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§ 1. Introduction.

In this study, the use of factorial moments and factorial moment
generating functions as applied (2) to the Poisson frequency function
and Charlier's Type B function is further extended towards devel-
oping a theory of these distributions for the case of two or more
correlated variables.

The results obtained bear a close analogy to the known ones for
the correlated normal function and Type A function, though there
does not appear to be a simple closed form for the multiple Poisson
function of correlated variables compared with that of the normal
frequency function of several linearly correlated variables.

In the last section a numerical example is given to verify the
theoretical formulae of double Poisson correlation. As no statistical
records of correlation of two variables, each following a Poisson
law, could be discovered, an artificial experiment, suggested by
Darbishire's experiments1 in throws of dice, was devised to provide
the necessary data.

§2. The Poisson Correlation Function.

Consider first the case of the " fourfold table." Let the following
fourfold table display the frequency in a population of two characters
A and B which are not independent:

A

B

B

a

c

Pi

b

d

P2

P-2

P2

1

Whittaker and Robinson, Calculus of Observations, p. 330.
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Here p} and p2 are the relative frequency (probability) of A and
B respectively, px and p2 that of the absence of thes echaracters.
Since A and B are not independent the relative frequency d of both
together will be different from pip2- The frequency generating
function (5) for this population will be

a + bA + cB + dAB = l +pl(A-l) + p2 (B - 1) +d (A- 1) (B - 1).

Putting A = 1 + a, B = 1 -j- B, we have the factorial moment
generating function (m. g. f.) of the population,

1 +pia+p2B + daB,

and so that of samples of N drawn from it, with replacement of
individuals if the population is finite, is the Nih power of the above.

The case of interest to us is when plt p2 and d are all 0 (N*1).
We then have

+p2B + daB)N= [(1+Pia) (1-B>2j8) {l+d - Plp2aB + 0(N-*)}]"

which tends to
gnha+m./3+ma/^ (2.1)

where Npt = mlt Np2 = m2, N (d — px p2) = in.

To find the corresponding frequency function <f> (x, y) we have to-
solve the sum equation

e»i.a+»«aP+m^ = SS^(a;, y) (1 +a)x(l + B)».
X y

Now
mxa + m2B + maj8 = (m1 — m) (a + 1) + (»% — »w) (P + 1)

+ m (a + 1) (j8 + 1) + m - (mx + m2),

and so, picking out the coefficient of (1 + a)* (1 + B)v on the left hand
side of the m. g. f. just found, we have the frequency function

. - (m,— m)x~s (m2 — m)v~8 in' .„

where the upper limit of the summation is the lesser of x and y.

This series is identical with that obtained by A. G. McKendrick
(4) by a quite different approach, the assumptions of which were that
the x and y series were distributed according to the Poisson law, so
that the variances were equal to the means.
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§ 3. A Series Form in Products of Orthogonal Polynomials.

The form (2.2) of the frequency function is not very convenient
for most purposes, and so we proceed to derive another, analogous to
that form of the normal correlation function which involves a power
series in r, the correlation coefficient.

If (2.1) be expanded as a power series in m, we have

2 a°em>a.p°em*t>.m*/s\,
8=0

which (2) can be written

S {2 ( - )• K, (x) $ (x) (1 + a)*}{S ( - )'K. (y) «A (y) (1 + ft*) -y- ,
«=0 x V Si

where tp (x) = e~m<- mf/a!, <p (y) = e,-m>m\ly\, and Ke{x), Ks(y) are
the orthogonal polynomials (1) appropriate to the Poisson frequency
function. The theorem used here is (2, § 1) that multiplication of a
factorial m. g. f. by ar is equivalent to the operation ( — V)r on the
frequency function, where V/(x) = / (z) —f(x — 1).

Thus finally, assuming that the order of summation may be
interchanged, we have

+ (,v) ^ ^
* is '

which could also be written in operational form

<f>{x, y) = e

™ + . . , (3.1)
' )

§ 4. The Factorial Moments of the Distribution.

Let m(rs) be the factorial moment of order r in x, s in y,
denned by

m ( r > s) = T,X<f>(x,y)x(x - 1) .. .. (x - r + l ) y ( y - 1) .. . .(y - s + 1 ) .
x y

Since i t is the coefficient of arj3s/(r\ s\) in (2.1), we have

where the upper limit for t is the lesser of r and s. In particular

m ( l , 0) = ml>
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These three moments can be computed directly from any set of
data, and so the three parameters of the frequency function are
completely determined. Also, further factorial moments of the
fitted distribution can be obtained by summing the necessary terms
of (4.1).

It is easy to prove, by summing (2.2) over all values of y, that
the distribution of x alone is an ordinary Poisson distribution with
mean mu with a similar result for the distribution of y. Thus the
totals of the x and y arrays in the correlation table are distributed
according to the Poisson exponential law.

§ 5. Regression Lines.

To find the mean x corresponding to a fixed y = k, which we
shall denote by xk> we have, by (2.1),

m-\-l) (m<> — m)k~1 m

rF^rrfE x* (x, fcjr-e— \v - V, " '- + (* - 1) I • 1!

(m1 — m+k) ink]
•••• + IT

n,x — m) m\ •

k\

and £ <£ (a;, A) = e~m* m\\k\,

so that ^ = 2^;^ {x, &)/S ̂  (x, i) = mx — m -\ k.
m2

Hence the locus of the means of the ct's corresponding to any
y is

x — m1= — (y — m2),

with a similar expression for the locus of the means of the y's corre-
sponding to any x. These straight lines may be regarded as the
"regression lines" of the distribution, though they do not, as in the
case of ordinary normal correlation, give the most probable value of
one variable corresponding to any value of another; they give the
mean value.

We may further extend the analogy and define a coefficient of
correlation r by

r __ ; I A ^L\ = !5 — —I1-1) — m(Q. i) md,Q)
m2) V (n
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Since the totals of the x and y arrays are Poisson distributions,
the variances of these are equal to their means; so that the above
result may be written

r = 2/^2,0)

where /*1:1 is the ordinary product moment, /J.2 0 and ^ 0 2 the variances
of the x and ?/ arrays, all three being calculated from the means.
This is simply the ordinary Pearsonian coefficient of correlation.

The definition may be justified in another way. In the case
of Poisson correlation the factor expressing the correlation involves
orthogonal polynomials Ks(x), Ks{y), which contain the parameters
m1 and ra2. In the corresponding series for normal correlation, as
usually given, the variables are normalized, so that r is given
absolutely, free from scale units. The true analogue of our series
will therefore be the normal series, when the Hermite polynomials
that occur in it are defined by non-normalized variables. In such
a case we must have

H. (x, ax) = e**'/v ( -

and the series for the normal correlation function then takes the
shape

r 2 ni CT2

1 + raxav Hx (x, ox) Hx (y, av) + —^> H2 (x, ox) H2 (y, <ry) + . . . . ,

with which our form for the Poisson correlation function,
_ 2

1 + m Kx (x, mi) K2 (x, m2) + ~ K2 (x, mx) Z2 (x, m2) +

is now in satisfactory correspondence.

From the nature of the Poisson function and its orthogonal
polynomials, we are compelled to leave the parameters mx and m2

implicit, being unable to remove them by normalizing the variables,
since not powers but factorials in. x and y are involved. But we may
normalize m in terms of mx and m2, thus arriving at a proper analogy
and at the definition of the correlation coefficient given above. It
is of course known that the Pearsonian coefficient can be applied to
distributions other than the normal; what is not always known in
such cases is its sampling distribution.
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§ 6. The Correlation Function of Type B.

The distribution given by (2.2) can be derived under more
general conditions. We shall now consider the samples of N to be
formed by taking one individual from each of N different populations
constituted similarly to the population taken in § 2, that is, consisting
of two correlated characters. If the parameters of the populations
are pu p\, dx; p2, p'2, d2; .. .. ; ps, p'x, ds, then the factorial m. g. f.
of the samples of JV, since the selections are from independent
populations, is

pia){l + p\ jS) {1 + dt - Pip't a

..}, (6.1)

where m1 — 'Lpi, m2 = ^p'i, m = 'L{di—
Here B20 and B02 are 0 (N~1), later terms being of smaller

order. Hence in the limit we have the same factorial m. g. f. as in
§ 2, and therefore the same kind of frequency function cf> (x, y).

If however we do not proceed to the limit but retain the terms
of higher order, then by the operational theorem mentioned in § 3 we
have, from (6.1), the more general correlation function,

/ ( * , y) = 4>{x, y) + B.2tO^l4>{x, y) + BOtiV*4>(z, y) + . . . . , (6 .2)

where <f> (x, y) has the form given in (2.2). The function f(x, y) may
be called the correlation function of Type B, and may be compared
with the correlation function (3) of Type A,

where h + r ^ 3, and <f> (x, y) is the normal correlation function for
two variables.

The parameters rax, m2 and m and the B's can be expressed
directly (2) in terms of the factorial moments of the distribution.

Expansions similar to those for more than two normally
correlated variables can be developed by the method of the present
paper, but the analogies are then less marked.

§7. Experimental Tests and Numerical Results.

The data for these were obtained in the following way. A stock
of 420 marbles, of which 21 differed from the rest in colour only, was
subjected to thorough mixing and then distributed at random in 20
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grooves capable of holding 20 marbles each exactly. (An excess of
20 over the 400 was taken in order that the mean number of coloured
marbles in a groove should not be forced to be unity.) The number
of coloured marbles in each groove was then noted. The 420 marbles
were then mixed again and redistributed at random. This was
carried out 50 times in all, and so a frequency distribution of 1000
observations was obtained.

The successive frequencies recorded being denoted by %, u2, u3,
.. . ., the sequence (ux + u2), (u2 + ?t3), (M3 + tt4), . . . . was then con-
structed, and the correlated pairs (u± + u2, u2 + %), (w3 + ui: w4 + ua),
. . . . were taken to be the values (xit yt) of the double distribution.

The single frequencies ult u2 are uncorrelated, and can be
regarded as distributed, to a sufficient order of approximationj

according to the Poisson law, with mean unity and so with variance
unity. (Actually the distribution, obtained by sampling without
replacement, is of hypergeometric type, but since the probability of
success is small, p = 0-05, the Poisson law is a close approximation.)
Hence the variance of the a;-series alone is a\ — 2, since the series
is composed of sums of two independent terms each of variance
unity; similarly a^ = 2. Hence the expected value of the correlation
coefficient r, as given by

rax ov = £ {Ui + Uj) (Uj + uk)/N
= Sw?/ff=l,

(since ut, ujt uk are uncorrelated), is r = 0-5, as might be expected.
The experimental results based on these pairs of terms gave the

following correlation table.

x 0
1

2

3

4

5

6

7

/.

y
0

24

28

12

6

1

71

1

19

39

41

23

1

123

2

12

45

47

29

12

3

1

149

3

7

17

32

21

14

1

92

4

2

2

3

11

13
1

2

1

35

5

3

6

4

2

2
1

18

6

2

2

4

1

9

7

1
2

3

u
64

131

140

97

43

12

5

3

500
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In the usual way we obtain from this the values of the required
parameters:

m1 = mx= 2-01, ax = 1-37,

m2 = my = 2-00, ou=l-4S, m = 1-02.

Hence r = 0-51.

The next table shows the theoretical uncorrelated distribution of
500 observations having the totals of rows and columns distributed
according to a Poisson law with mx— 2, mv= 2, the frequency in
class (x, y) being thus given by

500 e-22x.e-

x 0
1
2
3
4
5
6
7
8

y
o

9-2
18-3
18-3
12-2
61
2-5
0-8
0-2
0 1

18-3
36-6
36-6
24-4
12-2

4-9
1-6
0-5
0 1

18-3
36-6
36-6
24-4
12-2

4-9
1-6
0-5
0 1

12-2
24-4
24-4
16-3

8-1
3-3
1 1
0-3
0 1

6 1
12-2
12-2

8 1
4-1
1-6
0-5
0-2

2-5
4-9
4-9
3-3
1-6
0-7
0-2
0 1

0-8
1-6
1-6
1 1
0-5
0-2
0-1

0
0
0
0
0
0

•2
•5

•5
•3

•2
•1

0
0
0
0

•1
•1
•1
•1

67-7
135-2
135-2
90-2
45-0
18-2

5-9
1-8
0-4

499-6

In order to obtain the theoretical correlation distribution, the
frequencies in the cells of the above table must be multiplied by the
proper value of the series in orthogonal polynomials of (3.1), with
m = 1. For this purpose we require the values of these polynomials
for m = 2, as far as the 6th order. Tables of the polynomials have
been constructed (2), depending on the recurrence relation (1)

Kr (x + 1) - Kr (x) = — Kr_x (x),
m

a partial control on the computations being provided by the relation
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In this way we obtain the theoretical correlated frequencies of
the following table, which is to be compared with that first given:

x 0
1
2
3
4

5
6
7

8

y
0

24-9
24-9
12-4
4-2
1 0
0-2

1

24-9
49-7
37-4
16-5
5-2
1-3
0-2
0-1

2

12-4
37-4
43-3
2 7 1
10-9

3-2
0-9
0-1

3

4-2
16-5
27-1
23-4
12-6

4-7
1-3
0-3
0 1

4

1 0
5-2

10-9
12-6

9 0
4-4
1-5
0-4
0 1

5

0-2
1-3
3-2
4-7
4-4
2-6
1-2
0-4
0-1

6

0-2
0-9
1-3
1-5
1-2
0-6
0-6

7

0 1
0-1
0-3
0-4
0-4
0-2
0-2

0
0
0

8

•1
•1
•1

67-6
135-3
135-2
90-2
4 5 1
18-1
5-9
1-7
0 3

499-4
As a measure of the agreement Pearson's x2-test of goodness of

fit may be applied, bu t since the test is not valid for too fine a
grouping, it was decided to pool the frequencies for x and y S: 3.
When this is done we have 16 frequency classes with 15 degrees of
freedom, since the total frequencies of the tables have been made to
agree by the process of fitting. For the correlation table of the
experimental results and the theoretical correlation table just given
X2 proves to be 10-32, for which the value of P, the probability of
obtaining as great or greater values of x2> *s 0-80. This can be
considered a reasonable value. On the other hand, applying a
similar test to the theoretical uncorrelated table, we find %2 = 105-6,
for which the value of P is of extreme smallness.

We conclude from the experiment that correlation of the type
discussed in this paper is present, and that the mathematical
representation of it by the bracket factor involving the orthogonal
polynomials of Type B is an adequate one.
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