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With the dramatic technological developments of genome-wide association single-nucleotide polymor-
phism (SNP) chips and next generation sequencing, human geneticists now have the ability to assay
genetic variation at ever-rarer allele frequencies. To fully understand the impact of these rare variants on
common, complex diseases, we must be able to accurately assess their statistical significance. However,
it is well established that classical association tests are not appropriate for the analysis of low-frequency
variation, giving spurious findings when observed counts are too few. To further our understanding of the
asymptotic properties of traditional association tests, we conducted a range of simulations of a typical
rare variant (�1%) under the null hypothesis and tested the allelic � 2, Cochran–Armitage trend, Wald,
and Fisher’s exact tests. We demonstrate that rare variation shows marked deviation from the expected
distributional behavior for each test, with fewer minor alleles corresponding to a greater degree of test
statistics deflation. The effect becomes more pronounced at progressively smaller � levels. We also show
that the Wald test is particularly deflated at � levels consistent with genome-wide association significance,
much more so than the other association tests considered. In general, these classical association tests are
inappropriate for the analysis of variants for which the minor allele is observed fewer than 80 times, largely
irrespective of sample size.
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Genome-wide association studies (GWAS) have uncovered
hundreds of loci relevant to common, complex diseases
(Mailman et al., 2007). These studies assay single-nucleotide
polymorphism (SNP) variation across the allele frequency
spectrum, but are limited to studying SNPs with minor
allele frequency (MAF) of at least 1–5%. Despite incom-
plete coverage of rare alleles in GWAS, a number of rare
variants have been implicated in common, complex dis-
eases. For example, recent work in type I diabetes identi-
fied a rare protective mutation in the gene IFIH1, with a
population allele frequency of approximately 2% (Nejent-
sev et al., 2009). Sequencing endeavors, such as the 1,000
Genomes Project, are identifying human genetic variation
down to frequencies less than 1%. This expanding collection
of genetic polymorphisms is, in turn, being made accessible
through extending genome-wide association SNP chips at
ever decreasing frequencies and greater marker density.

With the increased focus on rare variants, the question
of how best to assess their statistical significance arises.

Traditional approaches, namely tests of independence for
contingency tables, are not suitable when numbers of obser-
vations are too few, owing to the inexact approximation of
discrete probabilities to the continuous theoretical �2 distri-
bution (Yates, 1934). For extremely uncommon variation,
methods have been developed to test whether a set of vari-
ants are implicated in disease (Li & Leal, 2008; Madsen &
Browning, 2009; Morgenthaler & Thilly, 2007; Neale et al.,
2011). Such methods are better suited to loci for which clas-
sical association testing cannot be conducted because of the
limited number of observations. Considered another way,
a single locus that has only 10 copies of the minor allele
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in a balanced case–control study cannot achieve signifi-
cance at established genome-wide levels (5×10−8) (Risch
& Merikangas, 1996). One strategy to overcome this prob-
lem is to group multiple variants and to conduct tests of
association with particular regions rather than with specific
variants.

Given that the field has adopted a genome-wide associa-
tion significance threshold, the accuracy of extreme p-values
is also of great importance. For example, in the seminal work
of Cohen and colleagues (2006), who identified PCSK9 as
a component of low-density lipoprotein (LDL) cholesterol,
the authors used a �2 test to assess the role of rare variation
in determining risk of coronary heart disease, and reported
p-values of .008 and .003 for African-American and Cau-
casian samples, respectively. If instead Fisher’s exact test is
applied, these p-values shrink to .0037 and .0024, respec-
tively. Thus, the basic �2 test under these circumstances is
comparatively conservative in the face of rare observations.
To enhance our understanding of the asymptotic proper-
ties of these traditional association tests, we undertook a
range of simulations of the �2 test, the Cochran–Armitage
trend test (Neale et al., 2010; Sladek et al., 2007; Wellcome
Trust Case Control Consortium, 2007), and the Wald test
(Scott et al., 2007). We contrast the asymptotic properties
of these tests with those of Fisher’s (1922) exact test, which
represents the canonical test for small sample sizes.

Methods
To assess the asymptotic behavior of rare variant testing,
we used a simple null model consisting of an SNP with 1%
MAF equally likely to occur in 1,000 cases and 1,000 con-
trols. Our naı̈ve simulation procedure assigned genotypes
for each individual randomly; we sampled N = 2,000 times
(with replacement) from a binomial distribution, thereby
allowing for sampling variance. That is, each individual
replicate may have an observed MAF of 1%, a little more
than 1%, or slightly less than 1%. To further constrain the
behavior of these tests, we limited the minor allele count to
40 copies among 2,000 individuals. To determine whether
the sample size matters, we increased the number of individ-
uals to 10,000, while still fixing the number of minor alleles
to 40. We also considered 20 and 80 copies of the minor
allele in a sample size of 10,000. We proceeded to analyze
each simulated dataset using a suite of common, association
tests: the allelic �2 test, the 1-df Cochran–Armitage trend
test, and the Wald test for logistic regression. As our goal was
to assess the asymptotic behavior of these tests, we chose
to conduct a large number of simulations (one billion) for
each scenario.

Tests of Association
To best represent historical and common practices in genetic
association studies, we have elected to highlight four tests
in particular. The allelic �2 test represents the most basic
of these, while the Cochran–Armitage trend test has gained

popularity as a 1-df test of genotypes. For regression-based
approaches, the Wald test is a straightforward means of
obtaining a �2 approximation. Fisher’s exact test, although
less commonly utilized in the context of genetic association,
is robust to small sample sizes, and as such provides a basis
of comparison for the three traditional approaches.

The allelic �2 test compares allele frequencies between
cases and controls, and is widely used as a test of association
for disease traits (Apple et al., 1994). Since the allelic test
considers the allele as a relevant unit of analysis, it is assumed
that the Hardy–Weinberg equilibrium (HWE) exists. This
is equivalent, in the present context, to assuming that the
alleles at a locus occur independently within both case and
control populations. In other words, non-additive effects of
the alleles at a locus are assumed to be absent. The allelic
test is known to give spurious results if HWE is not met,
although SNPs that show severe departures from HWE are
generally unreliable and should be excluded from analysis.
Interpretation of odds ratios given by this method is also
with respect to alleles, as opposed to individuals, and is
discussed elsewhere (Sasieni, 1997).

The Cochran–Armitage test for trend is a modification
of a 2-df genotypic �2 test to account for a hypothesized
ordering of effects across genotype classes, consistent with
additive models of disease risk (Armitage, 1955; Freidlin
et al., 2002). Applied to common variants, the trend test is a
more powerful test of association than standard allelic and
genotypic �2, owing to a weighting of genotypic classes that
reduces the effective degrees of freedom. As the individual
represents the relevant unit of analysis, the trend test has
an additional advantage of not assuming HWE, although
the allelic and trend tests are expected to be asymptotically
equivalent when this condition is met (Sasieni, 1997). Odds
ratios from the trend test may be interpreted as the increase
in risk to an individual conferred by each additional copy
of the reference allele.

The Wald test (Hauck & Donner, 1977; Wald, 1943)
compares the maximum likelihood estimate of a statisti-
cal parameter with its expectation under the null, often as
an approximation to the theoretical �2 distribution. In the
present context, we apply the Wald test to a simple logistic
model (Aff � �0 + �1·SNP), which considers the number
of minor alleles carried by an individual. Since it is often
desirable to include demographic or clinical covariates in
predictive disease models, we extend our regression model
to incorporate a covariate predictor of fixed prevalence in
the population, but for which carriers of the minor allele are
at increased risk of endorsement. As for our basic logistic
model, we applied the Wald test to obtain a �2 approxima-
tion for the effect of SNP genotype.

As applied herein, Fisher’s exact test compares allele fre-
quencies between cases and controls and therefore may be
considered analogous to the allelic �2. Unlike the allelic
�2, however, Fisher’s exact test is appropriate for all sam-
ple sizes. Fisher (1922) noted that if the marginal totals of
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a 2×2 contingency table are held constant, then the test
statistics follow a known sampling distribution (i.e., hyper-
geometric), from which calculation of the exact probability
of observing a given set of counts by chance is straight-
forward. This robustness, in situations when the number
of observations is otherwise limiting, is due to Fisher’s ex-
act test being based on a discrete probability distribution
rather than approximation to the continuous theoretical
�2. More details regarding these tests can be found in the
supplementary information.

Generation of Asymptotic Distributions
Under each scenario, we simulated genotypic data that were
identical with respect to the total number of minor alleles,
C, the total sample size, N, and the proportions of cases and
controls. For each replicate dataset, we sampled N times
without replacement from a population of N diploid per-
sons, in which only C chromosomes carry the minor allele,
and assigned case status at random to exactly half of all
individuals. It follows that the resultant case–control differ-
ences in allele frequency will be identically distributed, as
illustrated by the observation that in the most extreme cir-
cumstance, all C copies of the minor allele will occur within
cases or controls. By comparison, random simulation of
genotypes on a per individual basis (i.e., sampling with re-
placement) might result in the total number of alleles being
slightly greater or slightly fewer than C. Stated differently,
each replicate dataset represents a standard 2×2 table of
allele counts by outcome, but for which the marginal totals
of rows and columns are fixed. Similarly, for both the trend
test and the logistic model, the data may be arranged as
2×3 contingency tables of genotypic counts by outcome, in
which the marginal totals are generally maintained. That is,
our focus is on the asymptotic properties of standard asso-
ciation tests as applied to low-frequency variants, for which
the occurrence of a minor allele homozygote (MAF2) is an
exceedingly rare event.

Since it is often desirable to include demographic or
clinical covariates in predictive disease models (Bush et al.,
2010; Scott et al., 2007; Thomas et al., 2009), we extended
the regression models to incorporate a binary covariate pre-
dictor of fixed prevalence in the population, which carriers
of the minor allele are more likely to endorse. We assume a
0.10 population endorsement rate across all scenarios, but
vary this rate among carriers as 0.10, 0.20, 0.40, 0.60, and
0.80. For example, consider the scenario in which the en-
dorsement rate among carriers is 0.80; individual covariate
values were drawn at random from a binomial distribution,
with the probability of ‘success’ specified as 0.80 for carriers
of the minor allele and 0.10 for non-carriers, irrespective
of case–control status. For each replicate dataset, we fitted
logistic models that specified case–control status as a func-
tion of SNP genotype and a single covariate, and applied
the Wald test to obtain a �2 approximation for the effect of

SNP genotype. Of particular interest is the effect of adding a
predictor, unrelated to disease, on the regression of disease
outcome on genotype. Note that although the number of
cases and controls is fixed and equal across permutations,
random simulation of a covariate will introduce variance
into the observed distribution of test statistics.

Distributions for Fisher’s exact test were also derived, but
indirectly from the distributions for the allelic �2. This is
justified by our simulation procedure, as fixing the marginal
totals constrains the number of possible configurations of
the data within a 2×2 table of allele counts. That is, each
unique value of the allelic �2 corresponds to a specific set
of observed counts for which the value of Fisher’s exact test
is known.

Due to the exceptional number of permutations re-
quired to evaluate asymptotic behavior within the critical
region, we seeded 100,000 separate instances of our simu-
lation procedure per scenario, making use of several high-
performance computing clusters. Rendering of complete
null distributions for each test was simplified by tabulating
observed test statistics within each constituent distribution
and compounding the resulting counts. We proceeded to
quantify departures from expected asymptotic behavior, as
defined by the theoretical �2 distribution for 109 tests.

Results
Common Association Tests

For each scenario, Table 1 gives the number of Cochran–
Armitage trend, allelic �2, and Wald tests (uncorrected
for continuity) found to be significant at various � lev-
els. Corresponding quantile–quantile plots are displayed
in Figure 1. Expectations regarding asymptotic behavior
are based on the theoretical �2 distribution (see the Cen-
tral Limit Theorem), to which approximations of binomial
SNP data are, by definition, inexact. At a given threshold,
the probability of observing a significant test statistics un-
der the null is simply the proportion of the total number
of permutations. Because our sampling procedure is effec-
tively without replacement, resultant test statistics take on
a finite number of discrete values. This is illustrated by
the step-function-like appearance of the observed quantile
plots (Figure 1).

Consider the distributions of the allelic �2 and Fisher’s
exact tests, recalling that a 2×2 table of allelic counts will
follow a hypergeometric distribution if marginal totals are
held constant. For 40 copies of the minor allele in 1,000 cases
and 1,000 controls, we observe fewer significant allelic �2

tests than expected, with more pronounced discrepancies
for progressively smaller � levels. Comparing the allelic �2

and Fisher’s exact methods, significant test counts obtained
by each method are indistinguishable for all but the most
extreme � levels. Given the same number of minor alleles
(40) in 5,000 cases and 5,000 controls, we see an overall
pattern of deflation similar to that observed for the smaller

TWIN RESEARCH AND HUMAN GENETICS 145

https://doi.org/10.1017/thg.2014.17 Published online by Cambridge University Press

https://doi.org/10.1017/thg.2014.17


T. Bernard Bigdeli, Benjamin M. Neale and Michael C. Neale

TABLE 1

Number of Significant 1-df Allelic �2, Cochran–Armitage trend, Wald, and Fisher’s Exact Test Statistics

Significance threshold (�)

Null distribution � < 10−1 � < 10−2 � < 10−3 � < 10−4 � < 10−5 � < 10−6 � < 10−7 � < 10−8

Theoretical � 2 (1 df) 100,000,000 10,000,000 1,000,000 100,000 10,000 1,000 100 10
CountMA N

Cochran–Armitage trend 40 2,000 79,179,748 6,173,009 639,359 38,879 5,987 143 8 1
Allelic � 2 79,179,748 6,173,016 640,064 38,933 7,647 148 11 0
Wald 79,179,748 6,167,797 534,239 5,983 0 0 0 0
Fisher’s exact 79,179,748 6,173,016 640,064 38,933 7,647 148 11 1
Cochran–Armitage trend 80 10,000 92,269,671 9,541,111 1,021,754 68,457 8,128 699 55 3
Allelic � 2 92,269,671 9,541,208 1,029,744 68,459 8,209 791 65 3
Wald 92,269,671 9,538,127 439,954 24,480 2,215 65 0 0
Fisher’s exact 92,269,671 9,541,208 1,029,744 68,459 8,209 791 65 3
Cochran–Armitage trend 40 10,000 80,400,565 6,368,800 669,924 41,455 7,745 169 17 0
Allelic � 2 80,400,565 6,368,800 669,932 41,455 8,147 170 18 0
Wald 80,400,565 6,368,746 178,816 7,745 0 0 0 0
Fisher’s exact 80,400,565 6,368,800 669,932 41,455 8,147 170 18 2
Cochran–Armitage trend 20 10,000 115,139,237 11,657,125 399,840 39,160 1,884 0 0 0
Allelic � 2 115,142,423 11,772,128 399,870 39,822 1,927 0 0 0
Wald 115,137,310 2,561,766 0 0 0 0 0 0
Fisher’s exact 41,290,490 2,563,863 399,870 39,822 1,927 0 0 0

sample. Inspection of Table 1 reveals a slight increase in the
number of significant tests observed, less than 2% and 5%
for � thresholds of 10−2 and 10−5, respectively. However,
the larger sample size does not see the allelic �2 attain sig-
nificance at � < 10−8. Restricting the number of minor
alleles to exactly 20 copies, there is a marked decrement in
the value of test statistics by either method, with neither
reporting a single p-value less than 10−6. We observe an
excess of significant findings by the allelic �2 for the � <

10−2 critical region, with no such inflation apparent for
Fisher’s exact test. Increasing the number of minor alleles
to 80 copies in 5,000 cases and 5,000 controls, asymptotic
behavior is visibly restored. Residual deflation is only min-
imally apparent at genome-wide thresholds, at which both
tests report significant findings.

Except those additional values indicating one or more
observed minor homozygotes, quantiles for the Cochran–
Armitage trend test largely parallel those of the allelic �2.
With 40 minor alleles in 1,000 cases and 1,000 controls,
the trend test gives a significant result at � < 10−8, which
the allelic test failed to identify. Loss of power is evident,
with fewer significant permutations observed overall than
with either the allelic �2 or exact test. Differences between
the allelic �2 and trend tests are less marked, with 40 copies
in 5,000 cases and 5,000 controls, due to the reduced
likelihood of observing a minor allele homozygote. With
only 20 copies of the minor allele, power for the trend
test is diminished further. Under these conditions, the
chance of observing a minor homozygote is only one in
one million. Similar to the allelic �2 and exact tests, the
trend test fails to return a single p-value less than 10−6.
An excess of significant findings in the � < 10−2 critical
region is also apparent, but to a slightly lesser extent than
seen for the allelic �2. Power for the trend test is restored
by increasing the number of minor alleles to 80 copies. In

spite of the deflation being visibly attenuated, the trend
test gives slightly fewer significant differences in the critical
region than either the allelic �2 or Fisher’s exact test.

Deflation of the Wald test statistics is considerably
more pronounced than those of the allelic �2 and trend
tests. With 40 minor alleles in either sample size, the
Wald test fails to report a single significant finding at
� < 10−5, returning p-values 10-, 100-, and 1,000-fold
larger than expected at � thresholds of 10−5, 10−7, and
10−8, respectively. With the total number of minor alleles
limited to 20 copies, deviation from expected distributional
behavior is particularly extreme. We fail to observe any
significant findings for � < 10−3, corresponding to a
deflation factor of 100,000 at � < 10−8. With 80 minor
alleles in 5,000 cases and 5,000 controls, the Wald test is
noticeably improved but still gives p-values an order of
magnitude larger than expected at � < 10−8.

Comparing 80, 40, and 20 copies of the minor allele in
5,000 cases and 5,000 controls, there is an overall increase
in the extent of deflation for successively fewer copies of the
minor allele, and an increase in the value of � at which this
deflation is first apparent. Given the demonstrated non-
effect of sample size, it follows that we may take findings for
80 minor alleles in 5,000 cases and 5,000 controls as indica-
tive of expected null behavior for a 2% MAF SNP. Under
these conditions, the allelic �2 and trend tests exhibit sim-
ilar asymptotic behavior and return empirical significance
estimates, which, compared with those obtained by Fisher’s
exact test, are not appreciably misestimated. Equivalently,
we take findings for 40 minor alleles in 5,000 cases and 5,000
controls as representative of a 1%, establishing a reasonable
lower limit for the allelic �2 and trend tests. The Wald test
is particularly sensitive to the number of minor alleles, re-
turning substantially diminished estimates of significance
in the genome-wide critical region. At � < 10−6, deflation
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FIGURE 1

(Colour online) Quantiles for null distributions of the 1B allelic �2, Cochran–Armitage trend, Wald, and Fisher’s exact tests.

of the Wald test statistics is at least 4, 40, and 400 times
greater than for the allelic �2 with 80, 40, and 20 minor
alleles, respectively. Whereas both the allelic �2 and trend
tests exhibit inflation in the � < 10−2 critical region for 20
copies of the minor allele, the counts for Fisher’s exact test
are simply reduced compared with 40 or 80 copies, demon-
strating the robustness of Fisher’s exact test in situations for
which traditional tests are not suitable.

Null Covariate Effect

Table 2 gives the observed number of Wald test statistics
for logistic models incorporating a null covariate effect of

fixed prevalence among controls; corresponding quantile–
quantile plots are displayed in Figure 2. Regression coeffi-
cients, � levels, and expectations regarding asymptotic be-
havior are as described for our previous implementation.

With random assignment of case status, inclusion of the
covariate in our regression analysis should not alter the ob-
served distribution of test statistics. While generally true,
approximations at the extreme tails appear slightly less de-
flated for higher prevalence of the covariate among carriers
of the minor allele (Figure 2). Strictly speaking, this phe-
nomenon may be best described as countervailing inflation,
occurring as a result of increased sampling variance. That
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TABLE 2

Number of Significant 1-df Wald Statistics for Logistic Regression Models Featuring a Null Covariate

Significance threshold (�)

Null distribution � < 10−1 � < 10−2 � < 10−3 � < 10−4 � < 10−5 � < 10−6 � < 10−7

Theoretical � 2 (1 df) 100,000,000 10,000,000 1,000,000 100,000 10,000 1,000 100
Trait risk

Model (�Aff) Carrier Pop CountMA N

�0 + �1 SNP . . 40 2,000 79,179,748 6,167,797 534,239 5,983 0 0 0
�0 + �1 SNP + �2 Cov 10% 10% 79,782,126 6,180,674 472,267 6,065 0 0 0
�0 + �1 SNP + �2 Cov 20% 20% 84,495,240 6,409,079 409,365 6,276 0 0 0
�0 + �1 SNP + �2 Cov 40% 40% 95,357,905 7,262,721 371,535 7,344 5 0 0
�0 + �1 SNP + �2 Cov 60% 60% 96,940,157 7,536,009 397,235 9,753 28 0 0
�0 + �1 SNP + �2 Cov 80% 80% 97,342,986 7,757,342 438,797 13,473 126 0 0
�0 + �1 SNP . . 80 10,000 92,269,671 9,538,127 439,954 24,480 2,215 65 0
�0 + �1 SNP + �2 Cov 10% 10% 92,271,582 9,529,042 501,357 34,820 2,224 65 0
�0 + �1 SNP + �2 Cov 20% 20% 92,781,985 9,407,137 610,113 40,053 2,156 65 0
�0 + �1 SNP + �2 Cov 40% 40% 97,423,726 8,784,754 659,591 41,297 1,935 68 2
�0 + �1 SNP + �2 Cov 60% 60% 98,325,325 8,741,198 668,054 42,540 1,993 80 1
�0 + �1 SNP + �2 Cov 80% 80% 98,425,924 8,793,612 680,545 44,148 2,197 93 1
�0 + �1 SNP . . 40 10,000 80,400,565 6,368,746 178,816 7,745 0 0 0
�0 + �1 SNP + �2 Cov 10% 10% 80,405,394 6,368,716 198,507 7,733 0 0 0
�0 + �1 SNP + �2 Cov 20% 20% 80,790,880 6,372,733 260,393 7,543 0 0 0
�0 + �1 SNP + �2 Cov 40% 40% 86,962,981 6,598,294 343,261 6,396 0 0 0
�0 + �1 SNP + �2 Cov 60% 60% 93,681,516 7,082,939 358,649 6,107 0 0 0
�0 + �1 SNP + �2 Cov 80% 80% 96,110,140 7,343,465 365,042 6,841 1 0 0
�0 + �1 SNP . . 20 10,000 115,137,310 2,561,766 0 0 0 0 0
�0 + �1 SNP + �2 Cov 10% 10% 114,999,456 2,561,820 0 0 0 0 0
�0 + �1 SNP + �2 Cov 20% 20% 114,872,450 2,565,090 0 0 0 0 0
�0 + �1 SNP + �2 Cov 40% 40% 113,182,826 2,674,582 0 0 0 0 0
�0 + �1 SNP + �2 Cov 60% 60% 108,060,024 3,061,018 0 0 0 0 0
�0 + �1 SNP + �2 Cov 80% 80% 101,803,263 3,564,315 0 0 0 0 0

Note: For each logistic model, let Aff represent outcome (i.e., case status); SNP denotes the additive genotype with respect to the minor allele; and Cov
denotes the binary covariate predictor. Carrier and Pop give the risk associated with the binary covariate predictor for carriers of the minor allele and
the population, respectively.

is, increasing the covariance between minor allele and co-
variate is accompanied by a gradual degradation of the
discrete-valued function seen for our original logistic
model. For very small �, at which approximations of bino-
mial data to the continuous �2 distribution are exceptionally
poor, this additional variance imparts a slight effect on our
probability estimates. Comparison of 40 minor alleles in
combined samples of 2,000 and 10,000 cases and controls
exemplifies our interpretation; the effect is markedly en-
hanced in the smaller sample, as would be expected for any
sampling effect.

Discussion
We have demonstrated the tendency of common tests of
association to underestimate significance of less common
variants, highlighting the inadequacy of current analytical
practices for dense SNP and sequencing data. These results
show convincingly that common approaches to multiple-
test correction will be subject to inflated Type II error rates,
particularly within the genome-wide significance levels. We
note that although the sampling variance for a 1% allele
yields a slightly improved asymptotic distribution (with
respect to continuity), estimates of extreme p-values are
nonetheless deflated.

Meaningful replication of novel findings demands that
p-values be readily interpretable in the context of the en-

TABLE 3

Number of Additional Permutations Required to Establish
Significance at Given �-Levels

Confidence level Significance threshold (�)
� < 10−6 � < 10−7 � < 10−8

90% 270.55×106 2.7055×109 27.055×109

95% 384.15×106 3.8415×109 38.415×109

99% 663.49×106 6.6349×109 66.349×109

tire catalogue of reported associations, and not subject to
across-study differences in study design, sample size, or
the number of SNPs actually assayed. Generally accepted
estimates of genome-wide � levels are currently of the
order of 10−8, and these will undoubtedly become even
smaller as larger numbers of rare variants are tested. With
respect to what constitutes an appropriate correction for
genome-wide studies, a reasonable assertion is that � lev-
els should reflect the total number of polymorphisms in
the genome (Dudbridge & Gusnanto, 2008; Hoggart et al.,
2008;). Table 3 gives the number of permutations required
to establish significance at various significance thresholds.
At the 95% confidence level, our estimates are valid for �

< 10−6, at which we see a considerable discrepancy be-
tween realized and expected test statistic values for 20, 40,
and 80 minor alleles. The required number of simulations
to attain equivalent precision at current genome-wide �

levels is prohibitively large. However, the observed trend in
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FIGURE 2

(Colour online) Quantiles for null distributions of 1B Wald statistics for logistic regression models featuring a null covariate.

distributional behavior is thoroughly convincing at increas-
ingly stringent significance thresholds.

The appropriate choice of statistical test for analysis of
rare variation is not entirely straightforward. Small sam-
ples are typically remedied by Yates (1934) correction to
the usual �2 formula. However, it is well established that
the corrected �2 yields a conservative estimate of signifi-
cance (Little, 1989), increasing the likelihood of observing
a false negative finding. It may be desirable to obtain an em-
pirical estimate of significance, although permutation pro-
cedures are generally computationally intensive. Of major
concern with respect to the veracity of reported empirical

p-values is the choice of an appropriate null distribution.
Although relatively straightforward for basic case–control
designs (i.e. ‘shuffling’ of affection status), this might also
entail ‘regressing out’ the effects of confounding factors, or
maintaining patterns of linkage disequilibrium in a multi-
marker (e.g. ‘gene-based’) test. Alternatively, Fisher’s exact
test provides an exact estimate of significance for a given set
of values within a contingency table, and is an appropriate
method when sample size is limited. Intrinsic differences
between these approaches demand careful consideration,
with non-negligible consequences for both study design
and interpretation of findings. We caution readers against
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casual interpretation of exact tests across studies, and rec-
ommend that empirical significance for lower-frequency
common variants be assessed by permutation.

Supplementary Material
To view supplementary material for this article, please visit
http://dx.doi.org/10.1017/thg.2014.17.
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