and its associated suspension spectrum.
The homological acyclic class of E is the class of those X such that Ep,q(X) = 0 for all p and q,
while the Bousfield class of E is the class of those X such that E∧X = 0 in SH(S). As explained
in [DI05, § 9] or [Jar00, § 3.2], the latter condition is equivalent to πp,q(U+ ∧E ∧X) = 0 for all p
and q and all smooth schemes U of finite type over S, where U+ denotes the disjoint union of U
and S. Hence, E ∧X = 0 is a stronger statement than E∗,∗(X) = 0. Note, however, that if the
homological acyclic classes of E and F coincide then their Bousfield classes coincide as well.

As we next state, motivic Bousfield classes form a set. The same result for homological acyclic
classes is proved in Corollary 3.9.

Corollary 3.6. For each Noetherian scheme S of finite Krull dimension there is only a set of
distinct Bousfield classes in the stable motivic homotopy category SH(S) with base scheme S.

Proof. As shown in [Jar00], the category of motivic symmetric spectra admits a proper,
cofibrantly generated, monoidal model category structure whose homotopy category is equivalent
to SH(S). Hence, Corollary 3.3 applies. 2

According to [NS11, Theorem 13] or [Voe98, Proposition 5.5], the full subcategory of compact
objects in SH(S) is countable if Sm/S is countable (where a category is called countable if it is
equivalent to a category with only countably many morphisms). This implies that, if S can be
covered by affine open subsets Spec(Ri) where each ring Ri is countable, then the cardinality of
the lattice of Bousfield classes in SH(S) is bounded above by 22

ℵ0 . This bound also follows from
tensor triangulated category arguments; cf. [IK13, Theorem 2.3].

Corollary 3.7. There is only a set of distinct Bousfield classes in the derived category DM(k)
of motives over any field k of characteristic zero.

Proof. As shown in [RØ08, Theorem 1], the category DM(k) is equivalent to the homotopy
category of modules over the commutative symmetric ring spectrum MZ that represents motivic
cohomology for the given base field k. According to [RØ08, Proposition 38], such modules form a
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symmetric monoidal model category. Since this model category is indeed combinatorial by [SS00,

Theorem 4.1], we may again use Corollary 3.3. 2

If C and D are any two categories and D has a terminal object ∗, then the kernel of a functor

H : C → D is the class of objects X in C such that HX ∼= ∗.
Suppose that C is locally λ-presentable and its terminal object is λ-presentable. Then, as

mentioned in § 1, if we endow C with the discrete model structure, the resulting model category
has a λ-combinatorial structure. For a functor H : C → C, the acyclic class A(H) is the kernel
of H. Hence, Corollary 3.1 specializes to the statement that, if λ is a regular cardinal such that

C is locally λ-presentable and its terminal object is λ-presentable, then there is only a set of

distinct kernels of functors C → C preserving λ-filtered colimits and the terminal object. The
following variant is more useful.

Corollary 3.8. Let C and D be locally λ-presentable categories, where λ is a regular cardinal.
Suppose that the terminal object of C is λ-presentable and D has a zero object. Then there is

only a set of distinct kernels of functors H : C → D that preserve λ-filtered colimits and terminal
objects.

Proof. Note that, since D is locally λ-presentable, an object Y of D is isomorphic to the zero
object 0 if and only if each morphism P → Y with P ∈ Dλ factors through 0. For each functor
H : C → D, consider the set T (H) whose elements are the sets

TH(f) = {t ∈ C(A,B) | B ∈ Cλ and Ht ◦ f factors through 0},

where f runs over all morphisms P → HA in which A ∈ Cλ and P ∈ Dλ. Then it follows as in

the proof of Theorem 2.1 that an equality T (H1) = T (H2) implies that the kernels of H1 and
H2 coincide, if H1 and H2 preserve λ-filtered colimits and terminal objects. Since there is only

a set of distinct sets T (H), the claim is proved. 2

If E∗ denotes the reduced homology theory on pointed simplicial sets represented by a
spectrum E, then the condition E∗(X) = 0 on a given X is equivalent to E ∧ Σ∞X = 0 in

the homotopy category of spectra. Hence, it follows from Ohkawa’s theorem that the collection
of distinct homological acyclic classes of pointed simplicial sets is also a set. This result can be
inferred directly from Corollary 3.8 without passing to the category of spectra, since representable
homology theories preserve ℵ0-filtered colimits if viewed as functors from pointed simplicial sets

to graded abelian groups.

The same argument is valid in motivic homotopy theory.

Corollary 3.9. There is only a set of distinct homological acyclic classes in the unstable motivic

homotopy category and in the stable motivic homotopy category over any base scheme S.

Proof. This follows from Corollary 3.8, both in the stable case and in the unstable case, by
viewing E∗,∗ as a functor to bigraded abelian groups for each motivic spectrum E. This functor

preserves ℵ0-filtered colimits since smashing with a cofibrant replacement of E has a right adjoint
and the circles S1

s and S1
t are finitely presentable. 2

Note that Corollary 3.6 also follows from Corollary 3.8 by letting π∗,∗ take values in the
category of presheaves of bigraded abelian groups on Sm/S, which is locally finitely presentable
by [AR94, Corollary 1.54].
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