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Abstract: Ipresenta critical review of techniques for estimating confidence intervals on binomial population
proportions inferred from success counts in small to intermediate samples. Population proportions arise
frequently as quantities of interest in astronomical research; for instance, in studies aiming to constrain the bar
fraction, active galactic nucleus fraction, supermassive black hole fraction, merger fraction, or red sequence
fraction from counts of galaxies exhibiting distinct morphological features or stellar populations. However,
two of the most widely-used techniques for estimating binomial confidence intervals — the ‘normal
approximation’ and the Clopper & Pearson approach — are liable to misrepresent the degree of statistical
uncertainty present under sampling conditions routinely encountered in astronomical surveys, leading to an
ineffective use of the experimental data (and, worse, an inefficient use of the resources expended in obtaining
that data). Hence, I provide here an overview of the fundamentals of binomial statistics with two principal
aims: (1) to reveal the ease with which (Bayesian) binomial confidence intervals with more satisfactory
behaviour may be estimated from the quantiles of the beta distribution using modern mathematical software
packages (e.g. R, MATLAB, MATHEMATICA, IDL, PYTHON); and (11) to demonstrate convincingly the major flaws of
both the ‘normal approximation’ and the Clopper & Pearson approach for error estimation.
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1 Introduction

One problem frequently encountered in astronomical
research is that of estimating a confidence interval (CI) on
the value of an unknown population proportion based on
the observed number of success counts in a given sample.
The unknown population proportion may be, for instance,
the intrinsic fraction of barred disk galaxies at a specific
epoch to be inferred from the observed number of barred
disks in a volume-limited sample (e.g., Elmegreen et al.
1990; van den Bergh 2002; Cameron et al. 2010; Nair &
Abraham 2010), with the corresponding binomial CI used
to evaluate the hypothesis that the bar fraction changes
with redshift relative to a local benchmark (e.g., Cameron
et al. 2010). Experiments to investigate the role of mass
and environment in quenching star-formation via mea-
surement of the galaxy red sequence fraction (e.g., Baldry
et al. 2006; Hester et al. 2010; Ilbert et al. 2010), or to
investigate whether or not major mergers were more
frequent at high redshift via measurement of the close-
pair/asymmetric fraction (e.g., De Propris et al. 2005;
Conselice et al. 2008; Lopez-Sanjuan et al. 2010), also
routinely present this class of problem.

However, the two most commonly used methods for
estimating CIs on binomial population proportions — the
‘normal approximation’ and the Clopper & Pearson
(1934) approach — exhibit significant flaws under
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routine sampling conditions (cf. Vollset 1993; Santner
1998; Brown et al. 2001, 2002). In particular, the ‘normal
approximation’ (also called the ‘Poisson error’) may
systematically underestimate the CI width necessary to
provide coverage at the desired level, especially for small
samples, but even for rather large samples when the true
population proportion is either very low or very high. If
used naively the ‘normal approximation’ has the potential
to mislead one into over-stating the significance of one’s
inferences concerning the physical system under study
formulated on the basis of the observed data.
Astronomers aware of these flaws in the ‘normal
approximation’ often adopt the alternative Clopper &
Pearson (1934) approach to CI estimation by way of refer-
ence to the CI tables in Gehrels (1986). Unfortunately,
the Clopper & Pearson (1934) approach suffers from the
opposite problem to that of the ‘normal approximation’ —
namely, a systematic over-estimation of the CI width
required to provide the desired coverage (Clopper &
Pearson 1934; Neyman 1935; Gehrels 1986; Agresti &
Coull 1998). In scientific research this over-estimation of
the statistical measurement uncertainties may mislead one
into placing insufficient confidence in the experimental
outcomes, resulting in an inefficient use of the measured
data (and hence the resources expended in obtaining that
data). Indeed, it has been well argued by Agresti & Coull
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(1998) that in many practical applications even the ‘normal
approximation’, despite its flaws, is preferable to the
Clopper & Pearson (1934) approach.

Fortunately, there exist a multitude of alternative
methods for generating Cls on binomial population pro-
portions, many of which exhibit far more satisfactory
behaviour than either the ‘normal approximation’ or the
Clopper & Pearson (1934) approach — see Agresti &
Coull (1998) and Brown et al. (2001) for various exam-
ples. Here I review both the theory and application of one
of these methods — use of the beta distribution quan-
tiles — deriving from a simple Bayesian analysis in which
auniform (‘non-informative’) prior is adopted for the true
population proportion (e.g., Gelman et al. 2003). As I will
demonstrate, the beta distribution generator for binomial
Cls is both theoretically well motivated and easily applied
in practice using widely available mathematical software
packages (e.g., R, MATLAB, MATHEMATICA, IDL, PYTHON).
Ultimately, I advocate strongly that this strategy for
estimating binomial ClIs be adopted in future studies
aiming to constrain fundamental population proportions
in astronomical research (e.g., the galaxy bar fraction,
red sequence fraction, or merger fraction) — especially
for samples intrinsically of small to intermediate size, or
when the subdivision of larger samples for analytical
purposes produces sparsely populated data bins.

2 The Binomial Distribution

In probability theory any experiment for which there are
only two possible random outcomes — success, occurring
with probability p, or failure, occurring with probability
q = (1 — p)—isreferred to as a Bernoulli trial. Examples
of Bernoulli trials in astronomical research may include
asking whether or not a randomly sampled galaxy is
barred, red-sequence, or merging. The probability, P, of
observing a particular number of successes, 4, in a series
of n independent Bernoulli trials (with common success
probability p) is governed by the binomial probability
function:

P(k,n,p) = (Z)p"q”’k (1)

where 0 =<k =n, k € Z (an integer), and

e =

! One may note that the correct terminology in a statistical context is
actually ‘binomial probability mass function’, owing to the discrete
nature of the binomial distribution, i.e., that there exist a finite number of
possible & values (the integers from 0 to n, inclusive) to which non-zero
probabilities may be assigned. (As distinct from the alternative case of a
‘probability density function’, such as the Bayesian posterior probability
distribution for p considered in Section 3, for which non-zero probabili-
ties may only be assigned to measurable intervals on the real number
line, and not individual — or even countable sets of — real numbers.)
Nevertheless, to avoid any confusion with the more commonly used
definition of the term ‘mass function” in astronomy I adopt the shorter
expression ‘binomial probability function’ herein.
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(see, for example, Quirin 1978). Note that the probabili-
ties given by the n+ 1 possible values of & correspond
to the n+ 1 terms of the binomial expansion of (p + ¢)".
The number of barred systems counted in a given sample
of disk galaxies is a classic example of a binomially
distributed variable in astronomy. The corresponding
expectation value for the number of successes is > ;_, k ¥
P(k,n,p) = np with a variance of > ;_,(k — np)?* x
P(k,n,p) = npq. Moreover, the expectation value for the
fraction of successes, k/n, is equal to the Bernoulli trial
success probability (also referred to as the ‘underlying
population proportion’), p, and its variance is pg/n.

2.1 An Intermission: Just What Is a Confidence Interval?

As explained eloquently by both Kraft et al. (1991) and
Ross (2003), there is a fundamental difference between
the ‘classical’ and ‘Bayesian’ definitions of the term
‘confidence interval’. In classical statistical theory a
binomial CI is defined as a pair of random variables, P,
and P,, (with each random variable necessarily a finite,
real-valued, measurable function; cf. Rao & Swift 2006)
operating on the set of all possible experimental out-
comes, 0 = {k: 0<k<n,k € Z}, such that if the exper-
iment were to be repeated by a sufficiently large number
of independent observers then the fraction of observers
for whom the true value of the underlying population
proportion is covered by their realisation of these
random variables — i.e., for whom Py(0,)=p,<p<
pu.=P,(0;) — is guaranteed to converge to (at least) a
specific value, ¢, termed ‘the confidence level’. In the
Bayesian paradigm, on the other hand, the underlying
population proportion is treated as an unknown model
parameter and the binomial CI defined as an interval,
(ps» pPu), to which the experimenter believes may be
assigned a probability, ¢, of containing the true value of
p, based upon consideration of the likelihood function
for p given the experimental data and the strength of any
a priori beliefs or expectations regarding the system under
study. (Indeed, acknowledging the significant conceptual
differences between these alternative approaches to the
binomial CI, the term ‘credible interval’ is often used
instead in Bayesian analysis to avoid confusion with the
classical nomenclature.) Importantly, as noted by Kraft
et al. (1991), regardless of one’s philosophical posit-
ion regarding these two statistical systems, ‘the Bayesian
definition of confidence intervals reflects common
astronomical usage better than the classical definition’.

Of the three binomial CI generators discussed in this
review, only that attributed to Clopper & Pearson (1934)
is consistent with the classical definition for all possible
values of the underlying population proportion and sam-
ple size. However, [ will argue that (at least) in the case of
the binomial distribution, Bayesian Cls provide generally
more satisfactory behaviour for astronomical purposes
than their classical counterparts, even when evaluated
against a performance diagnostic based on the classical
definition — namely, the coverage fraction (or ‘effective
coverage’) at given p and n.
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Figure 1 Example likelihood functions for the true value of the underlying population proportion, p, given five ‘measured’ success fractions,
P = k/n, for samples of sizes n = 6 (left panel) and n = 36 (right panel). In each case the shape of the curve is given by the beta distribution with
shape parameters as specified by Eqn 2. The asymmetric nature of this likelihood function in the small sample size regime is clearly evident among
the n = 6 examples, as is its convergence in the intermediate to large sample size regime towards a narrower, more symmetric, (pseudo-)normal

distribution among the n = 36 examples.

3 The Beta Distribution Generator for Binomial
Confidence Intervals

In astronomical data analysis it is standard practice to
adopt the measured success fraction (also referred to as
the ‘observed population proportion’), p = k/n, as one’s
‘best guess’ of the underlying population proportion. In
statistical terms, p is employed as a point estimator for p.
The likelihood of observing the result, p = k/n, for a
given value of p is, of course, proportional to p*q"™*.
Normalisation of this likelihood function over 0 <p <1
defines a ‘beta distribution’ with integer parameters
a=k+landb=n—Fk+1:

(a+b—1)

P = e -1

pa—lqb—l (2)

where ¢ =1 —p (e.g., Gelman et al. 2003; Ross 2003).
Differentiation of this likelihood function reveals that our
best guess, p, is in fact the maximum likelihood estimator
of p.? The characteristic shape of the (beta distribution)
likelihood function for p is illustrated in Figure 1 at a
variety of ‘measured’ success fractions for samples of
sizes n = 6 (left panel) and n = 36 (right panel). At small
n, the likelihood function for p is markedly asymmetric
(except where p = 1/2), but at intermediate 7 it is visibly
converging towards a narrow, symmetric, (pseudo-)nor-

2 Technically, when p = 0 (or 1) the likelihood function for p has no zero
first derivative on the open interval, (0, 1), although the function itself is
indeed strictly increasing as p — 0 (or 1). In this case one may choose to
adopt the median (50% quantile) of the (beta distribution) likelihood
function as one’s best guess for p, or else to compute a ‘one-sided’
confidence interval bounding p instead. In either case, one proceeds
using similar principles.

https://doi.org/10.1071/AS10046 Published online by Cambridge University Press

mal distribution — the motivation behind the ‘normal
approximation’ discussed in Section 4.

Given no a priori knowledge to inform one’s expecta-
tions regarding the experimental outcome, one may sup-
pose that all values of p are equally ‘probable’. Formally,
this condition is characterised via the Bayes—Laplace
uniform prior, for which Ppio(p)=1 over 0 <p<1.
Application of Bayes’ theorem under this assumption
allows one to treat the normalised likelihood function for
p as a posterior probability distribution. Thus, the quantiles
of the beta distribution from Eqn 2 may be used directly to
estimate (Bayesian) confidence intervals on the underlying
population proportion given the observed data.®> Specifi-
cally, the lower and upper bounds, p; and p,, defining an
‘equal-tailed’” (or ‘central’) interval for p at a nominal
confidence level of ¢ = 1—o are given by the quantiles:

DI 1
/ B(a,b)dp = 0/2 and / B(a,b)dp =0/2. (3)
0

Pu

Note that the bounds of this ‘equal-tailed’ interval (which
partition the probability of p greater than p, equal to that
of p less than p;) will be necessarily asymmetric about the
maximum likelihood value, p, (except at p = 1/2) owing
to the asymmetric nature of the (beta distribution) likeli-
hood function for p (shown in Figure 1). As I will dem-
onstrate below, binomial CIs generated in this manner

3 Astronomers familiar with the work of Burgasser et al. (2003) on
binarity in brown dwarfs may be familiar with the algorithm for
recovering confidence intervals on p given in their Appendix, which is
in fact equivalent to the Bayesian approach with uniform prior presented
here (although Burgasser et al. 2003 make no explicit reference to either
Bayes’ theorem or the beta distribution).
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have one rather desirable property, not shared by either
the ‘normal approximation’ or the Clopper & Pearson
(1934) approach — namely, their mean effective cover-
age is consistently very close to the nominal confidence
level, even in the small sample size regime.

In the upper panel of Figure 2, I examine first the
effective coverage, c,, of ‘equal-tailed’ binomial ClIs
defined via the beta distribution for a range of population
proportions and sample sizes (0.025=p=0.975 and
1 =n=100) at a nominal level of ¢, ~ 0.683 (1g) —
with the effective coverage defined as the fraction of
samples drawn from the binomial probability function
with given p and n for which the corresponding realisation
of the CI under investigation encompasses the true popu-
lation proportion. Thus, the effective coverage fractions,
c., presented here are computed as the sum of all binomial
probabilities P(k, n, p) over {k:0=k=n, ke Z}, for
which the triad {k, n, p} produces a confidence interval,
(»s» pu), containing (covering) p.

One of the most striking features of this plot is the
remarkable sensitivity of the effective coverage to the true
underlying population proportion and sample size. This
so-called ‘oscillation signature’ is an inherent property
of all deterministic (i.e., non-randomising) generators
for binomial ClIs, arising from the discreteness of the
binomial distribution.* Despite these oscillations it is
clear that the beta distribution Cls do achieve an effective
coverage close to (or slightly greater than) the desired
confidence level over the vast majority of the parameter
space explored here. Indeed, even at the extremes of
p < 1/6 and p = 5/6, where the oscillations are initially
rather large, there is evidently a rapid increase in coverage
stability with increasing sample size, such that the ‘oscil-
lation signature’ is vastly suppressed by » = 40, and
effectively eliminated (at least for 0.025 < p =0.975)
by n = 80 (unlike in the case of the ‘normal approxima-
tion’ examined in Section 4).

In the lower panel of Figure 2, I examine the corre-
sponding mean effective coverage (averaged uniformly
over 0.025 =p=0.975) as a function of sample size.
Whereas the effective coverage at given p and » shown in
the upper panel is consistent with the classical notion of

“Brownetal. (2001) describe the ‘oscillation signature’ as the challenge
of ‘lucky p, lucky n” — namely that for certain (‘lucky’) combinations of
underlying population proportion and sample size there exist two almost
equally likely p values closely straddling the true p. For instance, ifp = 1/
5 and one has a sample of size n = 3, the possible p values are 0, 1/3, 2/3,
and 1, occurring with frequencies 0.512, 0.384, 0.096, and 0.008,
respectively. Tailoring a binomial CI specifically to this situation, one
could define py =p —2/15 — e and p, = p + 1/5 + € (with € an arbi-
trarily small constant necessary to ensure p is contained within the open
interval (p;, p,) for k=0 and 1), returning an effective coverage of
c,=0.512+40.384 = 0.896. However, applying the same CI generator to
a system with p = 1/3 (and again n = 3) for which the possible p values
occur with frequencies 0.296, 0.444, 0.222, and 0.037 (rounded to 3
decimal places), one obtains an effective coverage of only ¢, = 0.444!
For further discussion of the impact of the ‘oscillation signature’ on
binomial CIs the interested reader is referred to Agresti & Coull (1998)
and Brown et al. (2001, 2002).
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confidence interval performance, the mean effective
coverage may be considered a ‘Bayesian’ CI performance
diagnostic — i.e., if one really does hold all p values
equally ‘probable’ a priori, then one’s favoured CI gener-
ator should be at least expected to provide coverage
consistent with the nominal level in the long-term
average of all equivalent experiments. Inspection of the
lower panel of Figure 2 confirms a very close agreement
between the mean effective coverage of the beta distribu-
tion CI generator and the nominal confidence level,
independent of #.

Most modern mathematical software packages provide
robust, easy-to-use library functions for computing beta
distribution quantiles (e.g., the QBETA routine in R; the
QUANTILE and BETADISTRIBUTION commands in MATHEMATICA;
the BETAINCINV function in MATLAB; the IBETA function in
IDL; or the DIST.BETA.PPF function in pYTHON). Explicit code
fragments demonstrating the implementation of these
commands are provided in the Appendix to this paper,
and I advocate strongly the use of these recipes for the
computation of confidence intervals on binomial popula-
tion proportions in future astronomical studies. In Tables 1
and 2 in the Appendix, I present compilations of ‘equal-
tailed’ CIs generated in this manner at nominal confi-
dence levels of 1o and 30, respectively, for all possible
observed success counts in sample sizes up to n=_20.
These tables are intended both as a convenient reference
for use directly in studies involving samples of 20 objects
or less, and as a benchmark against which to confirm the
correct implementation of the beta distribution CI gener-
ator for users newly adopting this technique.

A note on the above The (non-informative) Bayes—
Laplace uniform prior may in fact be viewed as the special
case of Pprio(p) =B(1, 1) =1 within a wider family of
possible conjugate priors for the binomial population
proportion based on the beta distribution. Another
popular non-informative prior for p is the Jeffreys prior
of Pprior(p) = B(1/2, 1/2)° (cf. Brown et al. 2001; Gelman
etal. 2003), which is, by design, proportional to the square
root of the Fisher information. Application of the Jeffreys
prior returns a posterior probability distribution for p
of B(k+1/2, n — k+ 1/2). The performance of binomial
Cls generated via beta distribution quantiles based on the
Jeffreys prior differ insignificantly from those
based on the uniform prior over 0.025 = p = 0.975 when
n 2 2 — consistent with the description of both these
priors as ‘non-informative’ (i.e., that even for small
sample sizes the shape of the posterior probability distri-
bution in both cases is strongly governed by the likelihood
function of the observed data). (See the recent review by
Cousins, Hymes & Tucker 2009 for a thorough evaluation
of the performance of Bayesian Cls constructed with the
Jeffreys prior.) Hence, while the specific results presented
in this paper are computed exclusively using the uniform

> Note that the factorial functions used in the beta distribution definition
of Eqn 2 must be replaced by gamma functions according to the relation
(m)! =T'(m +1) in order to handle the non-integer input in this case.
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Figure 2 The effective coverage, c,, of confidence intervals on the binomial population proportion generated from quantiles of the beta
distribution at a nominal level of ¢, & 0.683 (1o) over the range 0.025 = p = 0.975 and 1 =n = 100 (upper panel). Averaging the measured c,
values uniformly over all p at each n returns the mean effective coverage as a function of sample size (lower panel).

prior, for the purposes of our general discussion regarding
the superiority of the beta distribution quantile technique
over the ‘normal approximation’ and the Clopper & Pearson
(1934) approach, these two non-informative priors may be
considered interchangable.

4 The ‘Normal Approximation’

For a system with an underlying binomial population
proportion, p, neither very close to 0 or 1, one may sup-
pose (with reference to the central limit theorem) that the
distribution of the p statistic in a series of independent
samples of a fixed ‘large’ size will follow approximately a
normal distribution. Under the assumptions of this ‘nor-
mal approximation’ (also called the ‘Poisson error’) one
may employ the standard Wald test criterion, established
by Wald & Wolfowitz (1939), to construct a two-sided
confidence interval for p. Specifically, at a confidence
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level of ¢ =1 — o one may expect that the true value of p
lies within the interval

pleoc/2\)p7q<p<p+zlfx/2 p7q (4)

where ¢ = 1 — p, and z;_,, is defined with reference to
the standard normal distribution:

Z1—a/2 1

i Eexp(fxz/Z)dx =1-0/2

Values of z;_,, for particular confidence levels may
be obtained from reference tables in statistical textbooks
(e.g., Quirin 1978) or computed within one’s favourite
mathematical software package (e.g., the QNorM function
in R). Of course, the most commonly used formula for
constructing error bars on measured galaxy bar fractions,
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Figure3 Comparison between the true binomial distribution of the p statistic (i.e., the observed population proportion k/n) and that assumed by
the ‘normal approximation’. Specifically, the p distributions of the binomial probability function with p = 1/3, 1/2, and 5/6 are contrasted against
scaled normal distributions with matching means and variances for sample sizes of n = 6 (left panel) and n = 36 (right panel), respectively. In the
small sample size regime the ‘normal approximation’ provides a reasonable representation of the p distribution at p = 1/2 and 1/3, but not 5/6,
while in the intermediate to large sample size regime even the distribution at p = 5/6 is also clearly converging towards normal.

p = p\/pq/n (e.g., Elmegreen et al. 1990), is simply the
application of Eqn 4 at z;_,, = 1, corresponding to a la
confidence level of ¢ &~ 0.683. The cases of z;_,» =2 and
3 (i.e., 20 and 30 errors) correspond to higher confidence
levels of ¢ ~ 0.954 and 0.997, respectively.

As noted above, the key assumption behind this
approach to binomial CI estimation — that the distribu-
tion of p may be approximated via a normal distribution
with mean p and variance pg/n — is reasonable only under
the conditions of a ‘large’ sample size and p neither very
close to O or 1. In Figure 3 I compare the distribution of the
p statistic (computed directly from the binomial probabil-
ity function) against the shape of the corresponding
‘normal approximation’ for three different values of the
underlying population proportion (p = 1/3, 1/2, and 5/6)
and two different sample sizes (n = 6 and 36). In the small
sample size example (n = 6) the ‘normal approximation’
provides a reasonable representation of the p distribution
at p=1/3 and p=1/2, but performs poorly at p =5/6
(i.e., p close to 1). However, in the intermediate sample
size example (n=36) there is now a clear convergence
towards a normal distribution in p even at p = 5/6. These
examples, presented in Figure 3, serve to illustrate the
nature of deviations from ‘normality’ in the distribution of
p at small n and/or extreme p values. The impact of these
deviations on the performance of the ‘normal approxima-
tion’ as a binomial CI generator is examined below.

In Figure 4 I present the effective coverage of binomial
CIs estimated via the ‘normal approximation’ as a func-
tion of p and n at anominal confidence level of ¢, & 0.683
(lo). As in the case of the beta distribution quantile
approach described above, there is a clear ‘oscillation
signature’ visible in this figure, reflecting a marked
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sensitivity in the coverage performance to the value of
the underlying population proportion and sample size.°
However, it is also evident that the ‘normal approxima-
tion” suffers a systematic decline in performance both for
small » and towards extreme values of p near 0 or 1,
generating binomial Cls with effective coverage far
below the desired level. The strict symmetry of the
‘normal approximation’ CI about the observed success
fraction — which at low or high p may even extend
(unphysically) to p=0 or p=1 — regardless of the
inherent asymmetry in the likelihood distribution for p
(see Figure 1) is the principal cause of these coverage
failures. The poor performance of the ‘normal approxi-
mation’ at small » is further highlighted in the correspond-
ing plot of mean effective coverage against sample size
shown in the lower panel of Figure 4. For the 1o Cls
examined here (and popularly adopted in studies of the
galaxy bar fraction) the mean effective coverage of the
‘normal approximation’ is far below the nominal level for
n < 20, and should thus be strictly avoided in this small

1t is important also to note that this ‘oscillation signature’ is evident
even in binomial CIs generated via the ‘normal approximation’ at very
large sample sizes, as thoroughly demonstrated by Brown et al. (2001,
2002). For instance, Brown et al. (2001) describe the erratic behaviour of
the ‘normal approximation’ coverage at anominal level of ¢, = 0.95 fora
system with p=0.005, whereby there is a steady convergence in c,
towards 0.95 for n increasing until n = 592, at which point coverage falls
suddenly to ¢, = 0.792! Similarly, Brown et al. (2002) demonstrate that
in order to ensure coverage stays at or above a nominal level of ¢, = 0.93
for a system with p = 0.1 using the ‘normal approximation’ one requires
a sample size of at least n = 286, whereas for the Bayesian (Jeffreys non-
informative prior) CI this criterion is satisfied by n =47.
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Figure4 The effective coverage, c,, of confidence intervals on the binomial population proportion generated via the ‘normal approximation’ at
anominal level of ¢,, & 0.683 (10) over the range 0.025 =< p = 0.975 and 1 = n = 100 (upper panel). Averaging the measured c, values unformly
over all p at each n returns the mean effective coverage as a function of sample size (lower panel).

sample size regime. Indeed, although its mean effective
coverage does ultimately improve with increasing 7, one
may be well advised to avoid the ‘normal approximation’
altogether in light of its poor effective coverage at
extreme p values and the ready availability of a superior
CI generator in the form of the (Bayesian) beta distribu-
tion quantiles described in Section 3.

The flaws in the ‘normal approximation’ as a CI
generator described above were a great source of concern
for statisticians in the 1930s, prompting the search for
alternatives able to ensure universal coverage of at least
the nominal level (thereby satisfying the classical defini-
tion of the term ‘confidence interval’) while remaining
readily computable given the limited aids available at the
time (such as reference tables of quantiles for standard
distributions). The most popular of all such proposed
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alternatives was the Clopper & Pearson (1934) approach
(cf. Gehrels 1986), which I review below.

5 The Clopper & Pearson Approach

In their landmark 1934 paper Clopper & Pearson pre-
sented a direct method for constructing ‘classical’ confi-
dence intervals on inferred population proportions based
on quantiles of the binomial probability function (Eqn 1),
guaranteed to provide a coverage probability of at least
(but likely exceeding) the nominal confidence level. The
‘two-sided’ (Clopper & Pearson 1934) Clatc=1—oa is
constructed by solving the following equations for the
lower and upper bounds, P,(k) =p; and P, (k) =p,:

n

S () -p0r =2 (orkro) (9

n
=* N


https://doi.org/10.1071/AS10046

The Simplicity and Superiority of the Bayesian Approach

135

Clopper & Pearson

Effective coverage

.~ 0.683 (10)

1'0 ] +++++++++++++ 0 00 ..+++++++++++++++++
+++++++++++++++++++++++++++++++++++oo.ooo.++++++++++++++++++++++o..oo.o..+++ Fo bbb
00000 it ittt 11000000 11t il it b bbby ot
0.9 — ++000 +1+++++=—+++++++++++..oo+++++++++++++++ .oo+::¢¢¢
2 0.8
N’
c 0.7
e}
5 0.6
Q
© 0.5
Q.
S 047
3 0.3
2
DO. 0.2 — PERRAARS{SPUR LY
+000O®+++++@+++++++
0.1+ s T e L
0.0 -
c. < 0.546] 0.546 < c,< 0.615|0.615 < ¢, < 0.751|jl 0.751 < ¢, < 0.820) Co>0.820)
T T T T T T T T T T T T T T T T T T T T I
1 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100
Sample size (n)
10 Clopper & Pearson Mean effective coverage ~=0.683 (10)
0.9
&
1< 0.8
S 0.7
)
0 0.6
o
(&) 05 —
g
= 0.4
3
= 0.3
[
S 0.2
(&)
= 0.1
0.0
C. < 0.546) 0.546 < C,< 0.615| 0.615 <C,< 0.751| 0.751 < ¢, < 0.820 o> 0.820

r-r 1T 1T 17T 1T T ""T 1
1 5 10

15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100

Sample size (n)

Figure5 The effective coverage, c,, of confidence intervals on the binomial population proportion generated via the Clopper & Pearson (1934)
approach at a nominal level of ¢, & 0.683 (1) over the range 0.025 < p =<0.975 and 1 =n = 100 (upper panel). Averaging the measured c,
values unformly over all p at each n returns the mean effective coverage as a function of sample size (lower panel).

and
k

ZC’)’% —p)" = 0/2 (fork#n)  (6)

J=0

where k is again the observed number of successes
(e.g., barred galaxies) in the sample, and n the total sample
size. Note that in the extreme cases of p =0 or 1, the
Clopper & Pearson (1934) formulae reduce simply to:

pr=(0/2)"" for p =1 and (7)
pu=1—(2/2)"" for p = 0. (8)
Modern mathematical software packages, such as r and

MATLAB, support easy-to-use library functions (e.g., BINOM.
TEST in the STATS package in R; or BINOFIT in the STATISTICS
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TOOLBOX in MATLAB) for computation of Clopper &
Pearson (1934) confidence limits, which employ robust
algorithms for the solution of Eqns 5 and 6. Alternatively,
there exist numerous reference tables of pre-computed
binomial CIs based on the Clopper & Pearson (1934)
approach — most notably those of Gehrels (1986), a
popular reference for estimating uncertainties in astro-
nomical population proportions.

In the upper panel of Figure 5, I examine the effective
coverage of Cls generated via the Clopper & Pearson
(1934) approach as a function of p and »n at a nominal
confidence level of ¢ ~ 0.683 (1o). In contrast with the
results for both the beta distribution and the ‘normal
approximation’ reviewed above, the Clopper & Pearson
(1934) CIs provide coverage far exceeding the nominal
confidence level over much of this parameter space. The
Clopper & Pearson (1934) coverage excess is also clearly
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evident in the corresponding mean effective coverage for
this CI generator, plotted as a function of sample size in the
lower panel of Figure 5. Although the Clopper & Pearson
(1934) CIs do eventually converge to the nominal level
at very large n, in the small to intermediate sample size
regime their mean effective coverage is consistently far
above the desired level. This point is in fact acknowledged
in Gehrels (1986), although it appears not to be widely
appreciated considering the frequency with which these
Cls are treated as a ‘gold standard’ in astronomical papers.

6 Mean Confidence Interval Widths

To illustrate the influence of the choice of CI generator on
the estimated magnitude of the relevant uncertainties
(i.e., the error bar size), I compare in Figure 6 the mean
widths of ¢ &~ 0.683 (10) Cls estimated via the (‘equal-
tailed”) beta distribution quantile technique, the ‘normal
approximation’, and the Clopper & Pearson (1934)
approach as a function of p for samples of sizes n = 6 (left
panel) and n=36 (right panel). In the small sample
size regime (where the ‘normal approximation’ fails to
provide sufficient coverage at p < 1/6 and p 2 5/6; see
Figure 4) the mean CI widths are markedly smaller (by as
much as A p ~ —0.15) than those derived using the beta
distribution technique (which generally provides superior
coverage at these p values; see Figure 2). (Of course, the
beta distribution should not be viewed as a strict bench-
mark for the ideal CI width, since its coverage is indeed
prone to erratic performance at certain p values — the
‘oscillation signature’ to which a// non-randomising
binomial CI generators are prone; although, as we have
argued above, its performance may be considered the best
of the three approaches examined in this study.) In the
intermediate sample size regime, the mean widths of these
these two CI generators are in much better agreement,
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except at the extremes of p < 1/20 and p = 19/20 where a
marked under-estimation is still evident in the ‘normal
approximation’ Cls. The Clopper & Pearson (1934) Cls,
on the other hand, exhibit a much greater mean width than
those of the beta distribution or ‘normal approximation’,
regardless of p — reflecting the substantial coverage
excess demonstrated for this CI generator in Section 5
(see Figure 5). These examples verify that the choice of
CI generator can indeed have a substantial impact on
the magnitude of the estimated uncertainties, thereby
confirming this choice to be an important practical con-
sideration for effective astronomical data analysis.

7 Conclusions

I have reviewed the performance of three alternative
methods for estimating confidence intervals on binomial
population proportions; namely, the beta distribution
quantile technique, the ‘normal approximation’, and the
Clopper & Pearson (1934) approach (cf. Gehrels 1986).
Despite their current popularity in astronomical research,
the latter two CI generators are demonstrated to perform
poorly under sampling conditions routinely encountered
in observational studies, with the ‘normal approximation’
failing to provide CIs of sufficient width to achieve cov-
erage at the nominal confidence level, and the Clopper &
Pearson (1934) approach producing Cls far wider than
necessary to achieve the nominal coverage. In contrast,
the (Bayesian) beta distribution quantile technique is
revealed to be a well-motivated alternative, consistently
providing a mean level of coverage close to the nominal
level, even for small-to-intermediate sample sizes. Given
that the beta distribution generator for binomial CIs may
be easily implemented using modern mathematical soft-
ware packages, | advocate strongly that this technique be
adopted in future studies aiming to constrain the true
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values of astronomical propulation proportions (e.g.,
the galaxy bar fraction, red sequence fraction, or merger
fraction).
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