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i. Introduction

In this paper an attempt is made to find an answer to the ques-
tion, "What is the most advantageous size for the retention limit
of a risk portfolio, given the fact that a certain stability requirement
is to be satisfied?"

This problem will be approached from the viewpoint of an insurer
who wishes to obtain a certain degree of stability at lowest
cost.

It is assumed that in his choice of reinsurance methods, the
insurer restricts himself to either a surplus treaty, a stop loss
treaty or a combination of both these types.

Moreover it is assumed that "stability" can be adequately
measured by the variance of the risks retained for own account.

We start to consider a reinsurance policy based on the surplus
system where the amount of risk in excess of a retention limit u
is ceded.

By thus limiting the potential loss on each risk individually,
the variance is kept at a certain level, but at the expense of an
amount of premium payable to a reinsurer.

The insurer could, of course, reduce the reinsurance cost by in-
creasing his retention but he then is bound to incur a higher variance
in his portfolio, which would mean a loss of stability.

One might ask, however, whether a suitably chosen stop loss
coverage could bring the variance down again to the proper level
at lesser cost than the profit obtained by taking a higher retention.
A reduction in reinsurance cost would then have been effected.

The question leads to an optimization problem, which in a more
general setting, has been discussed by K. Borch. *

*) K. J-Jorch: "An Attempt to Determine the Optimum Amount of Stop
Loss Reinsurance":

XVIth International Congress of Actuaries, Brussels i960.
Volume 1, page 597.
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Starting from the conception that reinsurance is a transformation
of the distribution function of the risk business into another
distribution function, which has a prescribed variance, this author
proves, that stop loss reinsurance is the most efficient form of
reinsurance, but concludes "whether it is also the cheapest form
will depend on the loading".

If, however, the subject of optimal reinsurance is approached
from an applied viewpoint, the matter of loadings should not be
ignored the more so if we are considering stop loss reinsurance.

In this type of reinsurance contract the reinsurer is generally
exposed to very considerable potential liabilities, that have a
small probability to occur and consequently lead to modest net
premiums.

It is obvious that in view of this, it is of particular importance
for the reinsurer to establish an adequate contingency loading on
the net premium.

In the approach outlined in the following pages we assume
that the reinsurer consistently adds a constant fraction of the
standard deviation of the net stop loss premium to this net premium.

2. Model

We assume a static and homogeneous risk portfolio i.e. no
changes occur apart from claims and the single risks have identical
basic probabilities.

The number of claims have a Poisson distribution (with mean X
in the unit time period) and each claims has associated with it a
positive random variable x, representing the claim size. The claim
sizes are regarded as independent of the distribution of the number
of claims, independent of each other and identically distributed
with d.i.G.(x).

A surplus reinsurance is in force for the excess over the retention
limit u, which corresponds to a truncation of G(x) at the point u

G(x, u) = G{x) — H(x — u)G (x) + H{x — u)G (u)

H(x) stands for Heaviside's Unit Function, defined as

K ' = o (x < o)
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The characteristic function of dF(x, u), which describes the
behaviour of the risk business retained, becomes

exp X{(cp(s, u) — 1)} where <p(s, u) = eixs dG (x, u)

0

It is important to note that u is regarded as a variable. The value
assigned to it will have to satisfy some condition of optimality.

Employing for the moments of the conditional d.f. of the claim
size the notation

u

M « ) = j x^dG(x) + w{i —G{u)} v = 1, 2, . . . (1)

the following transformed variable is introduced in F(x, u)

x = {XJJ.2(M)}1/2 Z + X[xi(«), or

z + X{n(«)] = Fo(z, u) (2)

We expand the characteristic function for the transformed
variable in ascending powers of X—1/2 and obtain the following,
well known, series representation:

B3(w) B4(«) 10 Bl
""'"" ' + ^ 4 - ®{i){z) + -Zp®^{z) + - • • (3)4'X o!X

1 r • iM „ (u\
where0(2) = ~i== e~\ dy, 0><re>(z) = —- <b(z) andBv(w) = ^uy '

1/ 2n J dzn v

It is to be stressed that z is in fact a function of w.

3. Asymptotic Expansions for the Net Stop Loss Premium and
its Standard Deviation.

Stop Loss reinsurance is understood to mean a reinsurance
contract, covering the excess (if any) over a certain limit of the
total of claims related to a fixed period of time.

The limit just mentioned will be expressed in relation to the
mean claim X[ii(w) as the quotient between it and the mean claim.
It will be named "priority" and denoted by the symbol v.
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From the definition the expressions for the net stop loss premium
and its standard deviation are seen to be as follows

n(u, v) = [x — vXii(u)]dF(x, u) (4)

vX\J.,(u)

a*(u, v) = [x — v\[i.i(u)]2dF(x, u) — n2(u, v) (5)

With the help of the transformation (2) we can write
CO

n{u, v) = {X[JL2(w)}i/2 f (z — tuv)dF0 {z, u) (6)

tuv

a*(u, v) = X[xa(w) J {z — tuv)HF0 (z, u) — 7t*(«, v) (7)

tu.

The indexes in tuv call attention to the fact that tvu depends on u
and v as follows

Without justifying whether this is permissible, we evaluate the
integrals (6) and (7) by means of series representation (3) and obtain

TZ(U,V) = {XfjL2(«)}1/a[— tuv + tuvO{tuv) + ®M{tuv) —

&s(u)
i ® ( 2 ) ( t u v ) + ...] (9)

W(tuv) + ...]-^(u,v) (10)

If X is assumed to be large (e.g. greater than 100) we may reason-
able neglect the terms involving X~'/2 and its higher powers.

For the remainder we write for short

P(tuv) =~tuv + tuv ®{tuv) + W>{tuv) (II)

S*{tUV) = (I +t2
uv {{l—^{tuv)} — tuv^M{tuv)—Ps(tuv)

= I — 0(tuv) — tuv P{tuv) — P2(tuv) (12)
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And finally
P{tuv) (13)

a*(u,v) = Xfia(«) S*(tuv) (14)

The approximations (13) and (14) will be used in the sequel.

4. Effect of Stop Loss Reinsurance on the Variance of a Risk Portfolio.

The conclusion of a stop loss reinsurance will have a lowering
effect on the variance of the risk born by the insurer.

As this variance is adopted as a proper measure of the stability,
it is useful to establish a relation between the variance before the
introduction of a stop loss and after, in order to have a means for
adapting the characteristics of the stop loss to the desired amount
of reduction in the variance.

First let it be mentioned that a stop loss reinsurance will affect
the mean claim for own account as follows

E(c) = xdF(x,u) + v~k\x.,{u) dF(x,u)

E(c) = X[ii(w)— n(u, v) (15)

As was to be expected the mean claim decreases by the amount
of the net stop loss premium.

Using eqn. 15, the variance, if a stop loss reinsurance for a net
premium iz(u, v) is effected, is seen to be

E{c — E(c)f = f [x — {k[ii{u) — Tz{u,v)}]2dF(x,u) +

0 op

+ [vXfii(«) —{0^i{u) —Tz{u,v)}}* J dF(x,u) (16)

Writing this in full and suitably rearranging the terms, it follows
that

E{{c — E(c)Y = X|xa(«) {S*{tuv) + 2®{tuv) — 1} (17)

For the third factor in (17), we use the abbreviation

&{tuv) = S*(tUv) + 2<!>{tuv) — I (18)
3
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We now apply eqn. 17 to an insurance portfolio for which only
a surplus reinsurance is in force, with retention limit u0. The choice
of u0. corresponds to a variance Afi2(w0).

Subsequently a stop loss is introduced in addition to the surplus
reinsurance, and we require the variance of the retained risk not
to deviate from the initial value.

Assuming the parameter X not be subject to any changes, it is
obvious from (17) that all pairs u and v, which satisfy

fi2(w0) = (12(M) $2(tuv) (19)

lead to a variance \\J.2(UO), for the risk retained by the insurer.
Next we examine the second factor in eqn. 19.

Considering eqn's 12 and 18, it appears that, if tuv = o

§2(0) = 1/2 — {O<D(o)}2 ~ 0.34 (20)

For tuv running from zero to infinity, it is easily seen that
&2{tuv) is a monotonically increasing function, attaining unity at
infinity.

Thus it appears that a value of approximately 0.34 is the mini-
mum of <$2(tuv) for positive argument.

This implies, that a stop loss reinsurance cannot reduce the
variance of a given group of risks, to less than about 1/3 of the
amount of variance the risks would have if no stop loss were in
force.

Hence, introduction of stop loss reinsurance, does not allow the
increase of the retention limit beyond a certain maximum corres-
ponding to a variance which is about three times the initial variance.

According to eqn. 8, for tuv = 0, the variable v will have the
value unity. This means that, if the maximal reduction of variance
has been achieved, the reinsurer pays all claims in excess of the
mean claim amount and consequently the maximal extent of stop
loss cover has been obtained by the insurer.

5. Minimization of the Total Reinsurance Cost.

The types of reinsurance considered here are surplus- and stop
loss reinsurance.
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The possibility of e.g. quota share cession will be ignored.
To find the minimum cost, we will have to assign such values

to u and v which satisfy the minimum of the following cost function

C(u,v) = yX f (x — u)dG{x) + e{(X!i.a(M)}1/25(^) (21)

The first term in the second member of (21) represents the total
profit margin y, which is ceded if the retention is u.

The second term is the loading on the net stop loss premium,
for which we assume the reinsurer to charge a fraction s(< 1)
of the standard deviation of the net stop loss premium.

It is noticeable that the first term is a decreasing function of u
while the second increases with increasing u.

This makes it reasonable to expect (21) to have a minimum value
under certain conditions.

The minimum will be, however, subject to the constraint im-
posed by eqn. 19, since the variance of the risk retained, should
have a constant value throughout.

We now obtain the minimum by equating to zero, the differential
coefficients with respect to u and v, of the following equation

00

C(u,v) = 8X ( {x — u) dG{x) + s{\[i2(u)y/*S{tuv) +

+ L[{-k^(u)ym(tuv) ~ {X^w)}1/2] (22)

where we have introduced the Lagrangian multiplier L.

Differentiating

+ L8(tuv)] + — {k\j.2{u)yi* [zS'{tuv) + L8'(tuv)] = o (23)

~dC(u,v) 7>tuv

-— = —— {X^fw)}1/2 hS'Huv) + L8'(tuv)l = 0 (24)

Eliminating L from eqn's 23 and 24, we obtain
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= \e[S{tUv) —
L

s'(tu

S'( (25)

The differential coefficients, occurring in the right hand member,
can be found by differentiating (12) and (18) with respect to tuv.
We have

s'(tuv) = — — ^ - c — (26)

[(,, + p(y[i-t(y
*(t«v) = ^7~T (27)

Substitution in eqn. 25 of (26) and (27) and making use of (19)
leads to

The right hand member of eqn. 28 will be denoted by xY(tuv).
Although it looks difficult to handle, tabulation for a suitable range
of tuv can be easily performed, as *¥(tUv) depends on tuv exclusively
and not on the parameters of the case in hand. These parameters
are all collected in the lefthand member of eqn. 28.

Examination of ^(tuv) reveals that *F(o) = 0.68 and that for
positive tuv, it converges monotonically towards infinity as tuv

goes to infinity i.e. no zero's occur for positive values of tuv.
From the latter fact we infer that a solution for the optimal

retention must always be finite, in view of the fact that the reci-
procal of u occurs in the lefthand side of eqn. 28.

This eliminates the possibility that a minimization of reinsurance
cost, could ever be obtained purely by means of a stop loss contract,
as this would require inclusion of infinity in the admissible range
of u.

The possibility that exclusively a surplus reinsurance will provide
an optimal solution can be excluded as well if we consider that then
the optimal retention will take the value u0.
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By virtue of eqn. 19 this corresponds to infinite tUv, which in
turn will make the righthand member of eqn. 28 infinitely great.

This leads, however, to a contradiction, since the lefthand
member of this eqn. remains finite since u is greater than zero.

Hence, the conclusion can be drawn that the cheapest reinsurance
will always be a combination of surplus- and stop loss if we limit
the choice between these two types.

It should be added, however, that for very large X, u will turn
out that large, that for practical purposes, we can speak of a pure
stop loss reinsurance.

As a rule very large X do not occur in such cases as are current
in the reinsurance market. It so happens that X is commonly
seen to have values below 1000.

If, on the other hand X is very small, say below 100, eqn's 19
and 28 will become rather inaccurate as a result of the approxima-
tion error we have introduced by neglecting terms involving the
successive powers of \—^2. However, for such small number of
expected claims, the reduction in reinsurance cost obtainable by
finding the minimum is hardly of practical interest.

The solution of u and v in practical cases proceeds from eqn's 8,
19 and 28. The functions T(fOT) and &2{tuv) that depend on tuv

only, can be tabulated.
For this purpose the range from o to 1 is sufficient.
Solutions for u and tuv are obtained first by trial and error from

eqn's 19 and 28. From eqn. 8 and the solution of u and tuv the
corresponding v can be found.

6. Numerical Example.

In the table below the sequences of ceded profit are shown if the
initial retention uo is gradually increased. For each u the priority
of the stop loss reinsurance has been chosen so as to bring the vari-
ance down to the level of variance in the initial stage.

«?x2e—«x

The conditional density function of the claim size is :—,
a having the value 0.000,06.

A profit loading of 5 % is assumed for the surplus reinsurance
and a loading of 50 % of its standard deviation has been added
consistently to the net stop loss premium.
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X

u

115,000

135,000

150,000

175,000

200,000

225,000

250,000

275,000

300,000

325,000

350,000

375. o o°
400,000

450,000

500.000

CO

400

IOO V

00

105.9

104.4

102.9

102.1

101.5

IOI.I

IOO.8

IOO.6

100.4

100.3

100.3

IOO.2

IOO.I

IOO.I

IOO

ceded
profit

342.500

357.OOO
350,500
340,000

333.5OO
328,000

326,500

325,000

326,500

328,500

329,000

329,500

330,500

332,500

333,ooo

337.OOO

625

IOO V

00

104.7

1035
102.4

101.6

101.2

100,8

100.7

100.5

100.3

100.3

100.2

100.2

IOO. I

IOO. I

IOO

ceded
profit

535,ooo
530,500
508,500

475.5OO
453,000

436,000

426,000

418,000

417,000

416.000

4J5-5oo
414,500

415,000

416,000

416,500

421,500

795

IOO V

00

104.2

103.1

102.1

101.5

IOI.I

IOO.8

IOO.6

100.4

100.3

IOO.2

IOO.2

IOO.2

IOO. I

IOO. I

IOO

ceded
profit

681,000

669,000

624,000

573,000

537,000

510,000

493,000

480,500

476,500

473.5OO
471,500

469,500

469,000

470,000

470,500

475,000
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