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Accurate determination of stability
characteristics of spatially modulated shear
layers
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We present a method for accurately determining the stability characteristics of spatially
modulated shear layers. The algorithm can handle arbitrary commensurate states, which
are not accessible to classical direct-numerical-simulation-based approaches. It uses
spectral discretization of the field equations to handle field modulations and the spectrally
accurate immersed boundary conditions method to handle the geometry modulations. The
algorithm can deal with pattern interaction effects driven by modulations of different
physical origins. Various tests demonstrate that the algorithm delivers spectral accuracy
for eigenvalues and eigenfunctions. The algorithm can be easily extended to analyse many
sources and patterns of modulation with minimal commitment to the user’s time.
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1. Introduction

Flows encountered in nature are exposed to spatial modulations, e.g. roughness represents
topography modulations, and temperature patterns represent thermal modulations. Both
effects can be used for intentional flow actuation, which, if properly designed, can give the
flow new, practically relevant features. It is known that specific grooves lead to a reduction
of friction losses in laminar (Mohammadi & Floryan 2013) and turbulent (Walsh 1983;
Chen et al. 2016) flows and lead to energy-efficient, low-Reynolds-number chaotic stirring
(Gepner & Floryan 2020). It is also known that heating patterns (Hossain, Floryan &
Floryan 2012; Floryan & Floryan 2015; Hossain & Floryan 2015), as well as transpiration
patterns (Jiao & Floryan 2021a,b), reduce frictional losses in laminar flows. A combination
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Figure 1. Wavelength λx of a disturbed flow system as a function of disturbance wavenumber δ. Red circles and
blue triangles provide wavelengths of the complete system modulated with wavenumbers α = 1 and α = 1.1,
respectively. Vertical dotted lines identify two possible incommensurate states where the system is aperiodic.

of groove and heating patterns may significantly reduce or increase losses depending on
the relative position of both patterns (Hossain & Floryan 2020). Their proper combination
may activate the pattern interaction effect (Floryan & Inasawa 2021), generating thermal
drift (Abtahi & Floryan 2017; Inasawa, Hara & Floryan 2021). It is further known that
selective vibration patterns reduce pressure losses while others increase such losses while
increasing flow mixing (Floryan & Haq 2022; Haq & Floryan 2023).

The transition of spatially modulated flows to secondary states restricts the effectiveness
of modulations when drag reduction is of interest. This transition may be desired when
mixing intensification is of interest. Linear stability theory can determine secondary states’
onset conditions (bifurcation points). The current literature shows that flow transitions
in complex geometries are captured using direct numerical simulations (DNS), but the
limitations of such a strategy are not acknowledged. While the computational cost of
simulations is known to be significant, the fundamental limitation lies elsewhere. Natural
transition starts with the growth of disturbances, but answering the stability question
requires analysis of all possible disturbances. Suppose that the spatial distribution of
flow modulations is characterized by wavenumber α and the spatial distribution of
flow disturbances is characterized by wavenumber δ. The properties of the complete
flow depend on the ratio of these wavenumbers. Integer-valued ratios describe simple
commensurate states with either subharmonic or superharmonic properties and can be
handled using DNS. Non-integer-valued but rational ratios may lead to more complex
commensurate states where a slight change of this ratio results in an order-of-magnitude
change in the overall system wavelength, as illustrated for a simple two-wavenumber
system in figure 1. Commensurate states form a countable set. Irrational ratios lead to
aperiodic systems, forming an uncountable set (the product of an irrational and rational
number is irrational).

Variations of flow patterns for a simple case of a shear layer modulated by a spanwise
temperature pattern with α = 1 and with different disturbance wavenumbers are illustrated
in figure 2. The spanwise wavelength of the flow system involves three sets of primary
rolls and one set of secondary rolls on the left, and four sets of primary rolls and one set of
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Figure 2. (a,b) Primary rolls for RaP,L = |ḡ|βh3θLP/(κν) = 1000, Re = (wB)maxh/ν = 2000 when the shear
layer flowing in the z direction is subject to the x modulations of the lower wall temperature with wavenumber
α = 1. These plots extend over one flow wavelength in the x direction. Colours illustrate the z-velocity
component, while the solid black lines illustrate the vector lines in the (x, y) plane. (c,d) Instantaneous
iso-surfaces of the disturbance z-velocity component wD over one flow wavelength in the x direction.
Iso-surfaces shown correspond to (c) wD = (2.23, −2.23) and (d) wD = (1.8, −1.8). The z component of
the disturbance wavevector is equal to 1 in both panels; the spanwise component is 2

3 in (c) and 1
2 in (d). Red

arrows show the locations of hot spots at the lower wall.

secondary rolls on the right. Details of this problem, including the notation, are explained
later.

Direct numerical simulation can handle only a restrictive class of commensurate systems
(Blancher, Le Guer & El Omari 2015; Gepner & Floryan 2016, 2023) as the size of
the computational box is limited by the available memory. Continuous change of the
disturbance wavenumber is not possible as it results in very large variations of the
computational domain, with the stability results being a function of the size of the
computational box (Blancher et al. 2015; Gepner & Floryan 2016, 2023). Re-gridding
required by changes in the box length represents another significant difficulty due to labour
cost. Irrational wavenumber ratios lead to aperiodic incommensurate states, which require
an infinite computational box; such states are not accessible to numerical computations
due to the inherent truncation error. One may conclude that DNS is suitable for a detailed
exploration of particular cases, as the computational cost can be justified; however, it
cannot address the stability question in general and is unsuitable for exploring the entire
parameter space required for identifying the most effective modulations from either the
drag reduction or mixing intensification points of view.

Identifying the most effective modulations requires systematic analysis, which can
be accomplished using a process that starts with identifying stationary states, then
determining their stability properties, and culminates with establishing saturation states
and their domains of attraction. The most promising configurations can then be studied in
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detail using DNS. This strategy relies on the availability of an accurate stability algorithm
that bypasses the limitations of DNS described above.

Stability analysis requires a formulation capable of dealing with various commensurate
systems and an accurate numerical method to solve the disturbance equations. The stability
of unmodulated shear layers led to the Orr–Sommerfeld equation, whose spectrally
accurate solution was given by Orszag (1971). The formulation of the stability problem,
when modulations do not change geometry, was given by Floryan (1997), who represented
disturbance quantities as waves with amplitudes modulated by base flow variations. This
formulation avoids the need to use large computational boxes and frees stability results
from their dependence on the size of the computational box associated with the use of
DNS. Cabal, Szumbarski & Floryan (2002) implemented this concept in an algorithm
that handles modulations associated with surface topographies. This algorithm relied on
domain transformation, mapping a complex channel geometry into a smooth slot and using
spectral discretization. It is cumbersome to use as it involves very complex field equations.
The present work aims to describe a spectrally accurate algorithm that is flexible enough to
accurately and efficiently handle a large class of geometric and physical modulations and
provide comparison cases that can be used to verify implementations of this algorithm by
others, similar to Orszag (1971). The algorithm uses Fourier expansions in the streamwise
and spanwise directions and Chebyshev expansions in the transverse direction coupled
with the immersed boundary conditions (IBC) method to handle modulations created by
surface topographies.

As the number of possible spatial modulations is uncountable, we present our algorithm
in the context of a shear layer modulated by a combination of surface grooves and heating
patterns. The latter represents actuations not affecting geometry and are generally simple
to implement, and the former represents geometry modulations whose implementation
represents a challenge. The generalization of this algorithm to other modulations should
not pose a problem as, in all cases, disturbances can be represented as travelling waves
with spatially modulated amplitudes. We present detailed convergence studies for selected
test problems to provide reliable and accurate comparison data. Special versions of this
algorithm were used in the past (Floryan 2002; Hossain & Floryan 2013; Moradi & Floryan
2014; Mohammadi, Moradi & Floryan 2015; Moradi & Floryan 2019), but the underlying
concepts are yet to be adequately exposed.

The analysis of the effects of complex topographies requires accurate geometry
modelling, as eigenvalues show high sensitivity to minor geometry modifications. Six
approaches for handling geometry have been used in the literature. When the groove size is
small compared with the overall flow scale, one may argue that it can be accounted for by
employing an adequate boundary condition imposed on a smooth surface approximating
the actual one (the equivalent surface concept). The implementation details of this concept
vary widely (Nye 1969; Sarkar & Prosperetti 1996; Kamrin, Bazant & Stone 2010) but
can be reduced to a slip boundary condition with the slip parameter adjusted based on
numerical experiments (Rothstein 2010). This concept is unsuitable for stability analysis
due to the truncation of flow physics near the corrugated wall.

The second concept takes advantage of small groove amplitude and relies on the
boundary conditions transfer procedure, which leads to linearization of the boundary
conditions about the mean wall position. Such linearization truncates flow physics
as even minor grooves activate nonlinear effects. Including higher-order terms in
the transfer procedure (Kamrin et al. 2010) does not resolve this problem (Cabal,
Szumbarski & Floryan 2001). The third method of treating surface topography relies on
analytic mappings, which transfer a complex flow geometry into a geometrically regular
computational domain. Such mapping leads to a complex form of the field equations
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whose solution is computationally expensive (Cabal et al. 2002). The fourth concept relies
on numerically constructed grids. The available grid generators are only second-order
accurate (Geuzaine & Remacle 2009) – sufficient for work with typical finite-volume
discretizations (Moukalled, Mangani & Darwish 2015) but insufficient for stability
problems. Spectral elements bypass this difficulty, but matching neighbouring elements
becomes challenging when deformed geometries are considered (Karniadakis & Sherwin
2013; Cantwell et al. 2015). Accurate grid generation methods providing near-spectral
accuracy are available (Floryan 1986; Floryan & Zemach 1987, 1993) but are cumbersome.
The shortcoming of all the above techniques is laborious grid generation whenever a new
groove geometry is considered, especially when carrying out grid convergence studies to
verify the results. The cost of grid generation limits the use of these methods when an
analysis of a large number of geometries is required but makes them very useful when an
in-depth analysis of a small number of geometries is needed.

The fifth method relies on the fictitious boundaries concept, whose origins refer to
techniques developed to solve moving boundary problems using fixed grids (Floryan &
Rasmussen 1989). Its recent implementations are described in Peskin (1982, 2002). These
methods rely on low-order spatial discretization and local fictitious forces to enforce the
no-slip and no-penetration conditions, resulting in truncation of flow physics, which makes
them unsuitable for stability analysis. The sixth method combines spectral discretization
with the IBC concept. Spectral methods provide the high spatial accuracy required for
stability analysis, but their use is limited to regular geometries due to the involvement
of global basis functions. This limitation is overcome by the IBC concept (Szumbarski &
Floryan 1999), which relies on the spectrally accurate construction of boundary constraints
enforcing flow boundary conditions. The programming effort associated with changing
the domain geometry is reduced to the specification of Fourier coefficients describing
the groove shape. This method has been extended to moving boundary problems (Husain
& Floryan 2010), and its applicability has been expanded using the over-constrained
formulation (Husain, Szumbarski & Floryan 2009). The algorithm presented in the paper
takes advantage of the IBC method.

The presentation of the stability algorithm and demonstration of its accuracy, efficiency
and flexibility are organized into seven parts. Section 2 describes a convenient model
problem to focus the presentation of the algorithm. Section 3 briefly discusses the
determination of stationary states, the first step in the overall analysis. The linear stability
analysis is presented in § 4, with § 4.1 describing the modal equations, § 4.2 discussing the
discretization of the boundary conditions and § 4.3 describing the complete discretized
system. Section 5 briefly discusses the numerical solution to the eigenvalue problem and
tracing procedures. The accuracy testing and demonstration of spectral convergence are
described in § 6. Section 7 presents an example of an application problem. Section 8 gives
a summary of the main conclusions.

2. Problem formulation

The model problem involves flow between two parallel plates extending to ±∞ in the
x and z directions. Distributed heating and surface grooves spatially modulate this flow.
We limit this presentation to modulations that are the spanwise x-coordinate functions.
The formulation can be easily extended to modulations being functions of the streamwise
z coordinate – its details are not presented due to their length. The conduit is oriented
in a way where the gravity g works in the negative y-direction (figure 3). The fluid is
assumed to be incompressible with the density ρ variations modelled using the Boussinesq
approximation; it has thermal conductivity k, specific heat c, thermal diffusivity κ = k/ρc,
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Figure 3. Schematic diagram of the flow system. Red and blue colours identify hot and cold sections of the
walls.

kinematic viscosity ν, dynamic viscosity μ and thermal expansion coefficient β. The
non-dimensional equations of motion are

∇ · V̄ = 0,
∂V̄
∂t

+ (V̄ · ∇)V̄ = −∇p + ∇2V̄ + Pr−1θ j̄,
∂θ

∂t
+ (V̄ · ∇)θ = Pr−1∇2θ,

(2.1a–c)

where half of the channel height h is used as length scale, velocity vector V̄ = (uī + vj̄ +
wk̄) is normalized by the viscous velocity scale Uv = v/h, pressure p is scaled with ρU2

v ,
temperature θ is scaled with κν/(|g|βh3), Pr = v/k is the Prandtl number. The relevant
boundary conditions are

V̄[yL(x), t] = V̄[yU(x), t] = 0, θ [yL(x), t] = θL(x, t), θ [yU(x), t] = θU(x, t),
(2.2a–d)

where the subscripts L and U refer to the lower and upper plates, respectively, and yL(x)
and yU(x) describe groove geometry.

The above system is closed by specifying constraints either in the form of mean pressure
gradients in the x and z directions, that is,

∂p
∂x

∣∣∣∣
mean

= ℘x,
∂p
∂z

∣∣∣∣
mean

= ℘z, (2.3a,b)

or in the form of the mean flow rates in the x and z directions, that is,

Qx|mean = Qx, Qz|mean = Qz. (2.3c,d)

In the absence of grooves and heating, the velocity and pressure fields of the reference
flow have the form

V (x, y, z) = [0, 0, w] = [0, 0, Re(1 − y2)], p(x, y, z) = −2 zRe, Qz = 4
3 Re,
(2.3e–g)

where the Reynolds number is defined as Re = Wmaxh/ν = Wmax/Uv and Wmax denotes
the maximum of the z-velocity component. In the computations, reference flow with a
specific Re is selected, and its modified state is determined.
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Fourier expansions of the form

yL(x) = −1 + BLYL(x) = −1 + BL

n=NG∑
n=−NG

H(n)
L einαx, (2.4a)

yU(x) = 1 + BUYU(x) = 1 + BU

n=NG∑
n=−NG

H(n)
U ein(αx+ΩG) (2.4b)

describe the surface topographies. In the above, YL(x) and YU(x) are the shape functions
describing plates’ topographies satisfying conditions

max[YL(x)] − min[YL(x)] = 1, max[YU(x)] − min[YU(x)] = 1, (2.4c)

BL and BU are the peak-to-bottom groove amplitudes at the lower and upper plates,
respectively, H(n)

L and H(n)
U are the coefficients of the Fourier expansions describing the

shape of grooves at the lower and upper plates, respectively, NG is the number of Fourier
modes required to describe the geometry, α is the modulation wavenumber and ΩG stands
for the phase shift between the upper and lower groove systems.

The plates’ temperatures are expressed as Fourier expansions of the form

θL(x) = Rauni + RaP,LΘL(x) = Rauni + RaP,L

n=+NL∑
n=−NL, n /= 0

θ
(n)
L ein(αx+ΩT,L), (2.5a)

θU(x) = RaP,UΘU(x) = RaP,U

n=+NL∑
n=−NL,n /= 0

θ
(n)
U ein(αx+ΩT,U), (2.5b)

where ΘL(x) and ΘU(x) are the shape functions describing temperature distributions at
the lower and upper plates, respectively, satisfying conditions

max[ΘL(x)] − min[ΘL(x)] = 1, max[ΘU(x)] − min[ΘU(x)] = 1, (2.5c)

θ
(n)
L and θ

(n)
U are the coefficients of the Fourier expansions describing the temperature

profile at the lower and upper plates, respectively, NL is the number of Fourier
modes required to describe the form of heating, Rauni = |g|βh3θuni/(κν) is the uniform
Rayleigh number measuring the intensity of the uniform component of heating, RaP,L =
|g|βh3θLP/(κν) is the lower periodic Rayleigh number measuring the intensity of the
lower periodic heating, RaP,U = |g|βh3θUP/(κν) is the upper periodic Rayleigh number
measuring the intensity of the upper periodic heating, θLP and θUP are the differences
between the maximum and minimum of the lower and upper periodic temperature
components, ΩT,L stands for the phase shift between the lower groove and the lower
temperature distribution and ΩT,U stands for the phase shift between the lower groove
and the upper-temperature distribution. We focus on systems with perfectly tuned heating
and groove modulations; these modulations are described by the same wavenumber α.

The stability problem represents an initial-value problem that can be solved using DNS
for any initial disturbance velocity and temperature fields set. The Fourier–Chebyshev
expansions combined with IBC method provide the required high-accuracy discretization
capable of handling complex geometry (Panday & Floryan 2020, 2021). The spectral
element method described in Cantwell et al. (2015) represents an alternative, but its
existing implementations provide only a low-order temporal discretization. The DNS
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requires the specification of a computational box containing an integer number of
modulation wavelengths and an integer number of disturbance wavelengths. Such a box
may have to be very long. Its size limits possible investigations to a few combinations of
groove and heating wavelengths (Blancher et al. 2015; Gepner & Floryan 2016, 2023) and
prevents analysis of arbitrary disturbances. Here, we pursue a strategy that avoids these
difficulties. We start with determining stationary states and follow up with their stability
analysis to determine onset conditions for secondary states.

The following section briefly discusses the algorithm required for determining stationary
states. This algorithm has been described elsewhere (Panday & Floryan 2020, 2021), so the
presentation is limited to the basic concepts required to describe the stability algorithm.

3. Determination of stationary states

Stationary states are described by the stationary version of (2.1) and (2.2). It is helpful to
restate these equations for clarity of the presentation:

∇ · V̄B = 0, (V̄B · ∇)V̄B = −∇pB + ∇2V̄B + Pr−1θBj̄, (V̄B · ∇)θB = Pr−1∇2θB,

(3.1a–c)

V̄B[yL(x)] = V̄B[yU(x)] = 0, θB[yL(x)] = θL(x), θB[yU(x)] = θU(x), (3.2a–d)

where subscript B denotes stationary quantities. One needs to add either the pressure
gradient constraint ℘x or the flow rate constraint Qx for the x direction, and either the
pressure constraint ℘z or the flow rate constraint Qz for the z direction. Most of the
computations have been carried out with ℘x = 0 and ℘z = −2Re, where the Reynolds
number is defined as Re = (wB)maxh/ν.

We use spectrally accurate spatial discretization capable of reducing the discretization
error to machine accuracy. This discretization relies on Fourier expansions in the
z-streamwise and x-spanwise directions and Chebyshev expansions in the y-transverse
direction. The algebraic equations are constructed using the Galerkin projection method.
The irregularity of the flow domain is handled using the spectrally accurate IBC method,
with flow boundary conditions replaced by constraints implemented using the tau method.
Details of the algorithm are given in Panday & Floryan (2020).

For simplicity of presentation of the stability algorithm, we express velocity
components, pressure and temperature of stationary states in the following form:

[uB, vB, wB, pB, θB](x, y) =
NB∑

n=−NB

[ f 〈n〉
u , f 〈n〉

v , f 〈n〉
w , f 〈n〉

p , f 〈n〉
θ ]( y) ei nαx. (3.3)

We have also defined the vorticity vector as

ω̄B = (ξB, ηB, φB) =
(

∂wB

∂y
− ∂vB

∂z
,
∂uB

∂z
− ∂wB

∂x
,
∂vB

∂x
− ∂uB

∂y

)
, (3.4)

and write its components as Fourier expansions of the form

[ξB, ηB, φB](x, y) =
NB∑

n=−NB

[ f 〈n〉
ξ , f 〈n〉

η , f 〈n〉
φ ]( y) ei nαx. (3.5)
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4. Linear stability analysis

The stability analysis begins with the governing equations expressed in terms of the
vorticity transport, energy and continuity equations in the following form:

∂ω̄

∂t
− (ω̄ · ∇)V̄ + (V̄ · ∇)ω̄ = ∇2ω̄ + ∇ × (Pr−1θ j̄),

∂θ

∂t
+ (V̄ · ∇)θ = Pr−1∇2θ,

(4.1a,b)

∇ · V̄ = 0, ω̄ = ∇ × V̄. (4.1c,d)

Unsteady three-dimensional disturbances are superposed on the stationary flow in the form

ω̄ = ω̄B(x, y) + ω̄D(x, y, z, t), V̄ = V̄B(x, y) + V̄D(x, y, z, t),

θ = θB(x, y) + θD(x, y, z, t), (4.2a–c)

where subscript D denotes disturbance quantities. The flow quantities (4.2) are substituted
into (4.1), the mean parts are subtracted and the equations are linearized, yielding the
linear disturbance equations of the form

∂ω̄D

∂t
− (ω̄B · ∇)V̄D − (ω̄D · ∇)V̄B + (V̄B · ∇)ω̄D + (V̄D · ∇)ω̄B

= ∇2ω̄D + ∇ × (Pr−1θDj̄), (4.3a)

∂θD

∂t
+ (V̄B · ∇)θD + (V̄D · ∇)θB = Pr−1∇2θD, ∇ · V̄D = 0, ω̄D = ∇ × V̄D.

(4.3b–d)

The homogeneous boundary conditions of the form

V̄D(x, y, z, t) = 0, θD(x, y, z, t) = 0 at y = yL(x) and y = yU(x) (4.4a,b)

complete the formulation.
The solution of (4.3) can be written as a travelling wave with modulated amplitude, i.e.

[V̄D, ω̄D, θD](x, y, z, t) = [ḠD, Ω̄D, κD](x, y) ei(δx+μz−σ t) + c.c., (4.5a–c)

where δ and μ are the real wavenumbers in the x and z directions, respectively, representing
components of the disturbance wavevector, σ = σr + iσi is the complex frequency with
σi describing the rate of growth of disturbances and σr describing their frequency
and c.c. stands for the complex conjugate. Functions ḠD(x, y), Ω̄D(x, y) and κD(x, y)
are the x-periodic amplitude functions accounting for the groove and heating-induced
modulations. Substituting (4.5) into (4.3) leads to partial differential equations for the
amplitude functions. Since these functions are x-periodic, they can be expressed in terms
of the Fourier expansions of the form

ḠD(x, y) =
+ND∑

m=−ND

[g〈m〉
u ( y), g〈m〉

v ( y), g〈m〉
w ( y)] ei mαx + c.c., (4.6a)

Ω̄D(x, y) =
+ND∑

m=−ND

[g〈m〉
ξ ( y), g〈m〉

η ( y), g〈m〉
φ ( y)] ei mαx + c.c., (4.6b)

κD(x, y) =
+ND∑

m=−ND

[g〈m〉
θ ( y)] ei mαx + c.c., (4.6c)
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where g〈m〉
u ( y), g〈m〉

v ( y), g〈m〉
w ( y), g〈m〉

ξ ( y), g〈m〉
η ( y), g〈m〉

φ ( y), g〈m〉
θ ( y) stand for the modal

functions.
A combination of (4.5) and (4.6) provides the final expressions for V̄D, ω̄D and θD of

the form

V̄D(x, y, z, t) =
+ND∑

m=−ND

[g〈m〉
u ( y), g〈m〉

v ( y), g〈m〉
w ( y)] ei[(δ+mα)x+μz−σ t] + c.c., (4.7a)

ω̄D(x, y, z, t) =
+ND∑

m=−ND

[g〈m〉
ξ ( y), g〈m〉

η ( y), g〈m〉
φ ( y)] ei[(δ+mα)x+μz−σ t] + c.c., (4.7b)

θD(x, y, z, t) =
+ND∑

m=−ND

[g〈m〉
θ ( y)] ei[(δ+mα)x+μz−σ t] + c.c. (4.7c)

The above formulation provides means for analysis of the effects of continuous variations
of the disturbance wavenumbers δ and μ for a specific modulation wavenumber α, i.e.
requires a computational box of the same size as the box used to determine the stationary
state.

Substitution of (4.7) into (4.3) leads to (2ND + 1) ordinary differential equations
(ODEs) for the unknown modal functions for each partial differential equation in the above
system. Separation of Fourier modes and extensive rearrangements provide an explicit
form of these ODEs expressed in terms of g〈m〉

v , g〈m〉
η , g〈m〉

θ suitable for computations, i.e.

T〈m〉g〈m〉
v − Pr−1k2

mg〈m〉
θ = −

NM∑
n=−NM

[(T〈m−n〉
1 + T〈m−n〉

2 + T〈m−n〉
3 )g〈m−n〉

v

+ (T〈m−n〉
4 − T〈m−n〉

5 ) g〈m−n〉
η ], (4.8a)

S〈m〉g〈m〉
η =

+NM∑
n=−NM

[(S〈m−n〉
1 + S〈m−n〉

2 + S〈m−n〉
3 )g〈m−n〉

v + (S〈m−n〉
4 − S〈m−n〉

5 )g〈m−n〉
η ],

(4.8b)

Q〈m〉g〈m〉
θ =

+NM∑
n=−NM

[
Q〈m−n〉

1 g〈m−n〉
θ + Q〈m−n〉

2 g〈m−n〉
v + μnαf 〈n〉

θ

k2
m−n

g〈m−n〉
η

]
, (4.8c)

where all operators used in the above expressions are defined in Appendix A. The
right-hand sides provide modulation-imposed coupling between different modes. The
coupling terms contain indices 〈m − n〉 with the relevant terms truncated for |m − n| ≥
ND.

The boundary conditions can be written as

ND∑
m=−ND

[g〈m〉
u , g〈m〉

v , g〈m〉
w , g〈m〉

θ ] ei mαx = 0 at y = yL(x) and y = yU(x). (4.9)

One needs to extract boundary conditions for different Fourier modes. This process is
complex due to the irregularity of the flow domain, which provides coupling between
different modes. We provide a detailed explanation in § 4.2.
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Accurate determination of stability characteristics

In the limit of no modulations, the stationary state is reduced to mode zero of wB and θB.
The disturbance wavenumber δ in the x direction is taken as α, and the system is reduced
after rearranging indices tm = (m + 1)α = Jα to the following form:

T〈J〉g〈J〉
v − Pr−1k2

Jg〈J〉
θ + {[iμD2 − iμ(D2 − k2

J)] f 〈0〉
w }g〈J〉

v = 0, (4.10a)

S〈J〉g〈J〉
η − iμf 〈0〉

w g〈J〉
η + iJαDf 〈0〉

w g〈J〉
v = 0, (4.10b)

Q〈J〉g〈J〉
θ − iμf 〈0〉

w g〈J〉
θ − Df 〈0〉

θ g〈J〉
v = 0, (4.10c)

where k2
j = (Jα)2 + μ2 and |J| = 0, 1, 2, 3, . . . , (2ND + 1). Equation (4.10a) is the

Orr–Sommerfeld operator with thermal coupling term −Pr−1k2
Jg〈J〉

θ , (4.10b) is the Squire
operator, where iJαDf 〈0〉

w g〈J〉
v is the coupling term with the Orr–Sommerfeld operator, and

(4.10c) is the energy equation with Df 〈0〉
θ g〈J〉

v providing coupling with the Orr–Sommerfeld
operator.

4.1. Discretization of the modal equations
Determination of the amplitude functions requires a numerical solution of a system of
ODEs described in the previous section. The modal functions are to be represented
in terms of Chebyshev expansions. Our preference for the standard definition of the
Chebyshev polynomials requires a preliminary mapping of the solution domain y ∈
(−1 − yb, 1 + yt) onto ŷ ∈ (−1, 1) using transformation ŷ = Γ [y − (1 + yt)] + 1 with
Γ = 2/(2 + yt + yb), where yt and yb identify locations of extremities of the upper and
lower walls, respectively. The reader may note that this step is not required when boundary
modulations are not present. After transformation, the locations of the walls are specified
as

ŷL(x) = 1 − Γ (2 + yt) + Γ BL

n=NG∑
n=−NG

H(n)
L einαx,

ŷU(x) = 1 − Γ yt + Γ BU

n=NG∑
n=−NG

H(n)
U ein(αx+ΩG). (4.11a,b)

It is convenient to cast them in a shorter form for simplicity of the presentation, i.e.

ŷL(x) =
n=NG∑

n=−NG

A(n)
L einαx, A(0)

L = 1 + Γ (−2 − yt + BLH(0)
L ),

A(n)
L = Γ BLH(n)

L for n /= 0, (4.11c)

ŷU(x) =
n=NG∑

n=−NG

A(n)
U einαx, A(0)

U = 1 + Γ (−yt + BUH(0)
U ),

A(n)
U = Γ BUH(n)

U for n /= 0. (4.11d)
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Equation (4.8) expressed in terms of ŷ assumes the following form:

Ť〈m〉g〈m〉
v − Pr−1k2

mg〈m〉
θ = −

NM∑
n=−NM

[(Ť〈m−n〉
1 + Ť〈m−n〉

2 + Ť〈m−n〉
3 )g〈m−n〉

v

+ (Ť〈m−n〉
4 − Ť〈m−n〉

5 ) g〈m−n〉
η ], (4.12a)

Š〈m〉g〈m〉
η =

+NM∑
n=−NM

[(Š〈m−n〉
1 + Š〈m−n〉

2 + Š〈m−n〉
3 )g〈m−n〉

v + (Š〈m−n〉
4 − Š〈m−n〉

5 )g〈m−n〉
η ],

(4.12b)

Q̌〈m〉g〈m〉
θ =

+NM∑
n=−NM

[
Q̌〈m−n〉

1 g〈m−n〉
θ + Q̌〈m−n〉

2 g〈m−n〉
v + μnαf 〈n〉

θ

k2
m−n

g〈m−n〉
η

]
, (4.12c)

where all operators appearing in (4.12) are defined in Appendix B.
System (4.12) has variable coefficients involving stationary state – in the first step of

the numerical solution, these coefficients are represented as Chebyshev expansions of the
form

[uB, vB, wB](x, ŷ) =
NB∑

n=−NB

NC−1∑
r=0

[G〈n〉
u,r, G〈n〉

v,r, G〈n〉
w,r]Tr(ŷ) ei nαx, (4.13)

where G〈n〉
u,r, G〈n〉

v,r and G〈n〉
w,r are known. In the second step, the unknown modal functions

are expressed in terms of the Chebyshev expansions of the form

[g〈m〉
v , g〈m〉

η , g〈m〉
θ ](ŷ) =

NT−1∑
k=0

[G〈m〉
k,v , G〈m〉

k,η , G〈m〉
k,θ ]Tk(ŷ), (4.14)

where G〈m〉
k,v , G〈m〉

k,η and G〈m〉
k,θ are unknown and are to be determined. Substitution of (4.13)

and (4.14) into (4.12) and application of the Galerkin projection method result, after a
rather lengthy algebra, in a system of algebraic equations for these coefficients of the
following form:

NT−1∑
k=0

{A〈m〉G〈m〉
k,v − H〈m〉G〈m〉

k,θ }

+
NM∑

n=−NM

NT−1∑
k=0

NT−1∑
r=0

∑{P〈m−n〉 G〈m−n〉
k,v + R〈m−n〉G〈m−n〉

k,η } = 0, (4.15a)

NT−1∑
k=0

D〈m〉G〈m〉
k,η +

NM∑
n=−NM

NT−1∑
k=0

NT−1∑
r=0

{K〈m−n〉G〈m−n〉
k,v + Q〈m−n〉G〈m−n〉

k,η } = 0, (4.15b)

NT−1∑
k=0

I〈m〉G〈m〉
k,θ +

NM∑
n=−NM

NT−1∑
k=0

NT−1∑
r=0

{U〈m−n〉G〈m−n〉
k,θ

+ V〈m−n〉G〈m−n〉
k,v + W〈m−n〉G〈m−n〉

k,η } = 0, (4.15c)

where all operators appearing in (4.15) are defined in Appendix C.
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Accurate determination of stability characteristics

4.2. Discretization of boundary conditions
The discretization of boundary conditions without geometry modulations leads to a
standard form of boundary conditions for each modal function. Modulations create
coupling between the modal functions – this coupling is different from the coupling
provided by the modulations of the field equations discussed previously. The form of these
conditions is presented below.

Thermal, no-slip and no-penetration boundary conditions (4.4) at the lower wall are
restated as

V̄D(x, ŷL(x), z, t) =
+ND∑

m=−ND

[g〈m〉
u (ŷL(x)), g〈m〉

v (ŷL(x)), g〈m〉
w (ŷL(x))] ei[(δ+mα)x+μz−σ t] = 0,

(4.16a)

θD(x, ŷL(x), z, t) =
+ND∑

m=−ND

[g〈m〉
θ (ŷL(x))] ei[(δ+mα)x+μz−σ t] = 0. (4.16b)

To be consistent with the modal equations, they must be expressed using the vertical
velocity and vorticity components. Their form is given below:

uD[x, ŷL(x), z, t] =
ND∑

m=−ND

[
iΓ tm
k2

m
g〈m〉
v (ŷL(x)) − iμ

k2
m

g〈m〉
η (ŷL(x))

]
ei[(δ+mα)x+μz−σ t] = 0,

(4.17a)

vD[x, ŷL(x), z, t] =
ND∑

m=−ND

g〈m〉
v (ŷL(x)) ei[(δ+mα)x+μz−σ t] = 0, (4.17b)

wD[x, ŷL(x), z, t] =
ND∑

m=−ND

[
iμΓ

k2
m

g〈m〉
v (ŷL(x)) + itm

k2
m

g〈m〉
η (ŷL(x))

]
ei[(δ+mα)x+μz−σ t] = 0,

(4.17c)

θD[x, ŷL(x), z, t] =
ND∑

m=−ND

g〈m〉
θ (ŷL(x)) ei[(δ+mα)x+μz−σ t] = 0. (4.17d)

Substitution of the Chebyshev expansion (4.14) into (4.17) results in

uD[x, ŷL(x), z, t]

=
ND∑

m=−ND

NT−1∑
k=0

[
iΓ tm
k2

m
DTk[ŷL(x)]G〈m〉

k,v − iμ
k2

m
Tk[ŷL(x)]G〈m〉

k,η

]
ei[(δ+mα)x+μz−σ t] = 0,

(4.18a)

vD[x, ŷL(x), z, t] =
ND∑

m=−ND

NT−1∑
k=0

Tk[ŷL(x)]G〈m〉
k,v ei[(δ+mα)x+μz−σ t] = 0, (4.18b)
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wD[x, ŷL(x), z, t]

=
ND∑

m=−ND

NT−1∑
k=0

[
iμΓ

k2
m

DTk[ŷL(x)]G〈m〉
k,v + itm

k2
m

Tk[ŷL(x)]G〈m〉
k,η

]
ei[(δ+mα)x+μz−σ t] = 0,

(4.18c)

θD[x, ŷL(x), z, t] =
ND∑

m=−ND

NT−1∑
k=0

Tk[ŷL(x)]G〈m〉
k,θ ei[(δ+mα)x+μz−σ t] = 0. (4.18d)

The above boundary relations involve values of Chebyshev polynomials and their
derivatives at the grooved wall. These values represent periodic functions of the x
coordinate and, thus, can be expressed in terms of Fourier expansions as follows:

Tk[ŷL(x)] =
Nj∑

p=−Nj

(wL)
〈p〉
k ei pαx, DTk[ŷL(x)] =

Nj∑
p=−Nj

(dL)
〈p〉
k ei pαx. (4.19a,b)

Appendix D explains the determination of coefficients wL and dL. Substitution of (4.19)
into (4.18), extraction of Fourier modes and retention of the first ND modes result in the
boundary relations of the form

ND∑
p=−ND

NT−1∑
k=0

[
iΓ tp
k2

p
(dL)

〈m−p〉
k G〈p〉

k,v − iμ
k2

p
(wL)

〈m−p〉
k G〈p〉

k,η

]
= 0, (4.20a)

ND∑
p=−ND

NT−1∑
k=0

(wL)
〈m−p〉
k G〈p〉

k,v = 0, (4.20b)

ND∑
p=−ND

NT−1∑
k=0

[
iμΓ

k2
p

(dL)
〈m−p〉
k G〈p〉

k,v + itp
k2

p
(wL)

〈m−p〉
k G〈p〉

k,η

]
= 0, (4.20c)

ND∑
p=−ND

NT−1∑
k=0

(wL)
〈m−p〉
k G〈p〉

k,θ = 0, (4.20d)

where truncation |m − p| ≤ ND is needed to maintain consistency with the modal
equations. Increasing the number of retained boundary relations is possible as it improves
spatial accuracy but leads to over-constrained formulation (Husain et al. 2009). A similar
process leads to boundary relations on the upper wall of the form

ND∑
p=−ND

NT−1∑
k=0

[
iΓ tp
k2

p
(dU)

〈m−p〉
k G〈p〉

k,v − iμ
k2

p
(wU)

〈m−p〉
k G〈p〉

k,η

]
= 0, (4.21a)

ND∑
p=−ND

NT−1∑
k=0

(wU)
〈m−p〉
k G〈p〉

k,v = 0, (4.21b)
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Figure 4. (a) Structure of the coefficient matrix Λ for ND = 2 and NT = 10. Green lines identify off-diagonal
blocks providing coupling between different unknowns. (b) Structure of a single block with green shading
identifying entries corresponding to boundary relations. Black symbols mark the non-zero elements.

ND∑
p=−ND

NT−1∑
k=0

[
iμΓ

k2
p

(dU)
〈m−p〉
k G〈p〉

k,v + itp
k2

p
(wU)

〈m−p〉
k G〈p〉

k,η

]
= 0, (4.21c)

ND∑
p=−ND

NT−1∑
k=0

(wU)
〈m−p〉
k G〈p〉

k,θ = 0. (4.21d)

Relations (4.20) and (4.21) provide intermodal coupling associated with the grooves.

4.3. The linear algebraic system
We include boundary relations in the system (4.15) using the Tau method (Canuto et al.
1992), i.e. equations corresponding to the highest-order Chebyshev polynomials in each of
(4.15) are replaced with the boundary relations (4.20) and (4.21). The linear system used
for computations has a simple form:

Λx = 0, (4.22)

where Λ represents the coefficient matrix and x identifies the vector of unknowns. The
structure of the coefficient matrix is illustrated in figure 4(a), where the large blocks
identified by green lines correspond to different sets of unknowns (i.e. v, η, θ ) – the
off-diagonal blocks provide coupling between these unknowns. The structure of a single
block for v, displayed in figure 4(b), illustrates couplings between Fourier modes with
the diagonal subblocks corresponding to a specific modal function and the off-diagonal
subblocks providing couplings between the modes. Rows with green shading identify
positions of boundary relations that provide additional intermodal coupling.

5. Method of solution

A homogeneous system (4.22) has a non-trivial solution only for certain combinations of
parameters that are interrelated through a dispersion relation of the form

Θ(α, μ, δ, σ, Re, Rauni, RaP,L, RaP,U, Pr, BL, BU, H(n)
L , H(n)

U , θ
(n)
L , θ

(n)
U ) = 0. (5.1)
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All but two real quantities can be selected arbitrarily. Determining these two quantities
requires finding zeros of (5.1). The explicit form of (5.1) is not given. The dispersion
relation can be posed in various ways for computational purposes. The first form involves
posing the system as an algebraic eigenvalue problem for σ in the form

AE = σBE, (5.2)

where E denotes the eigenvector and A and B are the coefficient matrices. The σ -spectrum
can be computed using a general eigenvalue solver (Moler 2004). This process can
be computationally expensive, and the computed spectrum may suffer from accuracy
problems as our stability problem leads to large algebraic systems. The cost can be reduced
by evaluating only a spectrum segment using the Arnoldi method (Saad 2003). All these
methods are suitable for locating eigenvalues of interest but unsuitable for their tracing
through parameter space.

Local solutions are more computationally efficient and accurate but typically produce
just one eigenvalue (Moler 2004). The first method used in this study, the inverse iterations
method (Demmel 1997), is suitable for tracing complex frequencies. One starts with an
initial approximation for the eigenpair (Ep, σp) = (E(0), σ0) and improve it iteratively.
The iteration process uses the following relation:

(A − σ0B)E(b+1) = BE(b), (5.3)

which starts with b = 0 and determines the next approximation for the eigenpair as

σ (b+1)
p = E(b)T

p AE(b)
p /E(b)∗

p BE(b)
p , (5.4)

where the asterisk denotes the complex conjugate transpose. If σp is the eigenvalue closest
to σ0, then E(b) converges to Ep. The initial approximation E(0) must be consistent with
boundary conditions.

The Newton–Raphson method posed either in terms of one complex variable or in
terms of two real variables offers various alternatives. Search for zeros of the determinant
of Λ is one of them. This method is ineffective as the determinant varies by several
orders of magnitude as a function of the unknown eigenvalue, which leads to numerical
difficulties. The alternative approach involves converting the homogeneous problem (4.22)
into an inhomogeneous one. To do so, one replaces a homogeneous boundary condition
with an inhomogeneous condition, making the system inhomogeneous and easy to solve.
The omitted homogeneous boundary condition provides a test verifying if the correct
eigenvalue has been selected. This process involves a search for zero of the omitted
boundary condition. A simple example of this process in the case of a smooth surface
consists of replacing the homogeneous boundary condition for Dv(1) = 0 at one of the
walls with an inhomogeneous condition D2v(1) = 1, which, at the same time, imposes
the normalization condition. In general, Dv(1) is not zero, so one must implement the
Newton–Raphson search process to find eigenvalues that bring this condition to zero. Any
boundary relation can be used as the test condition. A good initial guess is required to
achieve convergence.

6. Testing of the algorithm

The main feature of the algorithm is its high (spectral) accuracy, ability to handle arbitrary
temperature and groove patterns very efficiently and ability to handle arbitrary disturbance
wavenumbers for any modulation wavenumber. The stationary states were determined
using the algorithm described in Panday & Floryan (2020). In the tests, the stationary
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Figure 5. (a) Spectrum for flow in a channel with longitudinal grooves exposed to spanwise periodic heating
with α = 1, δ = 0.8, μ = 0.5, RaP,L = 500, ΩT,L = π/2, BL = 0.1, BU = 0, Re = 1000. Here ND = 10
Fourier modes and NT = 120 Chebyshev polynomials were used in the test. The leading mode is identified
with a square box. (b) Variations of σi of the leading mode as a function of RaP,L for grooved surfaces with
BL = 0.2 (black colour) with RaP,L decreasing to zero and then as a function of BL for isothermal surface (blue
colour) with BL decreasing to zero.

solutions were determined with machine accuracy to eliminate any numerical error in the
determinations of these solutions, which may affect the accuracy of stability results.

All the tests reported here have been carried out with zero-pressure-gradient constraints
in the x direction. The surface and thermal patterns were of the form

yL = −1 + BL

2
cos(αx), yU = +1, θL = Rauni + RaP,L

2
cos(αx + ΩT,L) and

θU = RaP,U

2
cos(αx + ΩT,U).

⎫⎪⎬
⎪⎭
(6.1)

The tests dealt with (i) two-dimensional disturbances (δ = 0) and (ii) three-dimensional
disturbances (δ /= 0, μ /= 0).

The algorithm reproduced results for special limiting cases available in the literature
(Rayleigh 1916; Orszag 1971; Schmid & Henningson 2001; Hossain & Floryan 2013;
Moradi & Floryan 2014, 2019; Mohammadi et al. 2015).

We provide detailed testing and demonstration of the accuracy of evaluating stability
characteristics for flows through a slot formed by grooved walls exposed to periodic
heating. The typical spectrum is presented in figure 5, with its width depending on
the number of Fourier modes (ND) used in the computation. There is one unstable
eigenvalue for these conditions (σr + iσi) = (458.6385, 7.6468), which connects to the
Squire spectrum in the limit of no modulations.

The accuracy of the determination of the unstable eigenvalue depends on the number of
Fourier modes and Chebyshev polynomials used in the computations. In this testing, the
stationary state was determined with machine accuracy, so its accuracy does not affect the
stability results. We define error �σi in the determination of the eigenvalue as

�σi = |σi − σi,ref |, (6.2)
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Figure 6. Variations of the error �σi in the evaluation of the amplification rate σi as a function of the
number of Fourier modes ND used in the computations for (a) a two-dimensional travelling wave disturbance
(δ = 0, μ = 0.3) for α = 1, BL = 0.07, BU = 0, Re = 1000 and (b) a three-dimensional travelling wave
disturbance (δ = 0.8, μ = 0.5) for α = 1, BL = 0.1, BU = 0, ΩT,L = π/2, δ = 0.8, μ = 0.5. The heating
conditions used in the tests were Rauni = 0 and RaP,L = RaP,U = 50 and RaP,L = RaP,U = 75. All results
were obtained with NT = 80 Chebyshev polynomials.

where σi stands for the computed imaginary part of the eigenvalue and σi,ref is its actual
value. Since the actual eigenvalue is not known, σi,ref has been determined with machine
accuracy, which, for the conditions in this test, required the use of ND = 25 Fourier modes
and NT = 80 Chebyshev polynomials.

Figure 6 illustrates variations of �σi as a function of the number of Fourier modes
ND used in the computations. These tests used NT = 80 Chebyshev polynomials to reduce
this part of discretization error to the machine level. Results for two-dimensional travelling
waves show an exponential decrease of the error as the number of Fourier modes increases,
demonstrating the spectral accuracy of the algorithm (figure 6a). The absolute value of
the error increases with an increase in the heating intensity; however, the character of
its exponential decrease is not affected. A similar exponential reduction of error can be
observed for the three-dimensional disturbances in figure 6(b). These results indicate that
a near machine accuracy can be achieved using ND = 15 Fourier modes.

Results displayed in figure 7 illustrate variations of �σi as a function of the number NT
of Chebyshev polynomials used in the computations. These computations used ND = 20
Fourier modes to reduce the error associated with this part of discretization to the machine
level. The results demonstrate an exponential decrease in the error as the number of
Chebyshev polynomials increases. They also illustrate the need to use more Chebyshev
polynomials in the case of three-dimensional waves to achieve the same absolute accuracy
as in the case of two-dimensional waves. In most cases, 40 Chebyshev polynomials were
sufficient to achieve machine accuracy.

The IBC method raises the question of how well the homogeneous boundary conditions
are enforced at the grooved walls. Since the expected values of the disturbance velocity
components and the disturbance temperature are zero, these quantities evaluated at the
boundaries represent the absolute errors. They vary in an oscillatory manner along the
wall, as illustrated in figure 8. The relative position of the groove and heating patterns
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Figure 7. Variation of �σi as a function of the number of Chebyshev polynomials NT for α =
1, BL = 0.07, BU = 0, Re = 500 for (a) two-dimensional disturbance with δ = 0, μ = 0.4 and (b)
three-dimensional disturbance with δ = 0.4, μ = 0.4. The heating conditions used in the tests were Rauni = 0
and (RaP,L, RaP,U) = (100, 0) and (RaP,L, RaP,U) = (200, 200). All results were obtained with ND = 20
Fourier modes.
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Figure 8. Distributions of uD (dash-dotted line), vD (solid line), wD (dashed line) and θD (dotted line) at
the lower wall for α = 1, BL = 0.07, BU = 0, Re = 1000, RaP,L = 100, RaP,U = 0, Rauni = 0, μ = 0.4 and
(a) δ = 0 and (b) δ = 0.4. All results were obtained with ND = 15 Fourier modes and NT = 40 Chebyshev
polynomials.

determines the location of the maximum error, but the absolute value of the error is never
higher than 10−10.

To quantify the boundary error and its variations as a function of the number of Fourier
modes, we measured this error using the norm defined as

‖BE‖= max(q)|yL, (6.3)
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Figure 9. Variations of the boundary errors as functions of the number ND of Fourier modes used in the
computations for α = 1, BL = 0.07, Re = 1000, RaP,L = 100, μ = 0.4 and (a) δ = 0 and (b) δ = 0.4. All
results were obtained with NT = 80 Chebyshev polynomials.

where q is the flow quantity of interest. Eigenfunctions used in (6.3) were normalized by
bringing their Euclidean norm defined as

‖E‖2 =
√

E2
1 + E2

2 + · · · + E2
3NT (2ND+1) = 1 (6.4)

to unity. Here E is an eigenvector that includes each disturbance quantity appearing
in (6.3) with length 3NT(2ND + 1). Results displayed in figure 9 demonstrate that
‖BE ‖ decreases exponentially with ND. The convergence rate varies between different
disturbance quantities, but all have exponential forms.

Another way to demonstrate the spectral convergence of the algorithm is to determine
variations of the Chebyshev norm defined as

‖Φ(m)
q (ŷ)‖ =

{∫ 1

−1
G(m)

k,q (ŷ) G(−m)
k,q (ŷ)ω(ŷ) dŷ

}1/2

, (6.5)

where q stands for the modal function of choice. Figure 10 illustrates variations of this
norm with an increase of the mode number m for two-dimensional and three-dimensional
disturbances. These results confirm the exponential reduction of the Chebyshev norm as
the mode number increases for all the quantities.

All the tests reported in this section validate the spectral accuracy of the algorithm.
The algorithm has a significant advantage in efficiently handling variations of geometry
and heating patterns compared with the grid-based approaches. Its gridless nature makes
it suitable for a parametric study involving the analysis of any parameter that defines
geometric and heating patterns. Mesh construction and grid independence studies required
by analyses using the conventional grid methods are very labour- and time-expensive.

Tables 1 and 2 provide numerical values illustrating the convergence of the test
eigenvalue determined using different numbers of Chebyshev polynomials and Fourier
modes. The comparison dataset uses a form similar to that of Orszag (1971), which others
can use for verification of the accuracy of their results.
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Figure 10. Variations of the Chebyshev norms as functions of the mode number for α = 1, BL = 0.07,
BU = 0, Re = 1000, RaP,L = 100, RaP,U = Rauni = 0, μ = 0.4 and (a) δ = 0 and (b) δ = 0.4. All results
were obtained with ND = 15 Fourier modes and NT = 80 Chebyshev polynomials.

NM NT = 65 NT NM = 14

5 456.597615922004 + 1.71429057304040i 25 456.187820164092 + 1.96826406086066i
7 456.522771220942 + 1.89523539873341i 30 457.487644813961 + 3.36758615065911i
9 456.336670596876 + 1.78932405422752i 35 456.337724757423 + 1.80932320020794i
11 456.339987508724 + 1.81097532610426i 40 456.337764893252 + 1.80966867579122i
13 456.337647502655 + 1.80980390186439i 45 456.337764845658 + 1.80966865294930i
15 456.337814751728 + 1.80967202603477i 50 456.337764550277 + 1.80966863961425i
17 456.337818273923 + 1.80968513952038i

Table 2. Variations of the leading eigenvalue σ as a function of the number of Fourier modes NM and the
number of Chebyshev polynomials NT used in the computations for a non-isothermal system with Re = 1000,
RapL = 500, BL = 0.1, BU = 0, α = 1, δ = 0.8.

7. Example of an application problem

This section discusses an application problem selected to illustrate the capabilities of the
proposed algorithm. This problem cannot be convincingly analysed using the DNS-type
methodology.

Consider isothermal pressure-gradient-driven flow in a channel modified by longitudinal
grooves. This flow is subject to a new type of instability, which, for simplicity, we refer
to as Floryan’s instability (Mohammadi et al. 2015). The presence of longitudinal grooves
creates spanwise gradients of the streamwise velocity, which activate inflection-point-type
inviscid instability. The critical Reynolds number can be as low as O(10) if grooves
with large enough amplitudes are used (Gepner & Floryan 2020). The instability creates
waves with phase speed near the maximum flow velocity, leading to laminar chaos in
the saturation state (Gepner & Floryan 2020). Use of grooves with amplitude BL = 0.1
results in a critical Reynolds number of about 2600 (see figure 11a). If one adds heating
with amplitude RaP,L = 700 and wavenumber matching the groove wavenumber, and
places this heating in such a manner so that hot spots overlap with the groove peaks,
e.g. ΩT,L = 0, the critical Reynolds number is reduced to about 375 (see figure 11b).
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μ

Figure 11. The neutral curves in the (Re, μ) plane for flow in (a) an isothermal (RaP,L = RaP,U = 0) grooved
(α = 1, BL = 0.1, BU = 0) channel for δ = 1 and (b) the same channel heated from below (RaP,L = 700,
RaP,U = 0).

δ 0.75 0.754 0.7543 0.76 0.77 0.78 0.79 0.8 0.9 1 1.2 1.21 1.213 1.217 1.25

W 8π 1000π 20 000π 50π 200π 100π 200π 10π 20π 2π 10π 200π 2000π 2000π 8π

Table 3. Spanwise extent W of the computational domain required for the use of the DNS approach for the
heating wavenumber α = 1 and selected disturbance wavenumbers δ.

It is thus possible to achieve low critical Re with much smaller groove amplitudes. The
use of heating patterns is attractive as heating can be turned on and off as required, and
its implementation is likely more economically effective as the creation of special conduit
geometries is avoided. Figure 12(a) displays the spectrum for Re = 400, which shows
the presence of a single unstable eigenvalue. Figure 12(b) illustrates variations in the
amplification rate σi as a function of the streamwise wavenumber δ, which is essential
for determining δ giving the largest amplification, this step being required in a stability
analysis. Table 3 gives spanwise size W of the computational domain that needs to be used
for DNS to reproduce some of these results – this table illustrates difficulties associated
with using DNS.

8. Summary

An algorithm suitable for analysing the stability of spatially modulated shear layers
has been proposed and described in the context of modulations induced by surface
topography and modulations created by heating patterns. The former represents geometry
modulations, while the latter represents field modulations. The algorithm can be easily
extended to other forms of modulations. Spatial modulation problems are characterized
by the formation of commensurate and incommensurate states arising out of the need
to analyse all possible disturbances, and these states are not accessible to classical
DNS-based approaches. The proposed algorithm bypasses this problem by treating
disturbances as modulated waves and focusing on determining the amplitude functions.
This determination relies on spatial discretization based on Fourier expansions in the
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Figure 12. (a) Spectrum for flow in a grooved channel exposed to periodic heating for α = 1, RaP,L = 700,
Re = 400, ΩT,L = 0, BL = 0.1, BU = 0 and δ = 1, μ = 1 determined using ND = 10 Fourier modes and NT =
120 Chebyshev polynomials. (b) Variation of the amplification rate σi as a function of δ for μ = 1 with other
conditions as in (a).

streamwise and spanwise directions and Chebyshev expansions in the wall-normal
direction. The Galerkin projection method has been used to develop the linear system of
algebraic equations for the expansion coefficients. The homogeneous boundary conditions
to be imposed along the corrugated walls have been replaced by constraints (the IBC
method) included in the complete system of linear equations using the Tau concept.
The resulting eigenvalue problem was solved using standard methods. Numerous tests
demonstrated that the algorithm provides spectral accuracy. Detailed comparison tables
for selected test cases have been provided, and the eigenvalue accuracy has been
demonstrated. An example of a physical problem was presented to illustrate the power
and effectiveness of the proposed method.

The proposed algorithm is gridless and requires minimal user time to adapt to new
geometries of the bounding walls and new heating patterns. It bypasses the need for
cumbersome grid convergence studies to verify grid-based methods’ accuracy. The
number of Fourier modes and Chebyshev polynomials used in the computations sets the
absolute accuracy.
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Appendix A. Operators used in the system (4.8)

tm = δ + mα, (A1)

k2
m = t2m + μ2, (A2)
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Accurate determination of stability characteristics

Dq = dq

dyq , (A3)

T〈m〉 = (D2 − k2
m)2 + iσ(D2 − k2

m), (A4)

S〈m〉 = (D2 − k2
m) + iσ, (A5)

Q〈m〉 = Pr−1(D2 − k2
m) + iσ, (A6)

T〈m−n〉
1 = itm−n

k2
m−n

(−t2mDf 〈n〉
u D + inαk2

m f 〈n〉
v D − t2m f 〈n〉

u D2 + itmDf 〈n〉
v D2

+ itm f 〈n〉
v D3 − 2μnαDf 〈n〉

w D − μtm+n f 〈n〉
w D2),

(A7)

T〈m−n〉
2 = ik2

mtm−n f 〈n〉
u + k2

mDf 〈n〉
v + k2

m f 〈n〉
v D + itmD2f 〈n〉

u + itmDf 〈n〉
u D + iμ(D2 + k2

m)f 〈n〉
w ,

(A8)

T〈m−n〉
3 = iμ

k2
m−n

(−μtm−2n f 〈n〉
u D2 + iμf 〈n〉

v D3 − μtm−nDf 〈n〉
u D − μ2f 〈n〉

w D2), (A9)

T〈m−n〉
4 = itm−n

k2
m−n

(−μtm−2n f 〈n〉
u D + iμf 〈n〉

v D2 − μtm−nDf 〈n〉
u − μ2f 〈n〉

w D), (A10)

T〈m−n〉
5 = iμ

k2
m−n

(−t2mDf 〈n〉
u + inαk2

m f 〈n〉
v − t2m f 〈n〉

u D + itmDf 〈n〉
v D

+ itm f 〈n〉
v D2 − 2μnα Df 〈n〉

w − μtm+n f 〈n〉
w D),

(A11)

S〈m−n〉
1 = iμ

k2
m−n

(tm−ntm f 〈n〉
u D − itm f 〈n〉

v D2 + μtm−n f 〈n〉
w D), (A12)

S〈m−n〉
2 = iμDf 〈n〉

u − itm−nDf 〈n〉
w + inα f 〈n〉

w D − inαDf 〈n〉
w , (A13)

S〈m−n〉
3 = itm−n

k2
m−n

(iμf 〈n〉
v D2 − μtm f 〈n〉

u D + (n2α2 − μ2)f 〈n〉
w D), (A14)

S〈m−n〉
4 = itm−n

k2
m−n

(tm−ntm f 〈n〉
u − itm f 〈n〉

v D + μtm−n f 〈n〉
w ), (A15)

S〈m−n〉
5 = iμ

k2
m−n

(iμf 〈n〉
v D − μtm f 〈n〉

u + (n2α2 − μ2)f 〈n〉
w ), (A16)

Q〈m−n〉
1 = itm−n f 〈n〉

u + f 〈n〉
v D + iμf 〈n〉

w , (A17)

Q〈m−n〉
2 = Df 〈n〉

θ − nαf 〈n〉
θ tm−n

k2
m−n

D. (A18)

Appendix B. Operators used in the system (4.12)

D̂q = dq

dŷq , (B1)

Ť〈m〉 = (Γ 2D̂2 − k2
m)2 + iσ(Γ 2D̂2 − k2

m), (B2)

Š〈m〉 = (Γ 2D̂2 − k2
m) + iσ, (B3)
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Q̌〈m〉 = Pr−1(�2D̂2 − k2
m) + iσ, (B4)

Ť〈m−n〉
1 = itm−n

k2
m−n

(−t2mΓ 2D̂f 〈n〉
u D̂ + inαk2

mΓ f 〈n〉
v D̂ − t2m f 〈n〉

u Γ 2D̂
2 + itmΓ 3D̂f 〈n〉

v D̂
2

+ itmΓ 3f 〈n〉
v D̂

3 − 2μnαΓ 2D̂f 〈n〉
w D̂ − μtm+nΓ

2f 〈n〉
w D̂

2
),

(B5)

Ť〈m−n〉
2 = ik2

mtm−n f 〈n〉
u + k2

mΓ D̂f 〈n〉
v + k2

mΓ f 〈n〉
v D̂ + itmΓ 2D̂2f 〈n〉

u + itmΓ 2D̂f 〈n〉
u D̂

+ iμ(Γ 2D̂2 + k2
m)f 〈n〉

w ,
(B6)

Ť〈m−n〉
3 = iμ

k2
m−n

(−μtm−2n f 〈n〉
u Γ 2D̂2 + iμf 〈n〉

v Γ 3D̂3 − μtm−nΓ
2D̂f 〈n〉

u D̂ − μ2f 〈n〉
w Γ 2D̂2),

(B7)

Ť〈m−n〉
4 = itm−n

k2
m−n

(−μtm−2n f 〈n〉
u Γ D̂ + iμf 〈n〉

v Γ 2D̂2 − μtm−nΓ D̂f 〈n〉
u − μ2f 〈n〉

w Γ D̂), (B8)

Ť〈m−n〉
5 = iμ

k2
m−n

(−t2mΓ D̂f 〈n〉
u + inαk2

m f 〈n〉
v − t2m f 〈n〉

u Γ D̂ + itmΓ 2D̂f 〈n〉
v D̂ + itm f 〈n〉

v Γ 2D̂
2

− 2μnαΓ D̂f 〈n〉
w − μtm+n f 〈n〉

w Γ D̂),

(B9)

Š〈m−n〉
1 = iμ

k2
m−n

(tm−ntm f 〈n〉
u Γ D̂ − itm f 〈n〉

v Γ 2D̂2 + μtm−n f 〈n〉
w Γ D̂), (B10)

Š〈m−n〉
2 = iμΓ D̂f 〈n〉

u − itm−nΓ D̂f 〈n〉
w + inα f 〈n〉

w Γ D̂ − inαΓ D̂f 〈n〉
w , (B11)

Š〈m−n〉
3 = itm−n

k2
m−n

(iμf 〈n〉
v Γ 2D̂2 − μtm f 〈n〉

u Γ D̂ + (n2α2 − μ2)f 〈n〉
w Γ D̂), (B12)

Š〈m−n〉
4 = itm−n

k2
m−n

(tm−ntm f 〈n〉
u − itm f 〈n〉

v Γ D̂ + μtm−n f 〈n〉
w ), (B13)

Š〈m−n〉
5 = iμ

k2
m−n

(iμf 〈n〉
v Γ D̂ − μtm f 〈n〉

u + (n2α2 − μ2)f 〈n〉
w ), (B14)

Q̌〈m−n〉
1 = itm−n f 〈n〉

u + f 〈n〉
v �D̂ + iμf 〈n〉

w , (B15)

Q̌〈m−n〉
2 = Γ D̂f 〈n〉

θ − nαf 〈n〉
θ tm−n

k2
m−n

Γ D̂. (B16)

Appendix C. Operators used in the system (4.15)

A〈m〉 = Γ 4〈Tj, D̂4Tk〉 − 2Γ 2k2
m〈Tj, D̂2Tk〉 + k4

m〈Tj, Tk〉
+ iσ(Γ 2〈Tj, D̂2Tk〉 − k2

m〈Tj, Tk〉), (C1)

D̂〈m〉 = Γ 2〈Tj, D̂2Tk〉 − k2
m〈Tj, Tk〉 + iσ 〈Tj, Tk〉, (C2)

I〈m〉 = Pr−1Γ 2〈Tj, D̂2Tk〉 − Pr−1k2
m〈Tj, Tk〉 + iσ 〈Tj, Tk〉, (C3)

H〈m〉 = Pr−1k2
m〈Tj, Tk〉, (C4)
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Accurate determination of stability characteristics

P〈m−n〉 = − it2mtm−nΓ
2

k2
m−n

G〈n〉
u,r〈Tj, D̂TrD̂Tk〉 − nαk2

mtm−nΓ

k2
m−n

G〈n〉
v,r〈Tj, TrD̂Tk〉

− it2l tm−nΓ
2

k2
m−n

G〈n〉
u,r〈Tj, TrD̂2Tk〉 − tm−ntmΓ 3

k2
m−n

G〈n〉
v,r〈Tj, D̂TrD̂2Tk〉

− tm−ntmΓ 3

k2
m−n

G〈n〉
v,r〈Tj, TrD̂3Tk〉 − 2itm−nμnαΓ 2

k2
m−n

G〈n〉
w,r〈Tj, D̂TrD̂Tk〉

− itm−ntm+nΓ
2μ

k2
m−n

G〈n〉
w,r〈Tj, TrD̂2Tk〉 + ik2

mtm−2nG〈n〉
u,r〈Tj, TrTk〉

+ k2
mΓ G〈n〉

v,r〈Tj, TrD̂Tk〉 + itmΓ 2G〈n〉
u,r〈Tj, D̂2TrTk〉 + itmΓ 2G〈n〉

u,r〈Tj, D̂TrD̂Tk〉
+ iμΓ 2G〈n〉

w,r〈Tj, D̂2TrTk〉 + iμk2
mG〈n〉

w,r〈Tj, TrTk〉

− iμ2tm−2nΓ
2

k2
m−n

G〈n〉
u,r〈Tj, TrD̂2Tk〉 − μ2Γ 3

k2
m−n

G〈n〉
v,r〈Tj, TrD̂3Tk〉

− iμ2tm−nΓ
2

k2
m−n

G〈n〉
u,r〈Tj, D̂TrD̂Tk〉 − iμ3Γ 2

k2
m−n

G〈n〉
w,r〈Tj, TrD̂2Tk〉, (C5)

R〈m−n〉 = − itm−nμtm−2nΓ

k2
m−n

G〈n〉
u,r〈Tj, TrD̂Tk〉 − tm−nμΓ 2

k2
m−n

G〈n〉
v,r〈Tj, TrD̂2Tk〉

+ it2m−nΓ μ

k2
m−n

G〈n〉
u,r〈Tj, D̂TrTk〉 − itm−nμ

2Γ

k2
m−n

G〈n〉
w,r〈Tj, TrD̂Tk〉

+ iμt2mΓ

k2
m−n

G〈n〉
u,r〈Tj, D̂TrTk〉 + μnαk2

m

k2
m−n

G〈n〉
v,r〈Tj, TrTk〉 + iμt2mΓ

k2
m−n

G〈n〉
u,r〈Tj, TrD̂Tk〉

+ μtmΓ 2

k2
m−n

G〈n〉
v,r〈Tj, D̂TrD̂Tk〉 + μtmΓ 2

k2
m−n

G〈n〉
v,r〈Tj, TrD̂2Tk〉

+ 2iμ2nαΓ

k2
m−n

G〈n〉
w,r〈Tj, D̂TrTk〉 + iμ2tm+nΓ

k2
m−n

G〈n〉
w,r〈Tj, TrD̂Tk〉, (C6)

K〈m−n〉 = −Γ iμtm−ntm
k2

m−n
G〈n〉

u,r〈Tj, TrD̂Tk〉 − μtmΓ 2

k2
m−n

G〈n〉
v,r〈Tj, TrD̂2Tk〉

− iμ2tm−nΓ

k2
m−n

G〈n〉
w,r〈Tj, TrD̂Tk〉 − iμΓ G〈n〉

u,r〈Tj, D̂TrTk〉 + itm−nΓ G〈n〉
w,r〈Tj, D̂TrTk〉

− inαΓ G〈n〉
w,r〈Tj, TrD̂Tk〉 + inαΓ G〈n〉

w,r〈Tj, D̂TrTk〉

+ tm−nμΓ 2

k2
m−n

G〈n〉
v,r〈Tj, TrD̂2Tk〉 + itm−nμtlΓ

k2
m−n

G〈n〉
u,r〈Tj, TrD̂Tk〉

− itm−nn2α2Γ

k2
m−n

G〈n〉
w,r〈Tj, TrD̂Tk〉 + itm−nμ

2Γ

k2
m−n

G〈n〉
w,r〈Tj, TrD̂Tk〉, (C7)
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Q〈m−n〉 = − it2m−ntm
k2

m−n
G〈n〉

u,r〈Tj, TrTk〉 − tm−ntmΓ

k2
m−n

G〈n〉
v,r〈Tj, TrD̂Tk〉 − it2m−nμ

k2
m−n

G〈n〉
w,r〈Tj, TrTk〉

− μ2Γ

k2
m−n

G〈n〉
v,r〈Tj, TrD̂Tk〉 − iμ2tm

k2
m−n

G〈n〉
u,r〈Tj, TrTk〉 + iμn2α2

k2
m−n

G〈n〉
w,r〈Tj, TrTk〉

− iμ3

k2
m−n

G〈n〉
w,r〈Tj, TrTk〉, (C8)

U〈m−n〉 = −itm−nG〈n〉
u,r〈Tj, TrTk〉 − Γ G〈n〉

v,r〈Tj, TrD̂Tk〉 − iμG〈n〉
w,r〈Tj, TrTk〉, (C9)

V〈m−n〉 = Γ G〈n〉
θ,r〈Tj, D̂TrTk〉 − nαtm−nΓ

km−n
G〈n〉

θ,r〈Tj, TrD̂Tk〉, (C10)

W〈m−n〉 = − μnα

k2
m−n

G〈l〉
θ,r〈Tj, TrTk〉. (C11)

The inner products appearing in these equations are defined as

〈Tj, D̂pTrD̂qTk〉 =
∫ 1

−1
Tj(ŷ) D̂pTr(ŷ)D̂qTk(ŷ) ω(ŷ) dŷ, (C12)

where ω(ŷ) = (1 − ŷ2)−1/2 denotes the weight function.

Appendix D. Evaluation of coefficients of Fourier expansions describing variations
of values of Chebyshev polynomials and their first derivatives evaluated along the
boundaries

Values of Chebyshev polynomials at the lower wall can be represented as a Fourier
expansion of the form

Tk[ŷL(x)] =
∞∑

p=−∞
(wL)

〈p〉
k ei pαx. (D1)

Evaluation of coefficients (wL)
〈p〉
k starts with the lowest-order Chebyshev polynomial, i.e.

T0 = 1 ⇒
+∞∑

p=−∞
(wL)

〈p〉
0 ei pαx = 1 ⇒

{
(wL)

〈0〉
0 = 1,

(wL)
〈p〉
0 = 0, p /= 0,

(D2)

T1[ŷL(x)] = ŷL(x) ⇒
+∞∑

p=−∞
(wL)

〈p〉
1 ei pαx =

+Nj∑
p=−Nj

A( p)
L ei pαx ⇒ (wL)

〈p〉
1 = ŷ( p)

L . (D3)

The rest of the coefficients (wL)
〈p〉
k for (k ≥ 2) can be determined using the Chebyshev

recursion relation of the form

(wL)
〈p〉
k+1 = 2

+∞∑
q=−∞

A(q)
L (wL)

〈p−q〉
k − (wL)

〈p〉
k−1. (D4)

The first derivative of Chebyshev polynomials is represented as a Fourier expansion of the
form

DTk[ŷL(x)] =
∞∑

p=−∞
(dL)

〈p〉
k ei pαx. (D5)
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Accurate determination of stability characteristics

Evaluation of coefficients (dL)
〈p〉
k starts with the lowest-order polynomial, i.e.

DT0 = 0 ⇒
+∞∑

p=−∞
(dL)

〈p〉
0 eipαx = 0 ⇒ (dL)

〈p〉
0 = 0, (D6)

DT1 = 1 ⇒
+∞∑

p=−∞
(dL)

〈p〉
1 ei pαx = 1 ⇒

{
(dL)

〈0〉
1 = 1,

(dL)
〈p〉
1 = 0, p /= 0,

(D7)

DT2[ŷL(x)] = 4ŷL(x) ⇒
+∞∑

p=−∞
(dL)

〈p〉
2 ei pαx =

+∞∑
p=−∞

4A( p)
L ei pαx ⇒ (dL)

〈p〉
2 = 4A( p)

L .

(D8)

The remaining coefficients (dL)
〈p〉
k for k ≥ 3 can be determined using the Chebyshev

recursive formula of the form

(dL)
〈p〉
k+1 = 2

+∞∑
q=−∞

A(q)
L (dL)

〈p−q〉
k − (dL)

〈p〉
k−1 + 2(wL)

〈p〉
k . (D9)
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