ON F-INTEGRABLE ACTIONS OF THE RESTRICTED
LIE ALGEBRA OF A FORMAL GROUP F
IN CHARACTERISTIC $p > 0$

ANDRZEJ TYC

§ 1. Introduction

Let k be an integral domain, let $F = (F_i(X, Y), \cdots, F_n(X, Y))$, $X = (X_1, \cdots, X_n)$, $Y = (Y_1, \cdots, Y_n)$, be an n-dimensional formal group over k, and let $L(F)$ be the Lie algebra of all F-invariant k-derivations of the ring of formal power series $k[[X]]$ (cf. § 2). If A is a (commutative) k-algebra and $\text{Der}_k(A)$ denotes the Lie algebra of all k-derivations $d: A \to A$, then by an action of $L(F)$ on A we mean a morphism of Lie algebras $\phi: L(F) \to \text{Der}_k(A)$ such that $\phi(d) = \phi(d)|_{x=0}$ for $d \in L(F)$, $a \in A$, and $D(a) = \sum a X^a$, for a motivation of this notion, see [15]. Let $D: A \to A[[X]]$ be such an action. Then, similarly as in the case of an algebraic group action, one proves that the map $\phi_D: L(F) \to \text{Der}_k(A)$ with $\phi_D(d)(a) = \sum a d(X^a)|_{x=0}$ for $d \in L(F)$, $a \in A$, and $D(a) = \sum a X^a$, is an action of $L(F)$ on A.

DEFINITION. An action $\phi: L(F) \to \text{Der}_k(A)$ of the Lie algebra $L(F)$ on a k-algebra A is said to be F-integrable if there exists an action $D: A \to A[[X]]$ of the formal group F on A such that $\phi = \phi_D$.

Observe that if $n = 1$, $F_a = X + Y$, and $F_m = X + Y + XY$, then an action of $L(F_a)$ (resp. $L(F_m)$) on a k-algebra A is nothing else than a k-derivation $d: A \to A$ with $d^p = 0$ (resp. $d^p = d$) whenever $\text{char}(k) = p > 0$. Moreover, one readily checks that such d is F_a-integrable (resp. F_m-integrable) if there exists a differentiation (= higher derivation) $D = \{D_i: A \to A, i = 0, 1, \cdots\}$ such that $D_i = d$ and $D_i \circ D_j = (i,j)D_{i+j}$ (resp.

Received September 14, 1987.
\[D_i \circ D_j = \sum_r \binom{r}{i} \left(i + j - r \right) D_r, \text{ where } \binom{u}{v} = 0 \text{ for } v < 0 \text{ or } v > u \] for all \(i, j \). Thus we see that \(F_a \)-integrability amounts to strong integrability in the sense of [10].

If \(k \) is a field of characteristic 0, then from [15, Lemma 2.13] it follows that each action \(\phi: L(F) \to \text{Der}_k(A) \) of \(F \) on an arbitrary \(k \)-algebra \(A \) is \(F \)-integrable. If \(k \) is not a field (being still of characteristic 0), then the above assertion is not true. For instance, if \(Z \) is the ring of rational integers and \(A = Z[X] \), then the action of \(L(F_a) \) on \(A \) given by the derivation \(X \partial/\partial X \) is clearly not \(F_a \)-integrable. Nevertheless, also in this case there are some positive results, see [1, 12]. Now suppose that \(k \) is a field of characteristic \(p > 0 \). Then the situation is worse then that in characteristic 0. Namely, if \(A = k[[t]]/(t^p) \) and \(d: A \to A \) is the \(k \)-derivation induced by \(\partial/\partial t \), then according to [10, Ex. 1] \(d \) is not integrable i.e., there does not exist a morphism of \(k \)-algebras \(J: A \to A[X] (X = X) \) such that \(J(a) \equiv a + d(a)X \mod (X^p) \) for all \(a \in A \) (the existence of such \(J \) would imply: \(0 \equiv J(t^p + (t^p)) = J(t + (t^p))^p \equiv X^p \mod (X^{p+1}) \)). Hence the action of \(L(F_a) \) on \(A \) defined by \(d \) is not \(F_a \)-integrable. However, Matsumura proved [10, Th. 7] that if \(A \) is a separable field extension of \(k \), then every action of \(L(F_a) \) on \(A \) is \(F_a \)-integrable. The goal of this paper is to extend Matsumura’s result to a wider class of formal groups and to more general \(k \)-algebras. In particular, from our main result (cf. § 2) one derives the following.

Theorem. Let \(F \) be a one dimensional formal group over \(k \), let \(A = k[[T_1, \ldots, T_m]] \), \(m \geq 1 \), and let \(\phi: L(F) \to \text{Der}_k(A) \) be an action of \(L(F) \) on \(A \) with \(\phi(y)(T_i) \in (T_1, \ldots, T_m) \) for some \(y \in L(F) \) and some \(i \). Then \(\phi \) is \(F \)-integrable, provided \(F \simeq F_a \) or \(F \simeq F_m \). Moreover, if the field \(k \) is algebraically closed, then \(\phi \) is \(F \)-integrable for any \(F \).

Remark. If the field \(k \) is algebraically closed, then an action of \(F_a \) (resp, \(F_m \)) on a given \(k \)-algebra \(B \) is a differentiation \(\{D_j: B \to B, j = 0, 1, \ldots\} \) such that \((D_{p^j})^p = 0, D_m = (D_{p^0})^{m_0} \circ \cdots \circ (D_{p^1})^{m_1}/(m_1! \cdots m_i!) \) (resp. \((D_{p^j})^p = D_{p^j}, D_m = (D_{p^0})^{m_0} \circ \cdots \circ (D_{p^1})^{m_1}, i, m = 0, 1, \ldots \), where \(m = m_0 p^0 + \cdots + m_i p^i \) is the \(p \)-adic expansion of \(m \) and \((f)_j = f \circ (f - 1) \circ \cdots \circ (f - j + 1)/j! \). The remark is well known for \(F_a \) (and is true for any field \(k \) of characteristic \(p > 0 \)). As for the case of \(F_m \), it may be deduced from [2, p. 127/128].
All rings in this paper are assumed to be commutative. A local ring is assumed to be Noetherian. A ring R is called reduced if it has no non-zero nilpotent elements.

§ 2. Preliminaries and formulation of the main result

Throughout this paper k denotes a fixed field of characteristic $p > 0$ and N stands for the set of non-negative rational integers.

Let S' be a subalgebra of a k-algebra S. A subset Γ of S is called a p-basis of S over S' if S is a free $S'[S^p]$-module ($S^p = \{s^p, s \in S\}$) and the set of all monomials $y_1^i \cdots y_t^i$, where y_1, \ldots, y_t are distinct elements in Γ and $0 \leq i, < p, r = 1, \ldots, t$, is a basis of S over $S'[S^p]$. As usual, $\Omega_{S'}(S)$ will denote the S-module of Kähler differentials over S' and $\delta: S \to \Omega_{S'}(S)$ will denote the canonical S'-derivation. It is not difficult to verify that if Γ is a p-basis of S over S', then $\Omega_{S'}(S)$ is a free A-module with $\{\delta y, y \in \Gamma\}$ as a basis. Given a k-algebra A, $\text{Der}_k(A)$ will denote the restricted Lie algebra over k of all k^p-derivations $d: A \to A$ with $[d, d'] = d \circ d' - d' \circ d$ and $d^{[p]} = d^p$. If $d \in \text{Der}_k(A)$ and $a \in A$, then ad is the k-derivation $x \to x = ad(x), x \in A$.

By a formal group over a ring R we shall mean a one dimensional commutative formal group over R, i.e., a formal power series $F(X, Y) \in R[X, Y]$ such that $F(X, 0) = X, F(0, Y) = Y, F(F(X, Y), Z) = F(X, F(Y, Z)), F(X, Y) = F(Y, X)$, see [6]. Two important examples are the additive formal group $F_a = X + Y$ and the multiplicative one $F_m = X + Y + XY$. If F and G are formal groups over R, then a homomorphism $f: F \to G$ is a power series $f(X) \in R[X]$ such that $f(0) = 0$ and $f(F(X, Y)) = G(f(X), f(Y))$. A homomorphism f is said to be an isomorphism if $f'(0)$ is an invertible element in R ($f'(X) = \delta f/\delta X$). Let $F = F(X, Y)$ be a formal group over the field k and let $d_i: k[X] \to k[X]$, $i \in N$, be the maps given by the equality

$$g(F(X, Y)) = \sum_{i \geq 0} d_i(g(X))Y^i, \quad g \in k[X].$$

We say that a function $t: k[X] \to k[X]$ is F-invariant if $t \circ d_j = d_j \circ t$ for all $j \in N$. It is clear that if $a, b \in k$ and $t, t': k[X] \to k[X]$ are F-invariant functions, then $at + bt'$ and $t \circ t'$ are also F-invariant functions. Hence it follows that the set of all F-invariant k-derivations $d: k[X] \to k[X]$ is a restricted Lie subalgebra of the restricted Lie algebra $\text{Der}_k(k[X])$. This subalgebra is called the restricted Lie algebra of the
formal group F and it is denoted by $L(F)$. Let $d_r: k[[X]] \to k[[X]]$ denote the k-derivation determined by $d_r(X) = \partial F(0, X)/\partial X = \partial F(Z, X)/\partial Z \mid_{Z=0}$. Then, similarly as in the case of algebraic groups, we have the following.

2.1 Lemma. Let $f: F \to G$ be an isomorphism of formal groups over k and let $\tilde{f}: k[[X]] \to k[[X]]$ be the isomorphism of k-algebras induced by f (i.e., $\tilde{f}(g(X)) = g(f(X))$). Then $L(f): L(F) \to L(G)$ with $L(f)(d) = \tilde{f}^{-1} \circ d \circ \tilde{f}$, is an isomorphism of restricted Lie algebras. Moreover, $L(F)$ is a one dimensional vector space over k spanned by d_r.

Proof. Given an $H(X, Y) \in k[[X, Y]]$ with $H(0, 0) = 0$ we denote by $\tilde{H}: k[[X]] \to k[[X, Y]]$ the homomorphism of k-algebras given by $\tilde{H}(g(X)) = g(H(X, Y))$. If $u, v: k[[X]] \to k[[X, Y]]$ are k-linear maps, then $u \otimes v: k[[X, Y]] \to k[[X, Y]]$ will denote the map taking $\sum a_i X^i Y^j$ into $\sum a_i u(X)^i v(Y)^j$. It is easy to see that if $d \in \text{Der}_k(k[[X]])$, then $d \otimes \text{id} \in \text{Der}_k(k[[X, Y]])$. Moreover, a k-derivation d of $k[[X]]$ is in $L(F)$ if and only if $\tilde{F} \circ d = (d \otimes \text{id}) \circ \tilde{F}$. Observe also that $(\tilde{f} \otimes \tilde{f}) \circ \tilde{G} = \tilde{F} \circ \tilde{f}$, because $f(F(X, Y)) = G(f(X), f(Y))$. Similarly, $(\tilde{f}^{-1} \otimes \tilde{f}^{-1}) \circ \tilde{F} = \tilde{G} \circ \tilde{f}^{-1}$, because $\tilde{f}^{-1} = \tilde{f}^{-1}$, where $f(f^{-1}(X)) = X$.

Now we may prove that $L(f)$ is an isomorphism of restricted Lie algebras. First notice that if $d \in L(F)$, then $L(f)(d) = \tilde{f}^{-1} \circ d \circ \tilde{f} \in L(G)$. Indeed, $\tilde{G} \circ \tilde{f}^{-1} \circ d \circ \tilde{f} = (\tilde{f}^{-1} \otimes \tilde{f}^{-1}) \circ \tilde{F} \circ \tilde{f} = (\tilde{f}^{-1} \otimes \tilde{f}^{-1})(d \otimes \text{id}) \circ \tilde{F} \circ \tilde{f} = (\tilde{f}^{-1} \circ d \circ \tilde{f}^{-1} \circ \tilde{G} \circ \tilde{f}^{-1}) = (\tilde{f}^{-1} \circ d \circ \tilde{f}^{-1} \circ \text{id}) \circ \tilde{G}$, which implies $L(f)(d) \in L(G)$. Further, for $d, t \in L(F)$ we have:

$$L(f)(d)^{[p]} = (\tilde{f}^{-1} \circ d \circ \tilde{f})^{[p]} = \tilde{t}^{-1} \circ d^p \circ \tilde{f} = L(f)(d^{[p]}),$$

and

$$[L(f)(d), L(f)(t)] = \tilde{f}^{-1} \circ d \circ \tilde{f}^{-1} \circ t \circ \tilde{f} - \tilde{f}^{-1} \circ t \circ \tilde{f}^{-1} \circ d \circ \tilde{f} = \tilde{f}^{-1} \circ (d \circ t - t \circ d) \circ \tilde{f} = L(f)([d, t]).$$

Since clearly $L(f^{-1}) = L(f)^{-1}$ we are done. It remains to verify that $L(F) = k d_r$. Let $g(X)$ be in $k[[X]]$. Then

$$\tilde{F} \circ d_r(g(X)) = \tilde{F}(g'(X) \cdot \partial F(0, X)/\partial Z) = g'(F(X, Y)) \cdot \partial F(0, F(X, Y))/\partial Z = g'(F(X, Y))(\partial /\partial Z (F(F(Z, X), Y)) \mid_{Z=0} = g'(F(X, Y))(\partial F(T, Y)/\partial T) \mid_{T = F(Z, X)} \cdot \partial F(Z, X)/\partial Z \mid_{Z=0}$$
whence \(d_r \in L(F) \). Further, if \(d \in L(F) \) and \(h(X) = d(X) \), then \(h(F(X, Y)) = F(\tilde{d}_r(g(X))) \)

From the above lemma it follows that \(d_r = c_r \cdot d_r \) for some uniquely determined constant \(c_r \in k \). Notice that \(c_r = 0 \) for \(F = F_a \) and \(c_r = 1 \) for \(F = F_m \). By an action of \(L(F) \) on a \(k \)-algebra \(A \) we mean a morphism of restricted Lie algebras \(\phi: L(F) \to \text{Der}_k(A) \). It is obvious that such an action is nothing else than a \(k \)-derivation \(d \) of \(A \) with \(d^p = c_r d \).

Now recall [15] that an action of the formal group \(F \) on a \(k \)-algebra \(A \) is a morphism of \(k \)-algebras \(D: A \to A[[X]] \) such that if \(D(a) = \sum_t D_t(a)X^t, a \in A \), then \(D_0 = \text{id}_A \) and \(\sum_n D_n(a)X^t = \sum_n D_n(a)F(X, Y)^t \) for all \(a \in A \). If \(D: A \to A[[X]] \) is such an action and \(t: k[[X]] \to k[[X]] \) is any \(k \)-linear map, then we define the \(k \)-linear map \(\phi_D(t): A \to A \) by formula \(\phi_D(t)(a) = \sum_t D_t(\alpha)\epsilon t(X^t))_{|x=0}. \) A straightforward calculation proves that \(\phi_D(d) \in \text{Der}_k(A) \) and \(\phi_D(d \circ d') = \phi_D(d) \circ \phi_D(d') \) for \(d \in L(F) \) and \(d' \in \text{Der}_k(k[[X]]) \). Hence it results that \(\phi_D: L(F) \to \text{Der}_k(A) \) is an action of \(L(F) \) on the \(k \)-algebra \(A \). Since \(\phi_D(d_r) = D_1 \), this means that \(D_1^p = c_r D_1 \).

DEFINITION. An action \(\varphi \) of the restricted Lie algebra \(L(F) \) on a \(k \)-algebra \(A \) is called \(F \)-integrable if there exists an action \(D \) of the formal group \(F \) on \(A \) such that \(\varphi_D = \varphi \).

The main result of this paper is the following.

THEOREM. Let \(F \) be a formal group over \(k \) and let \(\varphi: L(F) \to \text{Der}_k(A) \) be an action of \(L(F) \) on a local \(k \)-algebra \(A \) with the unique maximal ideal \(m \) satisfying the conditions (i) and (ii) below:

(i) the ring \(A \otimes_k k^p \) is reduced,

(ii) if \(m \neq 0 \), then \(\Omega_A(A) \) is a free \(A \)-module of finite rank and \(\varphi(d_r)(m) \not\subset m \).
Then \(\varphi \) is \(F \)-integrable in each of the following two cases.

Case 1) \(F \) is isomorphic to \(F_a \) or to \(F_m \).

Case 2) the field \(k \) is separably closed and \(A \) is a complete local ring with \(m \neq 0 \).

The idea of the proof of this theorem comes in part from [10, proof of Theorem 7] and relies on the construction of a special \(p \)-basis \(\Gamma \) of \(A \) over \(k \) and an element \(x \in \Gamma \) such that \(x \in m \) (if \(m \neq 0 \)), \(d(\Gamma - \{x\}) = 0 \), and \(d(x) = \partial F(x,0)/\partial Y \), where \(d = \varphi_d \). Having such a pair \((\Gamma, x)\), one shows that the function \(D: \Gamma \to A[X] \) given by \(D(x) = F(x, X) \), \(D(y) = y \), \(y \neq x \), extends to an action \(D: A \to A[X] \) of the formal group \(F \) on \(A \) with \(\varphi_d = \varphi \). We start with

§ 3. Auxiliary Lemmas

In what follows, given a \(k \)-algebra \(A \), a subset \(\Gamma \subseteq A \), and a function \(f: \Gamma \to A[X_1, \ldots, X_n] \), \(f_\alpha: \Gamma \to A, \ \alpha \in \mathbb{N}^n \), will denote the functions determined by the equality \(\sum \alpha f_\alpha(y)X^\alpha = f(y) \), \(y \in \Gamma \), where \(X^\alpha = X_1^{\alpha_1} \cdots X_n^{\alpha_n} \) for \(\alpha = (\alpha_1, \ldots, \alpha_n) \). If \(\alpha = (\alpha_1, \ldots, \alpha_m) \in \mathbb{N}^m \), then \(|\alpha| \) and \(p\alpha \) stand for \(\alpha_1 + \cdots + \alpha_m \) and \((p\alpha_1, \ldots, p\alpha_m)\), respectively. Note that if \(D: A \to A[X_1, \ldots, X_n] \) is a morphism of \(k \)-algebras with \(D_0 = \text{id}_A \), then \(D_\alpha: A \to A \) is a \(k \)-derivation for any \(\alpha \in \mathbb{N}^n \) with \(|\alpha| = 1 \).

3.1 Lemma. Let \(A \) be a \(k \)-algebra such that the ring \(A \otimes_k k^{p-1} \) is reduced and let \(\Gamma \) be a \(p \)-basis of \(A \) over \(k \). Then for any \(m \geq 1 \) and any function \(s: \Gamma \to A[X] = A[X_1, \ldots, X_n] \) with \(s(y) = y \) for \(y \in \Gamma \) there exists a unique morphism of \(k \)-algebras \(D: A \to A[X] \) such that \(D_0 = \text{id}_A \) and \(D|_r = s \).

The lemma is a simple generalization of Heerema’s Theorem 1 in [7] (see also, [5, Theorem 3]), where the case \(m = 1 \), \(k = F_p \), and \(A \) being a field was considered. For the sake of completeness we sketch its proof.

By induction on \(|\alpha| \) we define \(k \)-linear maps \(D_\alpha: A \to A, \ \alpha \in \mathbb{N}^n \), in such a way that \(D: A \to A[X] \) with \(D(a) = \sum D_\alpha(a)X^\alpha, \ a \in A \), will be the desired morphism of \(k \)-algebras. If \(\alpha = 0 \), one has to put \(D_\alpha = \text{id}_A \). Suppose that \(D_\gamma \)’s have been already defined for all \(\gamma \in \mathbb{N}^n \) with \(|\gamma| < r \), and take \(\alpha \in \mathbb{N}^n \) with \(|\alpha| = r \). In order to define \(D_\alpha \) we first define its restriction to \(k[A^\alpha] \). Let \(y = \sum t_i a_i^\alpha \), where \(t_i \in k \) and \(a_i \in A \). Then by definition
\[D_{\alpha}(y) = \begin{cases} \sum t_{\alpha}(a) x^p, & \text{when } \alpha = p^\gamma \text{ for some } \gamma \\ 0, & \text{otherwise.} \end{cases} \]

Since \(A \otimes_k k^{p^{-1}} \) is a reduced ring, one easily verifies that \(D_{\alpha}: k[A^p] \rightarrow A \) is a well-defined \(k \)-linear map. If \(y_1, \ldots, y_\ell \) are distinct elements in \(\Gamma \), \(\mu_1, \ldots, \mu_\ell \in \mathbb{N} \) are smaller than \(p \), and \(y^p = y_1^{\mu_1} \cdots y_\ell^{\mu_\ell} \), then \(D_{\alpha}(y^p) \) is defined to be the coefficient at \(X^\alpha \) in \(s(y_1)^{\mu_1} \cdots s(y_\ell)^{\mu_\ell} \in A[X] \). Finally, for \(z \in k[A^p] \) and \(y^p \) as above we set

\[D_{\alpha}(zy^p) = \sum_{\alpha + \gamma = \alpha} D_{\alpha}(z)D_{\gamma}(y^p). \]

Since \(\Gamma \) is a \(p \)-basis of \(A \) over \(k \), formula (2) determines a \(k \)-linear map \(D_{\alpha}: A \rightarrow A \). Thus the inductive procedure gives us a set of \(k \)-linear maps \(D_{\alpha}: A \rightarrow A, \alpha \in \mathbb{N}^m \), such that \(D_0 = \text{id}_A \) and \(D_{|\Gamma} = s_{|\Gamma} : \Gamma \rightarrow A \). This means that \(D: A \rightarrow A[X] \) with \(D(a) = \sum \alpha D_{\alpha}(a)X^\alpha, \alpha \in A \), is a \(k \)-linear map with \(D_0 = \text{id}_A \) and \(D_{|\Gamma} = s \). The fact that \(D \) preserves multiplication may be shown similarly as in [7]. As for the uniqueness of \(D \), if \(D': A \rightarrow A[X] \) is another morphism of \(k \)-algebras such that \(D'_0 = \text{id}_A \) and \(D'_{|\Gamma} = s \), then one easily proves, using induction on \(|\alpha| \), that \(D'_\alpha = D_{\alpha} \) for all \(\alpha \in \mathbb{N}^m \). Hence \(D' = D \), and consequently the lemma follows.

3.2 COROLLARY. Under the assumptions of the lemma we have:

1) if \(D', D: A \rightarrow A[X] \) are morphisms of \(k \)-algebras with \(D'_0 = D_0 = \text{id}_A \) and \(D'_{|\Gamma} = D_{|\Gamma} \), then \(D' = D \),

2) for any \(k \)-derivations \(d_1, \ldots, d_m: A \rightarrow A \) there is a morphism of \(k \)-algebras \(D: A \rightarrow A[X] \) such that \(D_0 = \text{id}_A \) and \(D_{(i)} = d_i, i = 1, \ldots, m \), where \((i) = (0, \ldots, 0, 1, 0, \ldots, 0) \in \mathbb{N}^m \) with 1 on the \(i \)-th positions.

Proof. Part 1) results immediately by Lemma 3.1 (to \(s = D'_{|\Gamma} = D_{|\Gamma} \)). To prove part 2) let us define the function \(s: \Gamma \rightarrow A[X] \) by \(s(y) = y + \sum_{i=0}^{m} d_i(y)X^i, y \in \Gamma \). Then according to Lemma 3.1 there exists a morphism of \(k \)-algebras \(D: A \rightarrow A[X] \) such that \(D_0 = \text{id}_A \) and \(D_{(i)} = d_i, i = 1, \ldots, m \). Hence \(D_{(i)}(y) = d_i(y) \) for \(y \in \Gamma \), which clearly implies that \(D_{(i)} = d_i, i = 1, \ldots, m \). The corollary is proved.

3.3 LEMMA. Let \(A \) be a local algebra with the unique maximal ideal \(m \) such that \(\Omega(A) \) is a free \(A \)-module of finite rank, and let \(\Gamma \) be a subset of \(A \) such that \(\{ \delta y \otimes 1, y \in \Gamma \} \) is a basis of the \(A/m \)-vector space \(\Omega(A) \otimes_A A/m \). Then \(\Gamma \) is a \(p \)-basis of \(A \) over \(k \). In particular, \(A \) possesses a \(p \)-basis over \(k \).
Proof. Since $\Omega_k(A)$ is a finite A-module, A is a finite $k[A^p]$-module, by [3, Proposition 1]. Moreover, it is easy to see that $\{\delta y, y \in \Gamma\}$ is a basis of $\Omega_k(A)$ over A. The conclusion now follows from [9, Proposition 38. G].

3.4 LEMMA (Hochschild Lemma, [14, § 6, Lemma 1]). If R is any ring of characteristic p and $d: R \to R$ is a derivation, then

$$d^{p-1}(u^{p-1}d(u)) = -d(u)^p + u^{p-1}d^p(u)$$

for all $u \in R$.

Below, for a given ring R, $U(R)$ denotes the set of all units in R. Moreover, for any derivation $d: R \to R$, R^d stands for the subring $\{a \in R, d(a) = 0\} \subset R$.

3.5 LEMMA. Let A be a k-algebra and let $d: A \to A$ be a non-zero k-derivation such that $d^p = ad$ for some $a \in A$. Then we have:

1) if $d(z) \in U(A)$ for some $z \in A$, then A is a free A^d-module with $1, z, \cdots, z^{p-1}$ as a basis,

2) if $c \in A^d$ is such that $c^{p-1} = a$ and A is an integral domain, then there is a $y \in A - \{0\}$ with $d(y) = cy$,

3) if $d(z) \in U(A)$ and $c^{p-1} = a$ for some $z \in A$ and $c \in A^d$, then there is an $x \in Az$ such that $d(x) = cx + 1$.

Proof. Suppose that $d(z) \in U(A)$ and set $u = d(z)^{-1}$. Thanks to [8, Lemma 1] we know that $(ud)^p = c, d$ for some $c_i \in A$. Since $c_i = uc_i d(z) = u(ud)^p(z) = u(ud)^{p-1}(1) = 0$, we see that $(ud)^p = 0$. Applying now Lemma 4 in [10] to the derivation $ud: A \to A$ and $z \in A$, one gets part 1) of the lemma. To prove 2) assume that $c^{p-1} = a$ for some $c \in A^d$ and denote by $L_c: A \to A$ the map taking b into cb for $b \in A$. Then $d \circ L_c = L_c \circ d$ and $0 = d^p - ad = d^p - c^{p-1}d = d^p - L_c^{p-1} \circ d = (d^{p-1} - L_c^{p-1}) \circ d = (d - L_c) \circ F(d)$, where $F(Z)$ is a polynomial of degree $p - 1$ from the ring $A^d[Z]$. What we must show is that $\text{Ker}(d - L_c) \neq 0$. But the equality $\text{Ker}(d - L_c) = 0$ would imply $F(d) = 0$, which is impossible by [11, Theorem 3.1]. So, it remains to prove part 3). Suppose $z \in A$, $c \in A^d$ are such that $d(z) \in U(A)$, $c^{p-1} = a$, and set $x_i = z^{p-1}d(z)$. Then from the Hochschild Lemma and the equality $d^p = ad$ it follows that $d^{p-1}(x_i) = ax_i - d(z)^p$. Hence if we put
then \(x \in Az \) and
\[
d(x) - cx = -d(z)^{-p} \left((d - L_\phi) \circ \sum_{i=0}^{p-2} L_i d^{p-i-1}(x_i) \right) = -d(z)^{-p}(d^{p-1} - L_\phi^{-1})(x)
\]
\[
= -d(z)^{-p}(d^{p-1}(x_i) - c^{p-1}x_i) = -d(z)^{-p}(d^{p-1}(x_i) - ax_i) = 1.
\]
This means that \(d(x) = cx + 1 \), as was to be shown. The lemma is proved.

3.6 Corollary
Let \((A, m)\) be a local \(k \)-algebra and let \(d: A \rightarrow A \) be a \(k \)-derivation with \(d^p = ed \) for some \(e \in \{0, 1\} \) and with \(d(m) \not\in m \), whenever \(m \neq 0 \). Then there exists an \(x \in A \) such that \(d(x) = ex + 1 \in U(A) \) and \(A \) is a free \(A^d \)-module with \(1, x, \ldots, x^{p-1} \) as a basis. Moreover, if \(m \neq 0 \), then one may assume that \(x \in m \).

Proof. Let \(m \neq 0 \). Then from the assumption we know that \(d(z) \in U(A) \) for some \(z \in m \). Hence, by Lemma 3.5, 3), there exists an \(x \in Az \) with \(d(x) = ex + 1 \). Since \(ex + 1 \in U(A) \), by applying Lemma 3.5, 1), one gets that \(A \) is a free \(A^d \)-module with \(1, x, \ldots, x^{p-1} \) as a basis. Now suppose that \(m = 0 \), that is, \(A \) is a field. If \(e = 0 \), then again by Lemma 3.5, 3) there is an \(x \in A \) with \(d(x) = 1 \). If \(e = 1 \), then in view of Lemma 3.5, 2) we may find \(\phi \in A \) such that \(d(y) = y \). Set \(x = y - 1 \). Then \(d(x) = d(y) = y + x + 1 \) and \(x + 1 \in U(A) \), because \(y \neq 0 \). In both cases \((e = 0 \text{ or } e = 1) \) \(A \) is a free \(A^d \)-module, by part 1) of the above lemma. The corollary follows.

Now, for later use, let us recall the notion of height of a formal group. Let \(G(X, Y) \) be a formal group over a ring \(R \). As \(G(X, Y) = G(Y, X) \), the induction formula: \([1]_0(X) = X, [m]_0(X) = G([m - 1]_0(X), X), m \in N \), determine a sequence of endomorphisms of the group \(G \). If \(pR = 0 \), then according to [4, Chap. III, § 3, Theorem 2] each homomorphism \(f: G \rightarrow G' \) of formal groups over \(R \) can be uniquely written in the form \(f(X) = f_i(X^p) \), where \(f_i(X) \in R[X] \), \(f_i(0) \neq 0 \), and \(h \in N \cup \{\infty\} \) \((h = \infty, \text{if } f = 0)\). The number \(h \) is called the height of \(f \). Now the height \(Ht(F) \) of a formal group \(F \) over the field \(k \) is defined to be the height of the endomorphism \([p]_h(X) \). It is easily seen that \(Ht(F) \geq 1 \) for any \(F \) and that \(Ht(F_0) = \infty \), \(Ht(F_{m_1}) = 1 \). Observe also that \(Ht(F) = Ht(F') \), provided \(F \simeq F' \).

3.7 Lemma
Let \(F \) be a formal group over \(k \) and let as before \(c_F \in k \) be the constant determined by the equality \(d^p_F = c_F d_F^* \). Then \(c_F = 0 \) if and only if \(Ht(F) \neq 1 \).
Proof. Thanks to [4, Chap. III, § 1, Theorem 2] we know that \(F \simeq F_a \) if and only if \(\text{Ht}(F) = \infty \). So, let \(\text{Ht}(F) < \infty \), and let \(D: A \to A[Y] \) be an action of \(F \) on a \(k \)-algebra \(A \). For the proof of the lemma it suffices to show that \(D_i = 0 \), when \(\text{Ht}(F) > 2 \), and that \(D_i = c D, \) for some \(c \in k - \{0\} \), when \(\text{Ht}(F) = 1 \). Indeed, for \(A = k[X] \) and \(D \) given by \(D(g(X)) = g(F(X, Y)) \) we have \(D_i = d_i \), whence (under the above assumption) \(c_d = 0 \) if and only if \(\text{Ht}(F) \geq 2 \). From the definition of an action of \(F \) on \(A \) it follows that \(D_i \circ D_j = \sum_m C_{ijm} D_m, \) \(i, j \in N \), where \(C_{ijm} \)'s are constants in \(k \) determined by the equality \(F(X, Y)^m = \sum_{i,j} C_{ijm} X^i Y^j \). In view of Lemma 2 in [4, Chap. III, § 2] we may assume that

\[
F(X, Y) = X + Y + \alpha X^p + \ldots
\]

for \(h = \text{Ht}(F) \) and some \(0 \neq \alpha \in k \). Hence

\[
D_i \circ D_j = (i, j)D_{p^h} + \alpha P_{p^h} / p \cdot D_1 \quad \text{for } i + j = p^h,
\]

and

\[
D_i \circ D_j = (i, j)D_{i+j} \quad \text{for } i + j < p^h.
\]

The first equality implies that \(D_i \circ D_{p-1} = \omega D_i \) if \(h = 1 \), while the second one that \(D_i \circ D_{p-1} = \omega D_i = 0 \) for \(h \geq 2 \) and that \(D_i = D_i/i! \) for \(0 \leq i < p \) and any \(h \). Therefore, if \(h = 1 \), then \(D_i = \omega D_i = \omega D_i / i! \) for all \(i \) such that \(i < p \), and \(D_i = 0 \) for \(i \geq p \). Hence, in the case where \(h = 2 \) we have \(0 = D_i \circ D_{p-1} = \omega D_i / (p-1)! \), whence \(D_i = 0 \). Thus the lemma is established.

§ 4. Proof of the theorem

Below, \(Z \) and \(Q \) denote the ring of rational integers and the field of rationals, respectively. Moreover, \(N^+ \) denotes the set \(N - \{0\} \). It is easy to see that if \(F \) and \(G \) are isomorphic formal groups over \(k \) and the theorem is true for \(G \), then it is also true for \(F \). Therefore, in case 1) of the theorem we may (and will) assume that \(F = X + Y + eXY, \) \(e \in \{0, 1\} \). In case 2) of the theorem we replace quite general \(F \) by a certain (isomorphic to \(F \)) formal group \(F_\alpha \), which is much easier to deal with. To this end set \(h = \text{Ht}(F) \) and consider the following formal power series from \(Q[X, Y] \)
ACTIONS OF RESTRICTED LIE ALGEBRA

\[f_h(X) = X + \sum_{j=1}^{\infty} p^{-j} X^{p^j} \quad (f_w(X) = X) , \]

\[F_h(X, Y) = f_h^{-1}(f_h(X) + f_h(Y)) . \]

Thanks to [6, Chap. I, § 3.2] one knows that \(F_h = F_h(X, Y) \) is a formal group over \(\mathbb{Z} \) and that \([p]_{F_h}(X) \equiv X^{p^h} \mod p\mathbb{Z}[X] \). Now \(F_h \) is defined to be the formal group over \(k \mathbb{Z}/p\mathbb{Z} \) obtained by reducing all the coefficients of \(F_h \) modulo \(p \). Certainly, \(\text{Ht}(F_h) = h = \text{Ht}(F) \). It results that \(F \simeq F_h \), because by [4, Chap. III, § 2, Theorem 2] the height classifies (up to isomorphism) formal groups over a separably closed field. In the sequel, when dealing with case 2) we will assume that \(F \equiv F_h \), where \(h = \text{Ht}(F) \). Moreover, it will be assumed that \(h \geq 2 \), since otherwise, i.e., when \(h = 1 \), \(F \) is isomorphic to \(F_m \) (by the already mentioned Theorem 2 in [4, Chap. III, § 2]), and case 1) can be applied.

Now let \(d = \varphi(d_p) \). Then \(d: A \to A \) is a \(k \)-derivation with \(d^p = c_p d \) and with \(d(m) \not\subset m \), if \(m \not= 0 \). The second important ingredient of the proof is the construction of a special \(p \)-basis \(\Gamma \) of \(A \) over \(k \) and an element \(x \in \Gamma \) satisfying the following conditions

a) \(x \in m \), whenever \(m \not= 0 \),
b) \(d(x) = \partial F(x, 0)/\partial Y \),
c) \(d(y) = 0 \) for \(y \in \Gamma \), \(y \not= x \).

First we show such a pair \((\Gamma, x) \) exists in case 1) of the theorem i.e., when \(F = X + Y + eXY, e \in \{0, 1\} \). Then \(c_p = e \), and therefore \(d^p = ed \). If \(A \) is a field, then by Corollary 3.6, there is an \(x \in A \) such that \(d(x) = ex + 1 \) and \(1, x, \ldots, x^{p-1} \) is a basis of \(A \) as an \(A^d \)-module. Since, by the assumption (i) of the theorem, \(A \) is a separable field extension of \(k \), the latter permits to find a \(p \)-basis \(\Gamma \) of \(A \) over \(k \) with \(x \in \Gamma \) and \(\Gamma - \{x\} \subset A^d \), see [10, proof of Theorem 7]. It is clear that the pair \((\Gamma, x) \) has properties a)–c) above. Now suppose that \(A \) is not a field, that is, \(m = 0 \). Then again making use of Corollary 3.6 one may find an \(x \in m \) such that \(d(x) = ex + 1 \in U(A) \) and \(A = \sum_{i \geq 0} A^d x^i \). Hence \(\delta(x) \in m \cdot \mathbb{Q}_k(A) \), because \(d = q \circ \delta \) for some homomorphism of \(A \)-modules \(q: \mathbb{Q}_k(A) \to A \). In view of Lemma 3.3 this implies that there exists a \(p \)-basis \(\Gamma' \) of \(A \) over \(k \) containing \(x \). We “improve \(\Gamma' \)”. Since \(A = \sum A^d x^i \), each \(y' \in \Gamma' \) can be written in the form \(y' = y + s_{r'}x \), for suitable \(y \in A^d \) and \(s_{r'} \in A \). Let \(\Gamma' = \{y, y' \in \Gamma' - \{x\} \} \cup \{x\} \). Then from the equalities \(\delta(y') = \delta(y) + s_{r'} \delta(x) + x \delta(s_{r'}) \), \(y' \in \Gamma' - \{x\} \), and Lemma 3.3 it follows that \(\Gamma' \) is a \(p \)-basis of \(A \) over \(k (x \in m!) \). The \(p \)-basis \(\Gamma' \) and \(x \in \Gamma' \) satisfy conditions a)–c), and thus
the existence of the required pair \((\Gamma, x)\) has been shown in case 1). In case 2) of the theorem we have \(d^x = 0\), by Lemma 3.7, and \(d(m) \not\in m\). Hence, again by Corollary 3.6, there is an \(x \in m\) with \(d(x) = 1\) and \(A = \sum_{i>0} A_i x^i\). Similarly as above this makes it possible to find a \(p\)-basis \(\Gamma\) such that \(x \in \Gamma\) and \(\Gamma - \{x\} \subset A^d\). It remains to verify that \(d(x) = 1 = d\phi(x, 0)/\partial Y\). From the equality \(f_\phi(F_\phi(X, Y)) = f_\phi(X) + f_\phi(Y)\) (see (3)) it results that \(f_\phi(X)\partial F_\phi(X, 0)/\partial Y = 1\). This implies \(f_\phi'(X)\partial F_\phi(X, 0)/\partial Y = 1\), where \(f_\phi'(X)\) is obtained by reducing all the coefficients of \(f_\phi(X)\) modulo \(p\). Consequently \(\partial F_\phi(x, 0)/\partial Y = 1\) \((= d(x))\), which means that also in case 2) there exist a \(p\)-basis \(\Gamma\) and an element \(x \in \Gamma\) satisfying conditions a)-c).

We are now in position to prove the theorem. Choose a \(p\)-basis \(\Gamma\) of \(A\) over \(k\) and an \(x \in \Gamma\) satisfying the conditions a)-c), and then define the function \(s: \Gamma \rightarrow A[X]\) by the formula: \(s(x) = F(x, X)\), \(s(y) = y\), \(y \in \Gamma - \{x\}\). In view of Lemma 3.1 the function \(s\) (uniquely) extends to a morphism of \(k\)-algebras \(D: A \rightarrow A[X]\) with \(D_0 = \text{id}_A\). We show that \(D\) is an action of the formal group \(F\) on the \(k\)-algebra \(A\) such that \(\varphi_D = \varphi\). The latter amounts to \(D_1 = d\) and it is a consequence of the fact that the \(k\)-derivations \(D_1\) and \(d\) coincide on the \(p\)-basis \(\Gamma\) of \(A\) over \(k\). So, all that remains to be proved is that \(F_A \circ D = F_\gamma \circ D\), where as before \(F_A: A[X] \rightarrow A[X, Y]\), \(D_\gamma: A[X] \rightarrow A[X, Y]\) are the morphisms of \(k\)-algebras defined as follows: \(F_A(g(X)) = g(F(X, Y))\), \(D_\gamma(\sum a_i X^i) = \sum D(a_i) Y^i\).

By Corollary 3.2, it suffices to check that \(F_A \circ D(y) = D_\gamma \circ D(y)\) for all \(y \in \Gamma\). If \(y \neq x\), then both sides are equal to \(y\). Write \(F(X, Y) = \sum F_j(X, Y)\), where \(F_j \in k[X]\). Then

\[F_A \circ D(x) = F(x, F(X, Y)) = F(F(x, X), Y) = \sum F_j(F(x, X))Y^j.\]

On the other hand

\[D_\gamma \circ D(x) = D_\gamma(\sum F_j(x)Y^j) = \sum D(F_j(x))Y^j = \sum F_j(F(x, X))Y^j.\]

Hence \(F_A \circ D(x) = D_\gamma \circ D(x)\), and thus the theorem has been established.

4.1 Corollary (from the proof). Under the assumptions of the theorem there exist a \(p\)-basis \(\Gamma\) of the \(k\)-algebra \(A\) over \(k\) and an element \(x \in \Gamma\) such that \(d(x) = \partial F(x, 0)/\partial Y\), \(\Gamma - \{x\} \subset A^d\), and \(x \in m\), if \(m \neq 0\).

4.2 Remark. Let \((A, m)\) be a local \(k\)-algebra satisfying the conditions (i), (ii) of the theorem. Then \(A\) turns out to be a regular local ring.
This is a consequence of [16, Lemma 1].

4.3 Remark. If the field k is algebraically closed, $F = F_a$, and A is the completion of the local ring of a regular point on some algebraic variety over k, then Corollary 4.1 may be easily deduced from [13, proof of Theorem 1].

References

Institute of Mathematics
Polish Academy of Sciences
ul. Chopina 12/18, 87-100 Toruń
Poland