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ALGORITHMIC RECOGNITION OF ACTIONS OF
2-HOMOGENEOUS GROUPS ON PAIRS

GRAHAM R. SHARP

Abstract

We give an algorithm that takes as input a transitive permutation
group(G, �) of degreen = (

m
2

)
, and decides whether or not� is G-

isomorphic to the action ofG on the set of unordered pairs of some set
0 on whichG acts 2-homogeneously. The algorithm is constructive:
if a suitable action exists, then one such will be found, together with
a suitable isomorphism. We give a deterministicO(sn logc n) im-
plemention of the algorithm that assumes advance knowledge of the
suborbits of(G, �). This leads to deterministicO(sn2) and Monte-
CarloO(sn logc n) implementations that do not make this assump-
tion.

1. Introduction

Let (G, 0) be a finite permutation group, and define

0{2} = {{α, β} ∣∣ α, β ∈ 0, α 6= β}
and

0(2) = {(α, β)
∣∣ α, β ∈ 0, α 6= β}.

If G is transitive on0(2), it is described as 2-transitiveon0; if it is transitive only on0{2},
then it is described as 2-homogeneouson0.

Recall that twoG-sets0 and1 are said to beG-isomorphic if and only if there is a
bijectionη : 0 → 1 such thatγ ηg = γ gη for all γ ∈ 0 and allg ∈ G.

The purpose of this paper is to describe an algorithm that takes as input a transitive
permutation group(G, �) and determines whether or not there exists an action ofG on a
set0 such that� and0{2} areG-isomorphic. We will call such a set0 a solution to the
exterior square-root problemfor (G, �). More precisely, a solution will be a pair(0, η)

where0 is aG-set andη a G-isomorphism from0{2} to �. The problem is specified as
follows.

Specification 1.1.

Input A transitive permutation group(G, �) of degreen = #� > 1, wheren = (
m
2

)
for

some integerm, given by generatorsg1, . . . , gs ∈ Sym(�).

Output A valueb ∈ {True, False}.
If b = True , then aG-set0 of sizem, and a bijectionη : 0{2} → � are also
returned, satisfying{γ g

1 , γ
g

2 }η = ({γ1, γ2}η)g for all g ∈ G, {γ1, γ2} ∈ 0{2}.
If b = False then there does not exist a pair(0, η) satisfying these conditions.
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Algorithmic Recognition of Actions of2-Homogeneous Groups on Pairs

The main result of this paper is an algorithm that satisfies Specification1.1, and that can
be implemented inO(sn2) time.

Note that for the purposes of complexity analysis, we take our standard operation to
be finding the image of a given point in� under the action of a given permutation in
Sym(n) (as is usual in computational permutation group theory), even though this involves
manipulations with integers that require logn bits to store.

We first use some group theory to classify the permutation groups(G, 0) that can give
rise to solutions;i.e., those groups that are transitive on0{2}. The structure of the remainder
of the paper is based on the different classes of groups arising out of this taxonomy.

2. Classifying2-homogeneous groups

Lemma 2.1. Suppose(G, 0) is a permutation group, and thatG is transitive on0{2} and
that#G is divisible by2. ThenG is transitive on0(2).

Proof. G contains an involutiont , which must interchange two pointsα, β of 0. Let γ, δ

be arbitrary points of0. SinceG is transitive on0{2}, there isg ∈ G with {α, β}g = {γ, δ}.
Now eitherg or tg maps(α, β) to (γ, δ) as ordered pairs, and soG is 2-transitive on0.

Theorem 2.2. Suppose(G, 0) is a permutation group, and thatG is transitive on0(2).
Then one of two cases arises:

(i) the groupG has a normal subgroupS which is non-abelian simple, andCG(S) = 1,
so the action ofG onS by conjugation gives an embedding ofG into Aut(S), or

(ii) the groupG contains an elementary abelian normal subgroupV which is regular on
0.

In each case, the subgroup(S or V ) is the unique minimal normal subgroup ofG.
If G is transitive on0{2} but not on0(2) thenG satisfies the conditions for case(ii)

above.

Proof. For 2-transitive groups the theorem is a result of Burnside [2, §154, Theorem XIII].
If (G, 0) is 2-homogeneous but not 2-transitive, thenG is of odd order, by the lemma

above. By the Odd Order Theorem of Feit and Thompson [5], G is solvable. Also,G is
clearly primitive, and a minimal normal subgroup of a solvable primitive group is both
elementary abelian and regular [9, Theorem 11.5].

In Theorem2.2, if the minimal normal subgroup ofG is simple non-abelian, we say that
G is almost simple, while if the minimal normal subgroup ofG is elementary abelian, we
say thatG is of affine type. IfG has an elementary abelian regular normal subgroupV , then
its degree is a prime power,pd say, andV can be regarded as a vector space overFp. We
will write V additively.

Proposition 2.3. Suppose a permutation group(G, 0) has an elementary abelian regular
normal subgroupV of orderpd . ThenG embeds in the group

AGL(d, p) = AGL(V ) = {x 7→ xh + v
∣∣ h ∈ GL(V ), v ∈ V }

of affine transformations ofV , with V mapping onto the translation subgroupT = {tv
∣∣

v ∈ V }, wheretv is the map which sendsx to x +v. The permutation group(G, V ) with the
action ofG onV arising from this embedding ofG in AGL(V ) is isomorphic to the group
(G, 0).
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Algorithmic Recognition of Actions of2-Homogeneous Groups on Pairs

Proof. See, for example, [6, §2].

The structure of the algorithm in this paper is a series of subroutines, each solving a
problem of the following form.

Specification 2.4.LetC be a class of2-homogeneous permutation groups.

Input A transitive permutation group(G, �) of degreen = #� > 1, wheren = (
m
2

)
for

some integerm, given by generatorsg1, . . . , gs ∈ Sym(�).

Output A valueb ∈ {True, False}.
If b = True , then aG-set0 of sizem, and a bijectionη : 0{2} → � are also
returned, satisfying{γ g

1 , γ
g

2 }η = ({γ1, γ2}η)g for all g ∈ G, {γ1, γ2} ∈ 0{2}.
If b = False then there does not exist a pair(0, η) that satisfies these conditions,
and where(G, 0) lies in the classC.

Notice that ifC is the whole class of 2-homogeneous permutation groups, then this is
exactly equivalent to Specification1.1. If we have a finite number of subroutinesA1, . . . , Ak

satisfying Specification2.4for different classesC1, . . . ,Ck respectively such that the union
of theCi contains the class of all 2-homogeneous permutation groups, then the following
procedure satisfies Specification1.1.

1. Fori := 1 to k do
2. CallAi with input (G, �) and outputb, 0, η.
3. If b = True then Exit with outputb, 0, η.
4. End for.
5. Exit (with outputb, which isFalse).

In practice, we will use Theorem2.2and the classification of finite 2-transitive groups to
obtain our classesCi . The primary division will be into four classes, oneAo containing all 2-
homogeneous affine groups over fields of odd characteristic (by Theorem2.2this contains
all the 2-homogeneous, non-2-transitive groups); anotherAe containing the 2-transitive
affine groups over fields whose size is even and strictly larger than 2; a thirdL containing
the almost simple groups of Lie type whose socle is PSU(3, q), Sz(q) or R(q) for some
q; and a fourth classZ containing all the other 2-transitive groups. The classZ will be
subdivided further according to the families of groups in the classification of 2-transitive
groups. The formal definitions of the main classes and the subclasses ofZ will be given in
Table1 on page120.

None of the results in this paper are dependent on the classification of finite 2-transitive
groups (or the classification of finite simple groups), except the result which says that the
union of the four classesAo, Ae, L andZ contains all 2-homogeneous permutation groups.

The organisation of the rest of this paper is loosely based around this subdivision into
classes of groups. In Sections3 to 6, we will give a largely combinatorial solution for the
classZ, and in the process of doing this we will develop some combinatorial techniques
that will be useful later. In Sections7 and8 we will cover the affine classes,Ao andAe, and
in Section9 we will cover the one remaining class,L. The final section describes results
obtained from aGAP implementation of these techniques.

3. Solution subsets

In this section we characterize all solutions as arising in a particular way from a subset
of � (a so-called ‘solution subset’) satisfying certain properties. We give an algorithm to
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check whether a given subset of� satisfies these properties, and, if so, to calculate a solution
(0, η) from it.

Definition 3.1. A solution subsetof � is defined to be a subsetA of �, of sizem− 1, such
that (i) #AG = m (whereAG is the orbit containingA in the natural action ofG on the
power set of�) and(ii) for all g ∈ G, eitherA = Ag or #(A ∩ Ag) = 1. In this situation,
define the mapµ : (AG){2} → � by {X, Y }µ = ω whereX ∩ Y = {ω}.

Proposition 3.2. LetA be a solution subset of�. Then(AG, µ) is a solution pair(as defined
at the very beginning of the paper), and for any solution(0, η), there exists a solution subset
A and corresponding mapµ, and aG-isomorphismτ : 0 → AG such thatη = τµ (where
τ is lifted to map0{2} to (AG){2}).

Proof. We show first that(AG, µ) is a solution. To show this, we need to show thatµ is a
bijection, and that it preserves the action ofG. There existsg0 such thatAg0 6= A, and so
Ag0 ∩ A = {ω0}, say. Letω ∈ �. SinceG is transitive on�, there isg ∈ G with ω

g

0 = ω,
and now{Ag, Ag0g}µ = ω, soµ is surjective. Since(AG){2} and� have the same size, this
means thatµ is a bijection. Letg1, g2, g ∈ G. Then

{{Ag1g, Ag2g}µ} = Ag1g ∩ Ag2g = (Ag1 ∩ Ag2)g = {(Ag1 ∩ Ag2)µ}g
and so(AG, µ) is a solution.

Now suppose that(0, η) is a solution. Forγ ∈ 0, define

Aγ = {{γ, γ ′}η ∣∣ γ ′ ∈ 0 \ {γ }} ,

and for someγ0 ∈ 0, takeA = Aγ0. CertainlyA
g
γ = Aγ g for all γ ∈ 0 and allg ∈ G,

sinceη is aG-isomorphism, soAG = {Aγ

∣∣ γ ∈ 0}. ThereforeAG has sizem; it is clear
from the definition thatA has sizem − 1. If γ1, γ2 ∈ 0 are distinct then we have

Aγ1 ∩ Aγ2 = {{γ1, γ2}η} (1)

which shows that the intersection of distinct elements ofAG has size 1, as required, soA is
a solution subset. Defineτ by γ τ = Aγ ; it is clear that this is aG-isomorphism. It is now
evident from (1) and the definition ofµ thatη = τµ.

This means that we may restrict our search for solutions to the exterior square-root problem
for (G, �) to a search for solution subsets.

Lemma 3.3. LetA be a solution subset. Then for eachω ∈ � there are precisely two sets
X ∈ AG such thatω ∈ X.

Proof. Certainly there at least two setsX containingω, since the mapµ is surjective.
However the number of elements in the union of the sets inAG counting repetitionsis only
m(m − 1) = 2#�. Therefore there are exactly two such sets containingω.

We now give an algorithm for deciding whether a given subsetA ⊆ � is a solution
subset.

Proposition 3.4. There is an algorithm which givenA ⊂ � of sizem − 1 will decide
whetherA is a solution subset, and find a solution pair(0, η) if it is, in O(sn) time.
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Proof. The algorithm is shown as Algorithm3.5. It takes(G, �) and the putative solution
subsetA as input, and outputsb, 0, η as in Specification1.1, except that here ifb = False
then we only know thatA is not a solution subset, rather than that no solution exists.

The structure of the algorithm is basically that of a traversal of the graph with the points
of AG as vertices, and an edge(X, Y ) for each of the original generators ofG that maps
X to Y . However, there are certain extra features that make use of the extra structure of the
problem.

Algorithm 3.5. TestSolutionSubset(A)

1. InitializeW(ω) := ∅ for all ω ∈ �.
2. For eachω ∈ A, setW(ω) := {A}.
3. InitializeQ := {A}, T := {A}, b := False.

HereT stores the sets inAG as they are found, andQ contains those sets inT that have been
found, but whose neighbours have not yet been checked. For eachω ∈ �, the setW(ω)

will contain those elements ofT (that is, of that part of the orbitAG so far discovered) that
containω.

At the start of the main loop, we choose a pointX that has not been fully processed, and
process it by considering its neighbours:

4. WhileQ 6= ∅ do
5. ChooseX ∈ Q, and setQ := Q \ {X}.
6. Forg in {g1, . . . , gs} do
7. FormS := Xg.
8. Chooseω1, ω2 ∈ S.
9. If W(ω1) = ∅ or W(ω2) = ∅ or (#W(ω1) = #W(ω2) = 1 andW(ω1) 6=

W(ω2)) then

If the test in line9 is passed thenS is a new element ofAG. If it fails, then eitherS is not
a new element ofAG, or it is new, but there is another element ofAG, which has already
been discovered, whose intersection withS is not of size 1.

If the test is passed, we updateQ andT ; if we have generated more thanm elements of
AG then we knowA is not a solution subset. We then updateW :

10. SetQ := Q ∪ {S} andT := T ∪ {S}; if #T > m then Exit.
11. SetU := ∅.
12. Forω ∈ S do
13. If #W(ω) > 1 or W(ω)∩ U 6= ∅ then Exit
14. Else
15. SetU := U ∪ W(ω).
16. SetW(ω) := W(ω) ∪ {S}.
17. End if.
18. End do.

We know that noW(ω) should ever contain more than two elements, and that no twoW(ω)

that both contain two elements should ever be the same. If either of these situations arises
we can immediately deduce thatA is not a solution subset. If neither of these situations
arises in any of theW(ω) corresponding to thoseω ∈ S, then we can updateW by adding
S to theseW(ω). This concludes the processing in the case where we have a possible new
member ofS, and we now turn to the other case:
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19. Else if #
⋂

ω∈S W(ω) 6= 1 then Exit.
20. End if.

This ‘else’ matches the ‘if’ in line9, so if this code is executed then we know that eitherS

is already inT , or it is not but either has intersection of size greater than 1 with an element
of T , or contains a point that already lies in two different elements ofT . The test in this
line determines whetherS is already inT ; if not, then the program concludes thatA is not
a solution set; otherwise, we continue, ready to consider a new elementS.

The loops now repeat, and so we traverse the orbitAG in the usual way.

21. End for.
22. End while.
23. If #T = m then
24. Setb := True, 0 := T and defineη : T {2} → � by {X1, X2}η := ω, where

{ω} = X1 ∩ X2.
25. End if.
26. Exit.

If the loops are completed thenT = AG, so if the condition in the final ‘if’ statement is
true thenAG has sizem, andm − 1 copies of them elements ofAG have been formed into
m(m − 1)/2 setsW(ω) in such a way that noW(ω) contains more than two elements, and
everyW(ω) is different. Therefore all theW(ω) are pairs, and

{W(ω)
∣∣ ω ∈ �} = (AG){2}.

For anyX ∈ T , X = {ω ∈ �
∣∣ X ∈ W(ω)}, and thereforeA ∩ Ag is eitherA itself or has

size 1, sinceT = AG, and soA is a solution set. It now follows from the earlier results on
solution sets that(0, η) is a solution, where0 andη are as defined in the algorithm.

When implementing this algorithm, we can number the elements ofT as they are created,
and use these index numbers, instead of the elements ofT themselves, as the elements of
W , U andQ. Under the (standard) assumption that manipulations with natural numbers of
magnitudeO(n) can be made in constant time (see the beginning of the paper), this enables
us to implementQ so that all references to it require only constant time, to do the test in
line9 in constant time, and the test in line19in O(m) time (recall that eachW(ω) has size at
most 2). MakingS can be done inO(m) time, as can addingS toT . This is also the case for
the inner ‘For’ loop, if we implement the setU as a look-up table indexed by the numbers
1, . . . , k, so determining whether a particular number lies inU takes constant time. The
main loop (lines7–20) is executed no more thansm times. Thus the overall complexity of
the main loop isO(sm2), that is,O(sn).

Extending the idea of the index numbers, we can return0 = {1, . . . , m}; if g ∈ G then
the image ofi ∈ 0 under the action ofg can be found by taking two pointsω1, ω2 in the
set inT corresponding toi, and thenig is the one point in the intersection ofW(ω

g

1) and
W(ω

g

2). Calculating the images of the generators in this way requiresO(sm) time.
Computing the mapη still requires onlyO(n) time, as we can do it in reverse: to create

an array indexed by0{2} containing the image of that pair under the mappingη, we can
take eachω ∈ �, read off the corresponding pair of indices fromW(ω), and enterω in the
appropriate place in the array.

Therefore the given algorithm can be implemented inO(sn) time.
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4. The adjacent-point set

We now introduce another type of subset of�, which also characterizes solutions, and
which is easier to find in practice. We give an algorithm for testing whether a given subset
is of this type and, if so, for constructing a solution.

Definition 4.1. Suppose(0, η) is a solution, andω ∈ �. Define

30(ω) =
{
ω′ ∈ �

∣∣ ω′η−1 ∩ ωη−1 6= ∅
}

.

Thus30(ω) is the set of the images underη of all those pairs in0{2} that are ‘adjacent’
to (have non-trivial intersection with) the pre-image ofω. This is aGω-invariant set of size
2m − 3, containingω. The subscript0 is used to indicate the dependence of30 on the
solution(0, η); perhaps better, but cumbersome, would be to includeη in the notation as
well. When a solution is given in terms of a solution subsetA, so that0 = AG andη = µ,
we will use3A instead of3AG . If A is a solution set, then there are group elementsg1
andg2 such that{ω} = Ag1 ∩ Ag2, and then it is easily checked that3A(ω) = Ag1 ∪ Ag2.
Clearly,30(ω)g = 30(ωg) for all g ∈ G.

Now suppose we have aGω-invariant subsetL of � which containsω and has size
2m − 3. We can decide whether or not there is a solution(0, η) such that30(ω) = L, and
find one if one exists, as follows.

Algorithm 4.2. TestSet(ω, L)

Input Generators for a transitive permutation group(G, �) of degree#� = n = (
m
2

)
wherem > 4,
a pointω ∈ �, and
a Gω-invariant subsetL of � of size2m − 3 that containsω.

Output A valueb ∈ {True, False}.
If b = True, then aG-set0 of sizem, and a bijectionη : 0{2} → � are also
returned, satisfying{γ g

1 , γ
g

2 }η = ({γ1, γ2}η)g for all g ∈ G, {γ1, γ2} ∈ 0{2}, and
with 30(ω) = L.
If b = False then there does not exist a pair(0, η) that satisfies these conditions.

1. Construct a setT1 of translates ofL, stopping when two elementsL1 andL2 of
T1 intersect in a set of size preciselym, or when #T1 > m/2; if this limit is
exceeded without findingL1 andL2 then Returnb := False.

2. SetP := L1 ∩ L2.
3. Construct a setT2 of translates ofP , stopping when two elementsP1 andP2 of T2

intersect in a set of size preciselym − 1, or when #T2 > m; if this limit is
exceeded without findingP1 andP2 then returnb := False.

4. SetB := P1 ∩ P2.
5. TestSolutionSubset(B).

The algorithm requiresO(sn) time.

Proof. We prove that if there exists a solution subsetA such that3A(ω) = L, then the set
B computed by the algorithm is a solution subset, and3B(ω) = L. It then follows that the
call toTestSolutionSubset yields the correct answer. So suppose that such a subsetA exists.
We can take0 to be the setAG of translates ofA. We have 3A(ωg) = Lg for all g ∈ G,
so each translate ofL is an adjacent-point set.
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We consider the intersection of distinct adjacent-point sets. Suppose3A(ωi) = Agi ∪Ag′
i

for i = 1,2. Then

3A(ω1) ∩ 3A(ω2) = (Ag1 ∪ Ag′
1) ∩ (Ag2 ∪ Ag′

2)

= (Ag1 ∩ Ag2) ∪ (Ag1 ∩ Ag′
2) ∪ (Ag′

1 ∩ Ag2) ∪ (Ag′
1 ∩ Ag′

2).

As the3A(ω′) are distinct andAgi is distinct fromAg′
i for i = 1,2, only two cases arise:

either all the four setsAgi , Ag′
i are different, or there is one pair the same and the others are

different; in that case we may without loss of generality assume thatAg1 = Ag2.
If all four sets are different then by Lemma3.3, the intersection3A(ω1) ∩ 3A(ω2) has

size 4. IfAg1 = Ag2 then

3A(ω1) ∩ 3A(ω2) = Ag1 ∪ (Ag′
1 ∩ Ag′

2),

which has sizem. Sincem > 4 the algorithm can distinguish between these two cases, and
the intersection ofL1 andL2 falls in the second case. Note that there arem translates of
A in 0, and each translate ofL contains two translates ofA. If the pairwise intersections
of all the elements ofT1 fall in the first case above, then the translates ofA involved in the
elements ofT1 must all be different, so in this caseT1 can have size at mostm/2. Therefore,
if a pair L1, L2 exists, we must have found such a pair by the time we are processing the
(bm/2c + 1)-th distinct translate ofL.

For the next step, we can assume thatP = Ah1 ∪(Ah2 ∩Ah3) for some distinctAh1, Ah2,
Ah3. Translates ofP are also of this form. LetAh1 ∪ (Ah2 ∩Ah3) andAh′

1 ∪ (Ah′
2 ∩Ah′

3) be
distinct translates ofP , and consider their intersection. IfAh1 = Ah′

1 then the intersection
containsAh1; as the two translates are distinct and the size ofAh1 is only 1 less than that
of P , this must be the whole of the intersection. Thus in this case the intersection has size
m − 1 and is a solution set, as it is a translate ofA; also3Ah1 (ω) = 3A(ω) = L.

If Ah1 6= Ah′
1 then their intersection has size 1; the only other points that could possibly

lie in the intersection of the two translates ofP are the points in the two singleton sets
Ah2 ∩Ah3 andAh′

2 ∩Ah′
3, so the intersection of these two translates ofP has size at most 3,

and asm > 4 the algorithm can recognise when the intersection is of sizem − 1. Observe
that if the setT2 of translates ofP is such that none of the pairwise intersections of elements
of T2 has sizem−1, then the size ofT2 is at mostm, since each element ofT2 must contain
a different translate ofA.

To implement the algorithm in the stated time bound we use a method similar to that
of Algorithm 3.5. Consider the calculation ofT1, which is shown in more detail in Al-
gorithm 4.3 on page117. For each pointξ of � we store a listW(ξ) of elements ofT1
containing that point. To process a new translateS of L we use a listC indexed byT1,
whose entries are initially 0. For each pointξ of S, we find the list of elements ofT1 con-
taining ξ , and for each elementT of that list, incrementC(T ). We thus find out the size
of the intersection ofS with each element ofT1. We use index numbers to represent the
elements ofT1, as in the implementation of Algorithm3.5. This enablesW , Q andC to
be manipulated quickly. The outer two loops executeO(ms) times, as #T1 is O(m). We
show that the body of the inner of these two loops, from line7 to line 25, always executes
in O(m) time, except during the last iteration, when it executes inO(m2) time. This will
be clear if we can show that

∑
T ∈T #(S ∩T ) is O(m) or O(m2) respectively, since all lines

apart from the nested loops calculatingC clearly run inO(m) time (if S is added toT in
line 15, then it will be assigned an index number that will enable the subsequent updating
of W(ξ) to be completed in constant time for eachξ ∈ S).
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Algorithm 4.3. Implementation of Step 1 of Algorithm4.2

1. InitializeW(ξ) := ∅ for all ξ ∈ �;
2. For eachξ ∈ L setW(ξ) := {L};
3. InitializeQ := {L}, T1 := {L};
4. WhileQ 6= ∅ do
5. ChooseX ∈ Q, and setQ := Q \ {X};
6. Forg in {g1, . . . , gs} do
7. FormS := Xg;
8. InitializeC to be the zero function fromT1 to N;
9. For eachξ in S do

10. For eachT in W(ξ) do
11. IncrementC(T );
12. End for;
13. End for;
14. If C(T ) = 4 for all T ∈ T1 then
15. AddS to Q and toT1;
16. If #T1 > m/2 then exit withb := False;
17. Forξ in S do
18. AddS to W(ξ);
19. End for;
20. Else if there existsT ∈ T1 such thatC(T ) = m then
21. Exit withL1, L2 := S, T ;
22. Else if there existsT ∈ T1 such thatC(T ) is not 4,m or 2m − 3 then
23. Exit withb := False;
24. Else do nothing (*S is already inT1 *);
25. End if;
26. End for;
27. End while;
28. End (* This point will not be reached—one of the exit conditions above will be

satisfied first *).

Certainly
∑

T ∈T #(S ∩ T ) is O(m2) since each intersection has size at most 2m − 3. If
this iteration of the main loop body is not the last then: every intersection has size 4,m or
2m − 3; at most one has size 2m − 3 (as all entries inT1 are distinct); and none has sizem.
Thus

∑
T ∈T #(S ∩ T ) is at most 2m − 3 + 4#T1, and so isO(m).

A similar method is used to findP1 andP2 in the same time bound, and the other steps
of the algorithm can be implemented inO(sm2) time. The result follows, sinceO(sm2) is
the same asO(sn).

Observe that we have not used the fact thatL is Gω-invariant at any point. However, we
will later use this requirement to restrict the possible candidates for the setL.

The following variant works even in the casem = 4, but requires a Schreier tree and so
does not have such good asymptotic properties.

Algorithm 4.4. TestSet(ω, L)

DefineLω = L and forω′ ∈ �, defineLω′ = L
g
ω whereωg = ω′. This is a valid definition

117https://doi.org/10.1112/S1461157000000164 Published online by Cambridge University Press

https://doi.org/10.1112/S1461157000000164


Algorithmic Recognition of Actions of2-Homogeneous Groups on Pairs

sinceL is Gω-invariant.

1. Chooseω1 ∈ Lω \ {ω}.
2. Chooseω2 ∈ Lω ∩ Lω1 \ {ω, ω1}.
3. LetX = Lω ∩ Lω1 ∩ Lω2.
4. If #X = 3 thenB := Lω ∩ Lω1 \ {ω2}
5. ElseB := X.
6. TestSolutionSubset(B).

The proof is similar to that of the previous version, and is omitted here. Note, however,
that whenm = 4, the solution subsetB constructed by this algorithm may not actually be
a translate ofA (since whenm = 4 andA is a solution subset,� \ A is also a solution
subset).

5. Using adjacent-point sets

We now use the results of the preceding sections to give an algorithm to handle one of
the classes of groups introduced at the end of Section2.

For a positive integerk we will use the term ‘partition ofk’ to mean a collection of
positive integers, possibly with repetitions, which sum tok. For a finite collectionS of
finite sets, define the functionp(S) = {#x

∣∣ x ∈ S} to give the partition of
∑

x∈S #x

corresponding to the sizes of the elements ofS (note that repetitions are not eliminated on
the right-hand side).

Recall thatZ is one of the classes of 2-homogeneous groups mentioned in Section2,
containing most of the almost simple 2-transitive groups and a few of the affine 2-transitive
groups. We will work with subclassesZi of Z. With each subclassZi we will associate two
functions. The functionMi will take a degreem, and give a partition of the number 2m−4.
The functionri will map the degreem to a natural number. We will choose the classes and
functions to satisfy two conditions for eachH in Zi . Let(H, 0) ∈ Zi have degreem = #0,
let w ∈ 0{2} and letS be the collection ofHw-orbits on0{2}. Then the following conditions
will hold:

(i) p({x ∈ S
∣∣ x ⊆ 30(w)\{{w}}}) = Mi(m) (so the partition of 2m−4 corresponding

to theHw-orbits contained in the adjacent-point set isMi(m));

(ii) #{L ∈ P(S \ {{w}}) ∣∣ p(L) = Mi(m)} 6 ri(m), whereP means ‘power set of’ (so
the total number of collections ofHw orbits whose lengths partition 2m − 4 in this
way is bounded byri(m)).

We will also ensure that the functionsMi andri are easily computable.
A procedure fulfilling Specification2.4for the classZi is as follows.

Algorithm 5.1. TestClassZi

1. Calculatem such that
(
m
2

) = #�.
2. If there are no groups inZi with degreem then exit withb := False.
3. Fix ω ∈ � and calculate the collectionS of Gω-orbits on�.
4. If #{L ∈ P(S \ {{w}}) ∣∣ p(L) = Mi(m)} 6 ri(m) then
5. For allL ∈ P(S \ {{w}}) with p(L) = Mi(m) do
6. TestSet(ω, L ∪ {ω}); if b = True then exit (with outputb, 0, η as returned

by TestSet).
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7. End for.
8. End if.
9. Exit with b := False.

The idea is that if(G, �) is the action on pairs of one of the groups inZi then the
conditions on the lengths of theGω-orbits making up30(ω) reduce the possibilities forL;
not only that, but we know that this restriction must limit us to at mostri(m) possibilities
for L—if there are more, we do not have to test any of them.

The setS can be formed inO(sn2) time, using the Schreier generators ofGω. The re-
mainder of the time taken by this procedure is dominated by theri(m) calls to the subroutine
TestSet, which has complexityO(sn).

Table1uses Theorem2.2and the classification of finite 2-transitive groups to classify all
the 2-homogeneous groups, giving the class (Ao, Ae, L or one of the classesZi) for each
type. It gives details of the orbit lengths for30(ω) and, for the groups of classZ, for which
TestSet is to be used, the functionri(m). For most types, the ‘Description’ column contains
a normal subgroup of the group in question, and each line represents several groups that
contain the group listed as a normal subgroup.

Note that the lengths of theGω-orbits making up30(ω) are only given for some of the
2-transitive groups and, where they are, the table actually gives the lengths of the orbits
of the two-point stabilizerGα,β in the 2-transitive action of the group. To obtain theGω-
orbit lengths for30(ω), replace the initial pair of ‘1’s by a single ‘1’, and then double the
lengths of all other orbits. This is because if theGα,β -orbits on0 are{α}, {β}, T1, . . . , Tk

then theG{α,β}-orbits that make up30({α, β}) are {{α, β}} and the orbits{{α, t} ∣∣ t ∈
Ti} ∪ {{β, tg} ∣∣ t ∈ Ti} whereg interchangesα andβ, andi runs from 1 tok. Such ag
exists because the groups under consideration are all 2-transitive. (Note thatg normalizes
Gα,β and soT g

i is always aGα,β -orbit.)
For certain affine groups, some orbits are denoted by the letterK. This can be read as

‘1, 1, divisors ofe summing toq − 2’. These orbits depend on what field automorphisms
are present in the group. The reason for the notation will be explained later, following
Proposition8.3.

The table is derived from a similar one in [3], with a couple of corrections and some
reorganisation. The functionsri were calculated by hand with assistance fromGAP [8]. Note
that, in order to calculate these functions, we need to know the sizes of all theGω orbits
on �, and not just the number of such orbits. In most cases it is relatively straightforward
to analyse the orbits ofGω on � = 0{2}, to give the results as shown. For type 10, the
alternating and symmetric groups, we can takeri(m) = 1 except whenm = 7. For type 11,
PSL(d, q), there are at most(q + 2)/4 suborbits of size 2(q − 1) and at most 4 of size
2q2(qd−2 − 1)/(q − 1). Type 16, classZ9 (symplectic groups overF2) is harder. In this
case the number of suborbits on pairs is at most nine (for any value ofd). The author is
unaware of any published version of this result;Appendix Acontains a calculation of the
lengths of these suborbits, from which it follows thatr9(m) = 1.

It will be seen from the table that the worst-case asymptotic size of any of theri(m) is
O(m2), and soTestClassZi has asymptotic complexityO(sn2), since we can also findS
in that time. It follows that we can handle the whole classZ = ⋃14

i=1 Zi in O(sn2) time.
In fact,ri is bounded by a constant for all classes exceptZ6, Z7 andZ8, so if we know the
Gω-orbits in advance we can handle all ofZ except these three subclasses inO(sn) time. In
Section6, we present anO(sn logn) algorithm to handle the classZ6. The algorithms for
classL (Section9) handle the remaining classes, in which the groups have socle PSL(2, q),
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Table 1: 2-homogeneous groups

(a) Affine Groups
Type Cl. Dimension Field size Description Gα,β -orbits ri(m)

1 Ae d > 2 q = 2e > 2 T . SL(d, q) K, qd − q

2 Ae d > 2, even q = 2e > 2 T . Sp(d, q) K, qd−1 − q,
multiples

of qd−1

3 Ae d = 6 q = 2e > 2 T . G2(q) K, q3 − q,
q5 − q3,
multiples ofq5

4 Z1 d > 2 q = 2 T . SL(d, 2) 1, 1, 2d − 2 1
d = 4 T .A7

5 Z2 d > 2, even q = 2 T . Sp(d,2) 1, 1, 2d−1 − 2, 1
d = 4 T .A6 2d − 2d−1

6 Z3 d = 6 q = 2 T . G2(2) 1, 1, 6, 24, 32 25
6a Z4 T . PSU(3,3) 1, 1, 6, 16, 35

16, 24
7 Ae d = 2 q = 2e > 2 T . SL(2, q) K,

multiples ofq
8 Ae d = 1 q = 2e > 2 G 6 A0L(1, q) K

9 Ao d > 1 p odd G 6 A0L(d, p)

(b) Almost Simple Groups
Type Class Description Degree (m) Gα,β -orbits ri(m)

10 Z5 Am, m > 5 m 1, 1,m − 2 2

11 Z6 PSL(d, q), d > 3 qd−1
q−1 1, 1,q − 1, q + 2

A7 (d = 4, q = 2) q2(
qd−2−1

q−1 )

12 Z7 PSL(2, q), q > 4 q + 1 1, 1,q − 1 or 1
2(q + 2)

Z8 1, 1, 1
2(q − 1), (q + 2)2

1
2(q − 1)

13 L Sz(q), q = 22d+1, d > 1 q2 + 1
14 L PSU(3, q), q > 2 q3 + 1
15 L R(q), q = 32d+1, d > 1 q3 + 1

P0L(2, 8) (q = 3)
16 Z9 Sp(2d, 2), d > 3 2d−1(2d ± 1) 1, 1, 1

2(2d−2 ± 1)

(2d−1 ∓ 1),
22(d−1)

17 Z10 Mk, k ∈ {11,12, k 1, 1,k − 2 1
22, 23,24}

Z11 M11 12 1, 1, 10 1
Z12 PSL(2, 11) 11 1, 1, 3, 6 8
Z13 HS 176 1, 1, 12, 72, 90 6
Z14 Co3 276 1, 1, 112, 162 1
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as these groups are of Lie rank one, just as are the other groups of classL. The algorithm
presented there runs in nearly linear time, so is asymptotically better than that presented
here. The main reason for including these groups in the classZ is that in practice one may
find the the simpler algorithm presented here more useful.

6. Improved algorithm forPSL(d, q)

For type 11, PSL(d, q), we have M11(m) = {2(q − 1),2q2(qd−2 − 1)/(q − 1)} where
m = (qd − 1)/(q − 1) and d > 3. There are at most 4 suborbits of the larger size,
2q2(qd−2 −1)/(q−1), but there can (depending on what extension of PSL(d, q) we have)
be up toO(q) suborbits of the smaller size, and so the algorithm given in the preceding
section has complexityO(snq), which (ifd = 3) can be as much asO(sn5/4). In this section
we present a variation on the theme of the preceding section that yields an algorithm for
PSL(d, q) for a fixed pair(d, q) wherem = (qd − 1)/(q − 1) and(d, q) 6= (3,2), whose
complexity isO(sn logn). (If (d, q) = (3,2) then the original method will have to be
used.) We use the disparity in the sizes of the two suborbits to avoid searching through all
the possibilities for the smaller suborbit.

Algorithm 6.1. TestPSL(d, q)

Input A set ofs generators for a transitive permutation group(G, �) of degree#� = n =(
m
2

)
, a pair of integers(d, q) whered > 3,q is a prime power,(d, q) 6= (3,2) andm =

(qd −1)/(q−1), a pointω ∈ �, and aGω-orbit O ⊂ � of size2(qd−2−1)/(q−1).

Output Eithera Gω-orbit O ′ of � of size2(q − 1) such that if� is G-isomorphic to0{2}
where(G, 0) is the2-transitive action of an extension ofPSL(d, q) onPG(d, q), and
O ⊂ 30(ω) then30(ω) = {ω} ∪ O ∪ O ′, or
False, meaning that it is not the case that� is G-isomorphic to0{2} where(G, 0) is
the2-transitive action of an extension ofPSL(d, q) onPG(d, q), andO ⊂ 30(ω).

1. LetL = O ∪ {ω}.
2. Form a Schreier tree of translates ofL, with edges labelled by the generator ofG that

was used to perform the translation. For each new translate formed, determine
the size of its intersection with each of the translates already found, and stop
when a pairL1, L2 of translates intersect in a set of size greater than 4, or when
bm/2c + 1 translates have been found.

3. If a pairL1, L2 were found with #(L1 ∩ L2) > 4 then
4. Letg ∈ G be such thatL1 = Lg (g will be obtained from the Schreier tree as a

word of lengthO(m) in the generators forG).
5. If there is precisely oneGωg -orbit O ′′ of size 2(q − 1) that intersectsL2 \ L1

non-trivially, then returnO ′ := O ′′g−1
; else returnFalse.

6. Else
7. ReturnFalse.
8. End if.
9. End.

The algorithm runs inO(sn) time.

Proof. Assuming that a solution setA exists withL ⊂ 3A(ω), every translate ofL is a
subset of the corresponding translate of3A(ω). So the same cases arise as in the proof
of correctness ofTestSet. Let L1 andL2 be distinct translates ofL, and31 and32 the
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corresponding translates of3A(ω). It could be the case that31 = 32, in which case the
intersection ofL1 andL2 must have size at least 1+2q2(qd−2−1)/(q−1)−2(q−1), which
is bigger than 4. If (as we supposed)L1 6= L2, thenL2 must have non-trivial intersection
with the missing suborbit (of the conjugateGωg of Gω) which forms31 \ L1, and in fact
all of L2 \ L1 must be contained within this suborbit. Thus the suborbitO ′ found by the
algorithm is correct in this case.

Another possibility is that the intersection of31 and32 has sizem. In this case exactly
half of L1 \ {ω1}, and also exactly half ofL2 \ {ω2}, will lie in the intersection ofL1 andL2
(hereωi is the image ofω under the transformation used to obtainLi from L). Therefore
L1 ∩ L2 has size at least 1+ q2(qd−2 − 1)/(q − 1) − (q − 1), which is greater than 4
since(d, q) 6= (3,2), and at most 1+ q2(qd−2 − 1)/(q − 1), and is contained within the
intersection31 ∩ 32.

In this case we study the geometry more closely to show thatL2 \ L1 will meet exactly
one suborbit of size 2(q −1), which will be the one needed to extendL1 to fill the whole of
31. Let V = Fq

d , with 0 = PG(V ). We have3i = 3A({αi, βi}) for someαi, βi ∈ 0 and
i = 1,2. Since #(31 ∩ 32) = m, we may assume thatα1 = α2, and that the three points
α1, β1 andβ2 are distinct. Letai, bi ∈ V be such thatαi = 〈ai〉 andβi = 〈bi〉 for i = 1,2.
Let Xi = {x ∈ 0 \ {αi, βi}

∣∣ x ⊂ 〈ai, bi〉} andYi = {y ∈ 0
∣∣ y 6⊂ 〈ai, bi〉}, so the orbits

of Gαi,βi
on0 are{αi}, {βi}, Xi andYi , and #Xi = q − 1, #Yi = q2(qd−2 − 1)/(q − 1).

Finally, we have thatLi = {{αi, βi}} ∪ ⋃
y∈Yi

{{αi, y}, {βi, y}}.
We consider theG{α1,β1}-orbits that meetL2 \ L1. There are two cases, depending on

whetherβ2 lies inX1 or inY1. If β2 ∈ X1 thenb2 ∈ 〈a1, b1〉, and in fact〈a1, b1〉 = 〈a2, b2〉,
soY1 = Y2. It follows that anyG{α1,β1}-orbit containing a pair{β2, y} for somey ∈ Y2
must have size at least that ofY1, sincey ∈ Y1 andβ2 /∈ Y1. The only otherG{α1,β1}-
orbit containing a pair inL2 \ L1 is the one that contains{α2, β2}, which is the suborbit⋃

x∈X1
{{α1, x}, {β1, x}} of size 2(q − 1) that equals31 \ L1, and is thus the suborbit that

we seek. As #Y1 > 2(q − 1), this is the onlyG{α1,β1}-orbit of size 2(q − 1) that meets
L2 \ L1.

On the other hand, ifβ2 ∈ Y1 then anyG{α1,β1}-orbit containing a pair{β2, y} for some
y ∈ Y2 must have size at least1

2#Y1, sinceβ2 ∈ Y1. The only other pairs inL2 \ L1 are
{α1, y} for y ∈ Y2 \ (Y1 ∪ {β1}); asY2 \Y1 = X1 ∪ {β1}, these pairs lie in theG{α1,β1}-orbit
of length 2(q − 1) that we are seeking. As12#Y1 > 2(q − 1) since(d, q) 6= (3,2), this is
the onlyG{α1,β1}-orbit of size 2(q − 1) that meetsL2 \ L1.

So we have seen how two of the possibilities for31 ∩ 32 enable us to identify the
suborbit that we need to extendL1 to the whole of31. The final possibility is that31 ∩32
has size 4, in which caseL1 ∩L2 has size at most 4. Observe, as inTestSet, that by the time
we have consideredbm/2c + 1 distinct translates ofL, we must have found two of them,
L1 andL2, say, whose intersection does not fall into this third category.

The algorithm can be implemented in much the same way asTestSet, and in the same
time bound.

Obviously, the intention is that ifTestPSL returns a suborbitO ′ then we formL =
O ∪ O ′ ∪ {ω} and pass it toTestSet, which also has complexityO(sn) and only needs to
be called once after each call toTestPSL.

To complete our discussion of groups of Type 11, we need to consider how many different
pairs(d, q) there can be, satisfying(qd − 1)/(q − 1) = m for a fixed value ofm. Note that
there can be more than one:e.g.,31 = (25 −1)/(2−1) = (53 −1)/(5−1). It is easy to see
that for a particular value ofd there can be at most one suitable value ofq, as the equation
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xd−1 + · · · + x + 1 = m has exactly one positive real solution. Asm > qd−1 > 2d−1, we
must haved − 1 6 logm (logarithm to base 2), so there areO(logm) possible values ofd
and soO(logm) pairs(d, q).

Since there are at most 4 suborbits of size 2(qd−2 − 1)/(q − 1) and so at most 4 calls
to TestPSL are needed for each pair(d, q), we can conclude that at mostO(logm) calls to
TestPSL, and accompanying calls toTestSet, are necessary to handle the classZ11, which
can therefore be handled inO(sn logn) time.

7. Affine groups of odd characteristic

We consider now the class of affine 2-homogeneous groups, and look for a procedure
satisfying Specification2.4, takingC to be this class. Thus0 is a vector spaceV of dimension
r over a prime fieldFp, so m = pr . ThenG is a subgroup of AGL(V ) = AGL(r, q)

containing the translation subgroupV . In this section we shall assume thatp > 2, and that
(G, 0) is a group from the classAo, the class of all 2-homogeneous affine groups defined
over finite fields of odd characteristic.

First, we give an important lemma, which applies for both odd and even primesp.

Lemma 7.1. Let G = AGL(r, p), andV = Fp
r . Letx1, . . . , xt be a collection of vectors

in V , such that the numbert of vectors is not divisible byp. Then there exists a vector
v ∈ V such that for allg ∈ G which leave the collection ofxi invariant, (i.e., there exists
a permutationπg of {1, . . . , t} such thatxg

i = xiπg for all i), thenvg = v.

Proof. Let v = t−1 ∑t
i=1 xi , sov is the average of the vectorsxi , which exists sincet and

p are coprime. Letg ∈ G leave the collection ofxi invariant (as described); then

t∑
i=1

x
g
i =

t∑
i=1

xi. (2)

Write g as a composite of a linear transformationh ∈ G0, followed by a translation by a
vectorz ∈ V , viz. xg = xh + z for all x ∈ V . Then, using the linearity ofh,

vg = t−1
( t∑

i=1

xi

)h

+ z

= t−1
t∑

i=1

xh
i + z

= t−1
t∑

i=1

(x
g
i − z) + z.

Then, by (2),

vg = t−1
t∑

i=1

xi − t−1tz + z = v.

We apply this here in the casep 6= 2, and later in the casep = 2.
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Corollary 7.2. Letp be an odd prime,G 6 AGL(r, p) andV = Fp
r . Suppose1 is a block

of imprimitivity of (G, V {2}) of size not divisible byp. Then there existsv ∈ V such that
the setwise stabilizerG{1} of 1 is a subgroup ofGv.

Proof. Write 1 = {{ui, vi}
∣∣ 1 6 i 6 #1}. In Lemma7.1, taket = 2#1 andx2i−1 = ui ,

x2i = vi .

In the following theorem we make use of the one-to-one inclusion preserving correspon-
dence between blocks of imprimitivity containing a pointω and subgroups containing the
stabilizerGω (see [4, Theorem 1.5A], for example).

Theorem 7.3. Letp be an odd prime,G 6 AGL(r, p) andV = Fp
r , and suppose thatG is

transitive onV {2}. Let1 be a maximal block of(G, V {2}) subject to#1 not being divisible
byp. ThenG{1} = Gv for some vectorv ∈ V , and#1 = (pr − 1)/2, so the block system
1G has sizepr .

Proof. Fix ω ∈ 1, so Gω 6 G{1}. By Corollary7.2, there isv ∈ V such thatG{1} 6 Gv.
ThenGω 6 Gv and soωGv is a block of(G, V {2}) that contains1 and has size

|Gv : Gω| = |G : Gω|/|G : Gv| = (pr − 1)/2,

sinceG is transitive on bothV {2} andV . This is not divisible byp, so by maximality of
1, we have1 = ωGv , and soG{1} = Gv. By transitivity, the block system1G has size
#�/#1 = pr .

Since transitive actions of the same group with identical point stabilizers are isomorphic,
Theorem7.3 suggests the following approach to Specification2.4 for the classAo of 2-
homogeneous affine groups defined over fields of odd characteristic.

Algorithm 7.4. AffineFindBlocksOdd

1. b := False.
2. If there does not exist an integerd and odd primep such that #� = n = (

m
2

)
where

m = pd then Exit.
3. SetB to be a system of blocks of imprimitivity for(G, �) where the blocks have size

not divisible byp, and are maximal in this respect.
4. If #B 6= m then Exit.
5. Decide whether the group actions(G, �) and(G, B{2}) are isomorphic, and if so, set

b := True and find a solution(0, η).
6. Exit.

The block systemB can be found by using an adaptation of an algorithm of Schönert and
Seress [7]. The algorithm given in [7] tests deterministically inO(n log3 #G + ns log #G)

time whether a transitive group is primitive by finding one minimal block; the authors
mention the possibility of extending it to find all minimal blocks, which enables us to find
B by making a series of at most logn calls to this algorithm.

It is claimed in [7] that the extended algorithm runs in the same deterministic, nearly
linear, time bound as the original algorithm, which is true if the orbits ofGω are known in
advance, or if an explicitO(log #G) bound on the length of subgroup chains inG is known
in advance (otherwise every block found has to be checked, which takesO(sn) time, and
there can beO(n) blocks to test). In this case we know that ifG is a subgroup of the affine
group AGL(d, p) then #G 6 pd(d+1) so log #G 6 1

4(logn + 2) logn. As a consequence,
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we have an explicit bound on the length of a chain of subgroups ofGω, and so we obtain
a deterministic nearly linear time algorithm, even in the case where we do not know the
orbits ofGω in advance.

Similar techniques can be used to improve the calculation of Schreier trees. The cube-
doubling routine from [1] normally builds a Schreier tree of depth at most 2 log #G in
O(sn + n log2 #G) time, so now the Schreier tree can be assumed to have depth at most
log2 n, and can be built inO(sn + n log4 n) time. As before, if this bound for log #G is
exceeded during the calculation, we can stop, knowing that the group cannot be affine acting
on pairs.

(In practical implementations, the Schreier tree would normally be calculated by the
straightforward breadth-first search method, which is quick and usually yields a much
shallower tree than theO(n) worst case.)

A system of look-up tables will enable us to compute efficiently inB, and thus inB{2}.
To test whether the actions are isomorphic, we first check that(G, B{2}) is transitive, and
then search for a pointω′ in B{2} that is fixed byGω for some pointω ∈ �. If ω ′ exists then
the mapω′g 7→ ωg determines aG-isomorphism. We use a generating set forGω to find
ω′, and the time taken isO(tn) wheret is the size of the generating set forGω. If no better
generating set is available, then thesn Schreier generators can be calculated one by one,
and their fixed points inB{2} found; this can be done inO(sn2) time if a whole transversal
is explicitly calculated and stored in a preprocessing step.

A better technique would be to calculate a sufficiently large random subset of the Schreier
generators, such that the orbits of the subgroupH of Gω generated by this set do not change
with the addition of, say, one or two more random Schreier generators, and chooseω′ in
B{2} to be fixed by this subgroupH . If no suchω′ exists, then the two actions cannot be
isomorphic; if such anω′ does exist, we can then find the isomorphismη explicitly by
doing an orbit calculation on(G, �), starting atω, and, as each new point is discovered,
calculating the corresponding point inB{2} from those already calculated. This will take
O(sn) time.

From this isomorphism we can construct a set which should be (ifω′ is in fact in-
variant under the whole ofGω) a solution set, and test this set using Algorithm3.5
(TestSolutionSubset), again inO(sn) time. If this test is failed then we go back and calcu-
late more Schreier generators, thus enlarging the subgroupH of Gω, and try again. This
technique therefore gives a randomized algorithm that cannot give a wrong answer, and al-
though it is not easy to give a useful estimate on the expected number of Schreier generators
needed, it will lead to a practical Las Vegas solution, most of which runs in nearly linear
time.

It is a theme of the rest of this paper to show that if the orbits ofGω are known in
advance, then there is a deterministic nearly linear algorithm available for Specification2.4
for the appropriate classC. Although there seems to be no obvious way to construct an
isomorphism between� andB{2} in this time bound if just these orbits are available, we
can do so (by the above method) if a suitably small subset ofGω is available that generates
a subgroup that has the same orbits on� asGω does. In fact, we only need a subgroup of
Gω that has the same fixed points asGω, and it is easy to see how this may be constructed
from the orbits ofGω in nearly linear time by iterating over the height of a subgroup chain
in such a group. At each stage we choose a pointω′ that is not moved by the subgroup so
far constructed but is moved byGω, and look at the action of the Schreier generators onω′,
until one is found that moves it. Of course, there is a certain pointlessness to this argument
(how did we obtain the orbits ofGω in the first place?) but it has been included here for
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completeness, to show that there is a deterministic nearly linear algorithm for this case if
only the orbits ofGω are known in advance.

Returning to the situation where no extra information aboutGω or its orbits is known in
advance, note that if Algorithm3.5could be adapted to calculate (in nearly linear time) an
element ofGω\H when it failed, then we would have a deterministic nearly linear algorithm;
alternatively, if a suitably fast technique for producing genuinely random Schreier generators
were available, then we would have a nearly linear Las Vegas algorithm. Finally, the Monte-
Carlo method in [1] could be used to provide a strong generating set with high probability,
and this can be used to obtain generators forGω. As explained earlier, the log #G terms in
the analysis of this algorithm can be improved to log2 n in this situation using the known
bound on the size of the groups being sought. The technique outlined above can then be
used to convert this into a true nearly linear Las Vegas algorithm, albeit not in a way that
would actually be used in practice unless a strong generating set were needed for other
reasons.

ThereforeAffineFindBlocksOdd can be implemented deterministically inO(sn2) time,
deterministically in nearly linear time if the orbits ofGω are known in advance, or in nearly
linear Las Vegas time.

This concludes the analysis in the casep > 2 (classAo), so we now consider the case
p = 2 (classAe).

8. Affine groups of characteristic2

We consider now the classAe which contains most of the affine 2-homogeneous groups
defined over fields of characteristic 2, and look for a procedure satisfying Specification2.4,
takingC to be this class. The precise definition of which groups lie in this class is contained
in Table1; we explain below why the class has been defined in this way.

We assume that(G, �) is the action on pairs of a permutation group(G, 0) that lies
in the classAe. From Table1, there are well-defined parameters (well-defined because
the different rows of Table1 are disjoint)p, q, d, e such that0 is a vector spaceV of
dimensiond over the fieldFq , wherep is prime (in factp = 2 in this section) andq = pe,
som = #0 = qd = pde. ThenG will be a subgroup of A0L(V ) = A0L(d, q) containing
the translation subgroupV . ThereforeG0 is a semilinear group overFq . Note that, in
writing our algorithm, we cannot assume knowledge of these parameters: since we will
havem = qd = pde we will very quickly be able to identifyp and the productde, but
some work will be needed to determined ande (and henceq) from the productde.

Some results, principally Proposition8.1 and Theorem8.2, will require only thatG is
a subgroup of AGL(de, p), and hence thatG0 is a linear group over the prime fieldFp

(observe that A0L(d, q) can always be regarded as a subgroup of A0L(de, p), and that
A0L(de, p) = AGL(de, p) asp is a prime). Later results will require thatG be defined
as a subgroup of A0L(d, q) whereq is strictly larger than 2. The reader will observe from
Table1 that in order to enable us to make this restriction, the few groups for which this is
not the case have been moved from classAe to the classZ. In Section5 we took advantage
of the relatively small number of suborbits that these groups have to give an algorithm for
them based on entirely different methods.

Our strategy can be outlined as follows: we first show that if we know the action on
orderedpairs, we can apply the same techniques as in the odd characteristic case to find a
block system on which (ifG really is the action on pairs of a group inAe) G acts as it must
on 0. We then study the suborbits of the actions on pairs of groups in the different rows
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of Table1, and give a means of identifying candidates for the stabilizer of an ordered pair
(which must have index 2 in the stabilizer of an unordered pair,i.e.,the stabilizer of a point
in �).

Recall thatV (2) denotes the set oforderedpairs of distinct elements ofV .

Proposition 8.1. Let G 6 AGL(r, p) andV = Fp
r . Suppose1 is a block of(G, V (2)) of

size not divisible byp. Then there existsv ∈ V such thatG{1} 6 Gv.

Proof. Write 1 = {(ui, vi)
∣∣ 1 6 i 6 #1}. In Lemma7.1, taket = #1 andxi = ui for

i = 1, . . . , t.

Theorem 8.2. LetG 6 AGL(r, p) andV = Fp
r , and suppose thatG is transitive onV (2).

Let 1 be a maximal block of(G, V (2)) subject to#1 not being divisible byp. Then the
setwise stabilizerG{1} of 1 is Gv for some vectorv ∈ V , and#1 = pr − 1, so the block
system1G has sizepr .

Proof. This follows from Proposition8.1in much the same way that Theorem7.3follows
from Corollary7.2.

Recall from Lemma2.1 that if (G, 0) is 2-homogeneous and #G is divisible by 2 then
(G, 0) is 2-transitive. It follows from Theorem8.2that if we can find the action on ordered
pairs, then the techniques applied in the odd characteristic case will yield a solution for the
class of affine groups defined over fields of characteristic 2 as well.

As G is 2-homogeneous and #G is divisible by 2, the stabilizerGα,β of an ordered pair
is always a subgroup of index 2 in the stabilizerG{α,β} of the corresponding unordered pair.
So the problem of finding possibilities for the action on ordered pairs, given the action on
unordered pairs, reduces to that of finding relevant subgroups of index 2 inGω.

We now make use of the fact that groups inAe are defined over fieldslarger than the
prime fieldF2. Having fixedω ∈ �, we find aGω-orbit 1 ⊆ � such that the stabilizer
in Gω of any point in1 must be contained in the ordered-pair stabilizer in which we are
interested. This will enable us to construct the action ofG on cosets ofGα,β .

Proposition 8.3. LetG be a subgroup ofA0L(d, q) containing the translation subgroup,
whereq = 2e. LetV = Fq

d , with G acting naturally onV . Letω = {v1, v2} ∈ V {2}, and
let H = Gv1,v2. ThenH is a direct factor ofGω of index2. Also, there is aGω-invariant
subsetK ofV of sizeq such that the group induced byH onK{2} is cyclic of orderf where
f | e. Furthermore, ife > 1 thenK{2} contains aGω-orbit of size2f .

This is the reason for the ‘K’ notation in Table1.

Proof. Without loss,ω = {0, v}. ThenH = G0,v, and in factGω = H × 〈tv〉 since〈tv〉 E
Gω, andtv (the translation mapx 7→ x + v onV ) has order 2. DefineK = {αv

∣∣ α ∈ Fq}.
ThenK is invariant underH and undertv (as(αv)tv = (α + 1)v), so it is invariant under
Gω. LetN = H ∩GL(d, q). ThenN acts trivially onK since it acts linearly onV and fixes
a generator,v, of the one-dimensional subspaceK of V . Therefore,N lies in the kernel of
the action induced byH onK{2}.

We know that0L(d, q) is the semidirect product of GL(d, q) by a cyclic group of order
e generated by the Frobenius automorphismσ , soH/N is cyclic of order dividinge. Thus
H induces a cyclic groupC onK (and hence onK{2}) of orderf , say, wheref | e, andC

acts onK as a group of field automorphisms. Letα generate the multiplicative group ofFq ,
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and letg ∈ C. Then(αr)g = (αg)r for any integerr, and so ifC does not act faithfully on
the orbitX containingαv, then it cannot act faithfully onK, which would contradict the
choice ofC. As C is abelian and acts faithfully and transitively onX, it must act regularly
onX. ThereforeX is an orbit ofC onK of sizef . The required orbit ofGω acting on pairs
is now{{z, x} ∣∣ z ∈ {0, v}, x ∈ X}, as this has size 2f except whenf = e = 1.

If (G, V ) lies inAe, and so can be defined over a field of size 2e wheree > 1, and if we
knowK{2}, we can use this proposition to find a set of at most three subgroups of index 2
in Gω, one of which is the desired subgroupH . To do this, we first take aGω-orbit Y in
K{2} of maximum size; this size should be even, and we setf = #Y/2. By the above,Gω

should induce a regular group isomorphic toCf × C2 on Y . The desired subgroup (if it
exists) will be the pre-image inGω of one of the cyclic subgroups of sizef of this group.
(The number of such cyclic subgroups depends onf : it is one if f is odd, two if f is
divisible by 4, and three iff ≡ 2 mod 4.) The orbit systems of these cyclic subgroups are
systems of imprimitivity ofGω, and can be found quickly (or shown not to exist) using the
regularity and cyclicity conditions; the desired subgroup is the kernel of the action ofGω

on one of these block systems. We summarise this as an explicit procedure to find suitable
block systems or show that they do not exist.

1. LetY be aGω-orbit in K{2} of maximum size.
2. If #Y is not divisible by 2 then Exit.
3. Else Setf := #Y/2.
4. End if.
5. Fix y ∈ Y , and find a transversalT for Gω,y in Gω. (N.B. If (as hoped)YGω is

regular, then the images ofT are the elements ofYGω .)
6. LetZ be the set of orbitsy〈t〉 ast ranges over those elements ofT that induce elements

of orderf onY .
7. Check that the number of sets inZ is correct (one iff is odd, two iff is divisible by

4, and three iff ≡ 2 mod 4).
8. Each set inZ will be a block forGω, and the corresponding block systems are the

ones required.

Much of the calculation can be carried out in the group induced byGω on Y , which is of
degreef = O(logq). If a suitable regularity test is available, it might be worthwhile to
check that this group is regular before calculating the orbits inZ.

The small degree of the group(Gω, Y ) means that this calculation is cheap: ifs generators
are given forGω then the above procedure has complexityO((s + f )f ), as O(sf )time is
required to form the induced action, and subsequent calculations can all be done inO(f 2)

time. If we use Schreier generators forGω, the complexity of the procedure becomes
O(sn logn), where the timing is now dominated by the calculation of the induced action.

Having found aGω-block X (hereX is one of the elements ofZ in the preceding
paragraph) whose stabilizer inGω is a candidate forH , the stabilizer of the ordered pair
corresponding to the (as yet hypothetical) unordered pairω, it is now an easy matter to
construct the action ofG on right cosets ofH in G as an action on the cartesian product of
� and a setC = {True, False} of size 2. Fix a transversalT for Gω ∈ G. For a generator
gi of G, and a point(ω′, x), the image(ω′, x)gi is given by

(ω′, x)gi =
{

(ω′g, x), if Xt(ω′)gt (ω′g)−1 = X

(ω′g, ¬x), if Xt(ω′)gt (ω′g)−1 6= X
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wheret (ω′) is the element ofT mappingω toω′. Perform this calculation for all generators
and points to get the images of the generators in the new group. The transversalT can be
stored in a Schreier tree if desired; testing whetherXt(ω′)gt (ω′g)−1 = X can be done by
examining just one point ofX, since the translating element lies inGω andX is a block
for Gω. Using a look-up table to check membership ofX, the whole procedure can be
completed inO(sn) time if T is stored explicitly, orO(snl) time if T is stored in a Schreier
tree of depthl.

This action can now be tested as described earlier: we find a maximal block in it of
size not divisible by 2, and if the corresponding block system has the right size, we run an
isomorphism test to see if we have a solution. If not, we repeat for eachX ∈ Z, and if no
solution is found over all these tests, or if we failed when trying to calculateX, we may
conclude that no solution exists for groups in the classAe of affine groups defined over
fields of characteristic 2 where the field is larger thanF2, and whereK{2} is known.

We now turn to the problem of identifyingK{2}.

Lemma 8.4. Letx, e be positive integers andq = 2e. Then

(i) if e > 1 and 1
2q divides4e then2 6 e 6 4;

(ii) if e > 1 andx > 2 thenqx − q > 4e(x + 3);

(iii) if e = 1 andx > 4 thenqx − q > 4x + 4.

Proof. The proof is straightforward, and is omitted here.

Fix a pointω ∈ �. Given a positive integere, define the subsetQe of � by

Qe = {ω′ ∈ �
∣∣ #(ω′Gω) divides 2e},

that is, the union of allGω-orbits of size dividing 2e.

Proposition 8.5. Suppose(G, V ) is a group of one of the types 1 to 8 in Table1, and let
� = V {2}. Letq, e andd be the corresponding parameters from this table, and letr = de,
som = #V = 2r . Then one of the following holds:

(i) the setQe has size2e−1(2e − 1);

(ii) G = ASL(2, 4);
(iii) G = A6L(2, 4) = ASL(2, 4) : 2; or

(iv) ASL(2, 16)6 G 6 A6L(2, 16)= ASL(2, 16) : 4.

Furthermore, in the first case,e is the largest integer dividingr such thatQe has size
2e−1(2e − 1). In the second case, the largest integere∗ dividing r such thatQe∗ has size
2e∗−1(2e∗ − 1) is 4. In the third and fourth cases there is no such integere∗.

Proof. Definee∗ to be the largest integer dividingr such thatQe∗ has size 2e
∗−1(2e∗ − 1),

or 0 if no such integer exists. We suppose thate∗ 6= e, and show that then eithere∗ = 0 and
one of the third and fourth cases arises, or thate∗ = 4, andG = ASL(2, 4).

From Proposition8.3, we know thatQe containsK{2}. Therefore (under our assumption
thate∗ 6= e), there is an orbitT of Gω on� of size dividing 2r, and which is not contained
in K{2}, since eithere∗ > e, or Qe strictly containsK{2}. Clearly, therefore, it is impossible
for G to be of type 8 under our assumption, as for that typeK = V . If U is an orbit ofGα,β

on V such that pairs inT contain elements ofU , then 1
2#U | #T , and #T | 2e∗ | 2r by

hypothesis. It follows that ifU is an orbit ofGω (or Gα,β ) on V, andU is of minimal size
subject to not being contained inK, then1

2#U 6 2r.
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From the lists ofGα,β orbit lengths in Table1, and Lemma8.4, it is immediate that if
G is not of type 7, thene = 1 andd is 3, 4 or (for types 6, 6a) 6. It is straightforward to
check manually or byGAP [8] that in all these remaining cases,e∗ = e = 1. Similarly, it
is immediate from Table1 and Lemma8.4 that if G is of type 7 (sod = 2) thene = 2, 3
or 4; again, it is straightforward to check that in this case ife = 3 then alsoe∗ = 3.

The suborbit lengths of the groups containing ASL(2, 4) and of some of those containing
ASL(2, 16) are displayed in Table2, with the value ofe∗. The table was computed using
GAP [8].

Table 2: Suborbit lengths of exceptions in Proposition8.5
Group Number ofGω-orbits on� = V {2} e∗

Lengths: 1 2 4 6 8 12 16 24
ASL(2, 4) 2 11 12 4
ASL(2, 4) : 2 2 1 5 4 4 0
AGL(2, 4) 2 2 3 4 2
A0L(2, 4) 2 1 1 1 4 2

Lengths: 1 2 4 8 16 32 64 128
ASL(2, 16) 8 56 225 960 0
ASL(2, 16) : 2 4 10 24 9 108 48 456 0
ASL(2, 16) : 4 2 1 5 13 4 58 22 228 0

Lengths: 1 2 24 40 96 160
ASL(2, 16) : 3 8 56 75 320 4
ASL(2, 16) : 5 8 56 45 192 4

The table includes groups isomorphic to each of the three subgroups of A0L(2, 16)which
contain ASL(2, 16) as a maximal proper subgroup. It also includes groups isomorphic
to each subgroup of A0L(2, 16) in which the index of ASL(2, 16) divides 4. Suppose
G 6 A0L(2, 16), but Gis not isomorphic to a group in the table. Then (as| A0L(2, 16) :
ASL(2, 16)| = 60),|G : ASL(2, 16)| must be divisible by 3 or 5, and soG must contain
a subgroupH isomorphic to one of the groups in the last two rows of the table. The group
H has a correcte∗ of 4, and since the suborbits ofG are unions of suborbits ofH , yetK
remains the same, this means thate∗ for G also has the correct value, 4.

The claimed results now follow from this discussion and the entries in the table.

Let Ax be the class of groups consisting only of ASL(2, 4), ASL(2, 4) : 2, and those
groupsG with ASL(2, 16) 6 G 6 ASL(2, 16) : 4. Let A∗

e = Ae \ Ax . We now have a
procedure for the classA∗

e .

1. If there does not exist an integerr such that #� = n = (
m
2

)
wherem = 2r , then

conclude that(G, �) is not a group fromA∗
e acting on pairs.

2. Fix ω ∈ � and calculate theGω-orbits on�.
3. Calculate the largest integere∗ dividing r and such thatQe∗ has size 2e

∗−1(2e∗ − 1).
4. If e∗ > 1 then apply previously described techniques, assuming thatK{2} = Qe∗

(and therefore thate = e∗ andd = r/e).
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5. Else conclude that(G, �) is not a group fromA∗
e acting on pairs.

6. End if.

Observe that if(G, �) is one of the affine groups inZ (i.e.,an affine group defined over
F2) acting on pairs, then the above test will givee∗ = 1. This may be used to speed up an
implementation of the procedure for groups of classZ.

The classAx , which contains only five groups, need not detain us long. The simplest
technique here is to divide it into five classes, each containing one group. The first test in
each case will be to check that there are the correct number of suborbits of each length, by
comparison with Table2. If that test is passed, we test a series of candidates for a largest
Gω-orbit lying in K{2}, using information about theGω-orbit lengths inK{2}. For example,
for ASL(2, 16) : 4, these orbits have length 8, and we test two of theGω-orbits of this
length, since twelve out of the thirteenGω-orbits of length 8 lie inK{2}. In the other cases
the number of orbits to be tested is between one and ten. Each candidateGω-orbit is tested
in the same way that a largestGω orbit in K{2} is tested in the procedure forA∗

e .
As in the odd characteristic case, this algorithm can be implemented deterministically in

O(sn2) time, or in nearly linear Monte-Carlo time. The analysis is the same as for that case,
except that we have to find relevant subgroups ofGω of index 2, which takesO(sn logn)

time, and that we get up to three actions of degree 2n, instead of just one of degreen, to
which to apply the block-finding routine.

9. The remaining almost simple groups

The classL consists of the groups(G, 0) that contain a normal subgroupS isomorphic
to one of the simple groups PSU(3, q) (for q a prime power greater than 2) (acting on
isotropic points), Sz(q) (for q an odd power of 2 greater than 2) or R(q) (for q an odd
power of 3 greater than 3) as a normal subgroup, and the degreem is q3 + 1, q2 + 1 or
q3 + 1 respectively. We also include the non-simple Ree group, R(3) ∼= P0L(2, 8) acting
on 28 points in the classL. For the moment, however, we shall ignore it; it will be discussed
at the end of this section.

The groups inL are groups of Lie type, and all have Lie rank one; the other family of
groups of Lie rank one is PSL(2, q), for q a prime power greater than 3, acting on projective
points, which has many similarities to these families, but sufficient differences for us to treat
it in the classZ. However the results of this section apply to this family of groups as well.
In what follows,L′ will be used to denote the class of 2-transitive groups that either lie in
L, or whose socle is PSL(2, q) for some prime powerq > 3.

We refer the reader to [4, pp. 248–252] for a brief description of these groups. The
notation here follows that of [4] in most respects.

We consider the groupsS, which are themselves all 2-transitive. The two-point stabilizer
Sα,β = H is cyclic of order(q2 − 1)/d for PSU(3, q), whered is (3, q + 1), and cyclic
of orderq − 1 for the other cases. The stabilizerSα is the semidirect product of a Sylow
p-subgroupT of S by H (wherep is the prime dividingq), andT acts regularly on0 \ {α}
so #0 = #T + 1.

Proposition 9.1. Let(G, 0) be a member of the classL′. Letα, β ∈ 0. LetX be a subgroup
of G, withGα,β 6 X. Suppose|X : Gα,β | is a power of the unique primep dividingm− 1.
Then eitherX is contained inGα or Gβ , or p = 2 andX = G{α,β}.
Proof. We shall assume thatX 
 Gα, X 
 Gβ andX 6= G{α,β}, and seek a contradiction.
Let c = |X : Gα,β |, so certainlyc > 1. LetY = X ∩ S where as beforeS is the socle ofG.
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SinceS is 2-transitive,G = Gα,βS. ThereforeG = XS and by the second isomorphism
theorem,|X : Y | = |XS : S|, and so|X : Y | = |Gα,β : H | and therefore|Y : H | = c. By
the modular law,Gα,β(S ∩ X) = Gα,βS ∩ X, sinceX > Gα,β , so sinceG = Gα,βS we
haveGα,βY = X. ThereforeY 
 Sα, Y 
 Sβ , andY 6= S{α,β}. SinceNS(H) = S{α,β}, it
follows thatH is not normal inY .

Recall thatSα is the extension of a Sylowp-subgroupT (of sizem− 1) of S by H . This
means thatNS(T ) = Sα, and so there is precisely one Sylowp-subgroup ofS fixing each
point of0; as T acts regularly on0 \ {α}, the intersection of any two Sylowp-subgroups
of S is trivial.

Let P be a Sylowp-subgroup ofY , so #P = c since #H is not divisible byp. We
also getP ∩ H = 1 since the orders are coprime, and thereforeY = PH . By Sylow’s
Theorem,P is contained in a Sylowp-subgroup ofS, and soP has a unique fixed pointγ
and acts semi-regularly on0 \ {γ }. SinceY 
 Sα andY 
 Sβ , γ /∈ {α, β}. As P 6 Yγ

andY = PH , we get thatY = Yγ H and soH is transitive on theY -orbit γ Y . That is,γ Y

is anH -orbit on0 \ {α, β}. The possible lengths of theH -orbits on0 \ {α, β} areq − 1,
(q − 1)/2,q2 − 1 and(q2 − 1)/3 (see, for example, [3, Table 1]).

We also know that #γ Y ≡ 1 modc, sinceP acts semi-regularly onγ Y \ {γ }. Now c

andq are both powers of the primep. If q − 1 ≡ 1 modc, or if q2 − 1 ≡ 1 modc, then
p = c = 2. If (q − 1)/2 ≡ 1 modc, thenp = c = 3. If (q2 − 1)/3 ≡ 1 modc, thenp = 2
andc is 2 or 4. Thus 26 c 6 4. Howeverc cannot be 2 as that would imply thatH C Y ,
which we know contradicts our hypothesis.

Therefore either (case 1)p = c = 3 andS = R(q) (because R(q) is the only possibility
with anH -orbit of length(q − 1)/2, or (case 2)p = 2, c = 4 andS = PSU(3, q) where
3 | q + 1 (as this is the only possibility with anH -orbit of length(q2 − 1)/3).

Now #(α, β)Y = c and by hypothesisY does not fix eitherα or β. Thus in case 1 we
must have #αY = #βY = 3. However, theY -orbits are unions ofH -orbits, and theH -orbits
all have lengthq − 1 except{α}, {β} and one orbit of length(q − 1)/2. Sinceq is at least
27, this clearly leads to a contradiction. Similarly for case 2: #αY and #βY must each be
either 2 or 4. TheH -orbits all have length(q − 1)/3 except for{α}, {β} and one orbit of
lengthq − 1. Since the situationαY = βY = {α, β} gives #(α, β)Y = 2, rather than 4, this
cannot happen unless(q2 − 1)/3 is 1, 2 or 3, all of which contradict the choice ofq.

Thus we have reached a contradiction, and so conclude that eitherX is contained within
Gα or Gβ , or p = 2 andX = G{α,β}.

Recall that0(2) is the set of ordered pairs of distinct elements of0.

Corollary 9.2. Let (G, 0) be a member of the classL′. Fix α, β ∈ 0. Then{(α, x)
∣∣ x ∈

0 \ {α}} and{(x, β)
∣∣ x ∈ 0 \ {β}} are blocks of imprimitivity in the action ofG on0(2);

they are maximal among blocks in this action containing(α, β) and of size dividingm − 1;
furthermore they are the only such maximal blocks in this action apart from(in the case
where2 | m − 1) the block{(α, β), (β, α)}.
Proof. This is an application of the one-to-one correspondence between blocks of imprim-
itivity containing(α, β) and subgroups containingGα,β (see [4, Theorem 1.5A], for exam-
ple). Maximality of the blocks given is a consequence merely of their size; the remainder
of the result follows from Proposition9.1.

Observation 9.3. SupposeD is one of the two blocks of imprimitivity of0(2) in Corol-
lary 9.2. Then the subsetA = {{x, y} ∣∣ (x, y) ∈ D} of 0{2} is a solution subset.
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We can perform the projection from0(2) to 0{2} even if we only know the stabilizer of
a point in0(2) as a subgroup of index 2 in the stabilizer of a point in0{2}, and do not know
the structure of either set as a set of pairs. In particular, it is straightforward to perform this
projection if we have constructed the supposed action on0(2) from a subgroup of index 2
of Gω, in the manner indicated in Section8.

This means that given a subgroupJ of index 2 inGω, we can solve Specification2.4for
the classL under the added condition thatJ = Gα,β whereω = {α, β} as follows:

1. Form the action on the set1 of cosets ofJ in G.
2. Find a block of imprimitivityD that is of size dividingm − 1, contains the trivial

cosetJ and does not contain the cosetGω \ J , and is maximal among such
blocks.

3. If #D = m − 1 then
4. ProjectD from 1 back onto� (by the mapJx 7→ ωx), and test to see whether

the resulting set is a solution subset.
5. If we find a solution subset, returnb := True and 0, η calculated from the

solution subset. Otherwise, returnb := False.
6. Else
7. Returnb := False;
8. End if;
9. End.

Obviously, if we have several candidatesJ for Gα,β we can test each one in turn by the
above procedure.

The subgroupGα,β is a subgroup of index 2 in the stabilizerGω of a point in the input
action. We can find the subgroups of index 2 using the following result, whose proof can be
found inAppendix B. Recall that a base for a permutation group is a subset of the domain
such that the point-wise stabilizer of the subset is trivial. (Many authors regard a base as an
ordered set; however, that will not be necessary for present purposes.)

Theorem 9.4. Let (G, 0) lie in L′. Let ω ∈ � = 0{2} and letR be a largestGω-orbit.
Let λ ∈ R. ThenGω,λ has size at most2, Gω acts faithfully onR and eitherR ∪ {ω} is
the adjacent-point set30(ω) or there are at most2 logp(m − 1) elementsλ′ of R such that
{ω, λ, λ′} is not a base forG (herep is the prime dividingm − 1).

Proof. This is reasonably straightforward to show; it is proved inAppendix B.

Note that for groups inL, and indeed some of the groups whose socle is PSL(2, q), this
can be strengthened to the effect thatGω,λ is actually trivial. This also follows from results
in Appendix B.

This result enables us to find the action ofGω on R, and find a subset ofR of size at
most 2 which is a base forGω. We can then enumerate the elements ofGω by traversing a
Cayley graph, identifying the vertices of the graph with the images of the base. This enables
us to form the subgroupG2

ω as a block in the regular action ofGω. The index ofG2
ω in Gω

is 2, 4 or 8, sinceGω is an extension of a cyclic groupH by a group of order 2, and then by
a cyclic group of field automorphisms. We can factor outG2

ω in our regular action ofGω,
inducing an elementary abelian action ofGω on 2, 4 or 8 points. The 1, 3 or 7 subgroups of
index 2 in this induced group yield the subgroups ofGω of index 2. As there are at most 7
of these, using the previously described algorithm to check all possible subgroups of index
2 is feasible.
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We now give an explicit algorithm to perform these tasks.

1. If m − 1 is not the power of a primep then Exit.
2. Fix ω ∈ �, and setS to be the set ofGω-orbits on�.
3. SetR to be an element ofS of maximum size.
4. Test whether the setR ∪ {ω} is an adjacent-point set30(ω) usingTestSet.
5. Form the group induced byGω onR.
6. Fix λ ∈ R. CalculateGω,λ as a group of permutations ofR; if it has size larger than

2 then Exit, else if it is non-trivial, findλ′ ∈ R such thatb = {λ, λ′} is a base
for Gω; otherwise takeb = {λ} as a base forGω.

7. Use the known base forGω to enumerate all the elements ofGω as images of the
baseb and as permutations ofR.

8. Calculate the subgroupM of Gω generated by the elementsg2 asg runs overGω, as
a subset containingb of the set of images ofb; this is a block in the action of
Gω on base-images.

9. If x = #Gω/#M ∈ {2, 4, 8}and there arex−1 blocks of size #Gω/2 that containM in
the action ofGω on base-images, then return the block systems corresponding
to these blocks.

10. Else conclude that(G, �) is not the action on pairs of a group inL′.
11. End if.

We form the action ofGω on R as follows. Fixλ ∈ R and chooseλ′ ∈ R \ {λ};
we will assume that{λ, λ′} is a base forGω. By Theorem9.4 we may have to run the
algorithmO(logm) times with different values forλ′ before we are certain that if the group
is the action on pairs of a group fromL′ then we have at some point considered a base.
As #R = O(m logm), there areO(m2 log2 m) possible images of the 2-element base, so
in O(m2 log2 m) space andO(sln) time (wherel is the depth of a Schreier tree) we can
evaluate each of theO(sn) Schreier generators forGω on the points of the (assumed) base
and decide if there are more than 2#R distinct base images. (We use theO((#R)2) space to
store a table of flags that enables us to decide whether we have seen a particular base image
before in constant time.) If that is the case thenGω is too large, and we may terminate the
procedure. Otherwise we can, in the same time bound, and still assuming that{λ, λ′} is a
base forGω, evaluate on the whole ofR the Schreier generators that led to distinct base
images, and arrive at a set ofO(#R) generators for the action ofGω onR. We test whether
these elements generate a group that is transitive onR; if not, then{λ, λ′} cannot be a base,
and we must return to the start and choose a differentλ. However, the converse does not
hold: if the group generated is transitive onR we cannot deduce that{λ, λ′} is necessarily
a base.

We now calculateGω,λ; here we haveO((#R)2) Schreier generators, and still assume
that{λ, λ′} is a base. There should be at most 2 distinct base images (including the trivial
one); if any more are found, we can terminate the whole procedure (as even if{λ, λ′} is not
a base, we now know thatGω is too large). If 2 elements ofGω,λ are found, then we may
conclude that either{λ, λ′} is a base forGω or (G, �) is not the action on pairs of a group
of L′, and so we can continue to the next stage of the algorithm. However, if it appears that
Gω acts regularly onR, then we must repeat the whole procedure with other values ofλ′,
and only conclude that that is really the case when we have tried 1+2 logp(m−1)different
values forλ′.

Thus inO(sln logn) time and usingO(n log2 n) space we can obtain: a subset of Sym(R)

of size at most 2#R, which generatesGω if (G, �) is the action on pairs of a group inL′;
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a permutation ofR, of order 1 or 2, which (under the same condition) generatesGω,λ; and
a subsetb of R, of size at most 2 and containingλ, which (under the same condition) is a
base forGω. It is now straightforward to use these to enumerate the elements ofGω, both as
images ofb and as permutations ofR, in timeO((#R)2). Then the required blockM in the
action ofGω on images ofb can be formed in the same time, and the blocks corresponding
to subgroups of index 2 inGω can be found quickly.

Note that this procedure can be significantly simplified if it is only desired that we check
for members ofL′ for which Gω acts regularly on a largest suborbitR; this includes all
members ofL. In particular, in that case we can assume that{λ} is a base forGω, since if
it is not, then the group is not one we are interested in.

The general case would probably be implemented slightly differently from the outline
above: we would use a subset ofR of size 1+ logp(m − 1) as an assumed base, to avoid
having to repeat the procedure with different guesses as the base, and use some sort of
hashing technique to check whether we had seen each new base image before; however,
although hashing has good average case complexity, the worst-case asymptotic complexity
of this method would not be nearly linear, and the aim in this section is to obtain a nearly
linear algorithm.

For each block system found by the above procedure we can then find the action on cosets
of the kernel of the action ofGω on the system, using the same methods as in Section8. The
procedure given earlier in this section, which assumed knowledge of the subgroupGα,β ,
can then be used. The implementation issues for this part of the algorithm are essentially
the same as those for the equivalent part of the algorithm for affine groups. In Section7 we
obtained a deterministic nearly linear-time algorithm for this problem, and a similar result
is easily obtained here in the same manner. Of course, the remarks made there about finding
shallow Schreier trees and bounding #G in terms of the degreen to give an algorithm that
is linear up to a factor that is a poly-logarithmic function ofn alone (instead ofn and #G,
as is usual with these ‘nearly linear’ algorithms) apply here as well.

We therefore have a deterministic nearly linear algorithm for recognising groups of class
L′ if we know the orbits ofGω in advance, and thus we get a Monte-Carlo nearly linear
implementation with no prerequisites. Using the Schreier generators as generators forGω

yields a deterministicO(sn2) algorithm.

The non-simple Ree group,R(3) ∼= P0L(2, 8). We apply similar techniques as for the
rest of the classL to the group R(3), in its 2-transitive representation on 28 points. Propo-
sition 9.1no longer holds, but there is a pairξ such that the smallest block ofG acting on
0(2) containingξ and(α, β) is the desired block. It can be shown (usingGAP [8]) that when
the action on ordered pairs has been found, every one of the four blocks of imprimitivity of
sizem − 1 that arise in this way projects to a solution subset. Therefore, a suitable block
can be found by repeated calls to Atkinson’s algorithm, or similar.

As for the other Ree groups,G = R(3) has the property thatGω acts regularly on a
largest suborbit; the part of the procedure concerned with finding subgroups of index 2 in
Gω is the same as in the general case forL′.

10. Summary and practical results

We have given a deterministic,O(sn2) solution to the problem of Specification1.1, and
a deterministic nearly linear algorithm which solves Specification1.1 if the Gω-orbits are
known in advance.
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Using the techniques of [1], this result leads to a Monte-Carlo algorithm, also in nearly
linear time, for all except the alternating groups (in the natural action), since the collection
of all other 2-homogeneous groups is a class of small-base groups. Note that this is a one-
sided Monte-Carlo algorithm: if the algorithm finds an action on pairs then its output is
always correct; it is only if it reports that no such action exists that there is a possibility of
error.

TheO(sn2) algorithm based on the full set of Schreier generators is spatially expensive
(�(n2)), and so in practice it seems important to reduce the number of generators used
for Gω to a more manageable level, or to accept a slight decrease in asymptotic temporal
efficiency to handle the Schreier generators in a spatially more efficient manner.

Experimental results. The procedures described in the foregoing sections have been imple-
mented inGAP [8]. TheGAP code for the implementation is made available inAppendix C.
The important part of this paper is the deterministic algorithms that start with generators
for Gω, and it is only these that have been tested, using theGAP implementation of the
Schreier–Sims procedure to provide generators forGω. The time to run the Schreier–Sims
routine has not been included in these timings.

The program was tested on a 200MHz. Pentium with 32Mb. of main store, runningGAP
under the Linux operating system. Timings are given in seconds of C.P.U. time, as reported
by GAP, averaged over several runs with different random generating sets, usually of size 2
or 3; each time, the generators were conjugated by a different randomly chosen permutation
of the points of�, to hide the structure of� as a set of pairs.

As is to be expected, the routine for the classZ, using adjacent-point sets, runs fastest.
For the groups with smallri , the times taken showed little variation for any particular group,
and were approximately proportional to the input degree, with the groups PSL(8,2) acting
on pairs of input degree

(255
2

)
, and Co3 acting on pairs of input degree

(276
2

)
, requiring 10

and 11 seconds respectively (in addition to the time spent in the Schreier–Sims procedure).

The running times for the other classes were significantly longer than these timings.
Typical results include recognising the action on pairs of ASL(5,3) (input degree

(243
2

)
) in

under 30 seconds, the action on pairs of ASL(2, 17) (input degree
(289

2

)
) in under a minute

and the action on pairs of ASL(3,7) (input degree
(343

2

)
) in 1.5 minutes (all these timings

are the average over several runs of the algorithm). The even characteristic is slower, and
requires more memory: AGL(1,256)acting on pairs (input degree

(256
2

)
) was recognised

in about 2.5 minutes, and ASL(2, 16) (same input degree) in 4–5 minutes.

When the input is not an action on pairs, the program normally recognises this quickly,
using the suborbit structure. However, it is possible to create examples that take some time.
For example, (usingATLAS notation) the group 15×28 : 17 has order 65280= 2

(256
2

)
. The

action on the cosets of one of the subgroups of order 2 is therefore an action of degree
(256

2

)
with suborbits of length at most 2, and the program took nearly 2.5 minutes to establish
that this was not an action on pairs.
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Appendix A. Orbits ofSp(2d, 2)

The groups Sp(2d, 2) each have two 2-transitive actions, and we study the suborbits of
the actions on unordered pairs arising out of these actions. We prove that there are at most 9
suborbits and calculate their lengths. It follows immediately from the result of this appendix
that r9(m) = 1 (see Table1); it is shown in Section5 how this leads to an efficient test
based on theTestSet subroutine.

We follow [4, p. 247ff.]. LetF be a field,d > 1 a fixed integer, andV = F 2d , the space
of row vectors of length 2d overF . Define two block matrices overF as follows:

e =
(

0 1
0 0

)
andf =

(
0 1

−1 0

)
= e − eT

where 0 and 1 denote thed × d zero and identity matrices respectively. Then Sp(2m, F) is
the group of all 2d × 2d invertible matricesx such thatxf xT = f .

Associated withf is the antisymmetric bilinear formφ : V × V → F defined by
φ(u, v) = uf vT . We consider quadratic formsθ : V → F satisfying

φ(u, v) = θ(u + v) − θ(u) − θ(v) (A.1)

for all u, v ∈ V . If charF 6= 2 then there is a unique such form, namelyθ(u) = 1
2φ(u, u),

but if charF = 2 then this relationship breaks down, and in general there may be many
quadratic forms associated with a given bilinear form, or none at all.

In this case, letF = F2. We summarise results from [4]. It can be seen that the quadratic
form

θ0(u) = ueuT (= ueT uT )

satisfies (A.1) for the specificφ defined earlier. LetX denote the set of all quadratic forms
satisfying this condition. Then it is shown thatX = {θa

∣∣ a ∈ V } where

θa(u) = ueuT + uf aT = θ0(u) + φ(u, a). (A.2)

Now G = Sp(2d, F ) acts onX by θg(u) = θ(ug−1) whereθ ∈ X, g ∈ G andu ∈ V .
Define transvectionsta ∈ G by uta = u + φ(u, a)a. Thent−1

a = ta andg−1tag = tag for
all g ∈ G.

Lemma A.1. [4, Lemma 7.7A]

(i) For all a, c ∈ V we have

θ tc
a =

{
θa if θa(c) = 1
θa+c if θa(c) = 0.

(ii) For all a, b ∈ V there is at most onec ∈ V such thattc mapsθa to θb. Such ac exists
if and only ifθ0(a) = θ0(b) (and thenc = a + b).

It follows thatX splits into twoG-orbits, namely

X+ = {θa

∣∣ θ0(a) = 0}
and

X− = {θa

∣∣ θ0(a) = 1}
of sizes #X+ = 2d−1(2d + 1) and #X− = 2d−1(2d − 1). It is then shown in [4] thatG acts
2-transitively onX+ and onX−.
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We use techniques similar to those in [4] to determine the orbits of the stabilizer of two
points in the 2-transitive actions. We then do the same for the orbits of the various 3-point
stabilizers in these actions, and deduce the suborbits in the action on unordered pairs.

In places our analysis will hold only ford > 5. It has to be checked by hand orGAP [8]
that the same result is true for 26 d 6 4.

The following lemma is a generalisation of Lemma 7.7B in [4], where it is part of the
proof of 2-transitivity. Fora ∈ V andε ∈ F2 defineL(a, ε) = {v ∈ V

∣∣ φ(v, a) = ε}. As
in [4], if a1, . . . , ar ∈ V are linearly independent andε1, . . . , εr ∈ F2 thenL(a1, ε1)∩· · ·∩
L(ar , εr ) = U + w0 for some subspaceU of V of dimension 2m − r and somew0 ∈ V .
When allεi = 0 we havew0 = 0.

Lemma A.2. Let a1, . . . , ar be linearly independent elements ofV , wherer < d. Let
K = L(a1, ε1) ∩ · · · ∩ L(ar , εr ) for someε1, . . . , εr ∈ F2. Then the setsK+ = K ∩ {a ∣∣
θ0(a) = 0} andK− = K ∩ {a ∣∣ θ0(a) = 1} both have size at least22d−r−2.

Proof. Since theai are linearly independent,U = L(a1, 0)∩· · ·∩L(ar , 0) is a subspace of
V of dimension 2d − r > r. It therefore contains an elementb that is linearly independent
of a1, . . . , ar . ThusK0 = K ∩ L(b, ε) has size 22d−r−1 for anyε ∈ F2. Fix ε = θ0(b) + 1.
Let w ∈ K0. By choice ofb, both w andw + b lie in K. In fact, they both lie inK0,
sinceφ(w + b, b) = φ(w, b) + φ(b, b) andφ(b, b) = 0. On the other hand,θ0(w + b) =
θ0(w)+θ0(b)+φ(w, b) = θ0(w)+θ0(b)+ε = θ0(w)+1, so one ofw andw+b lies inK+
and the other lies inK−. This gives a pairing of the elements ofK0, since(w+b)+b = w,
with one element of each pair inK+ and the other inK−. Therefore half ofK0 lies inK+
and the other half inK− and each of these sets contains at least 22d−r−2 elements.

Lemma A.3. Supposev1, v2, t, w are distinct elements ofV , with θ0(v1) = θ0(v2) =
θ0(t) = θ0(w) = ε. If there isg ∈ G fixing θv1 and θv2 and mappingθt to θw then
φ(t, v1 + v2) = φ(w, v1 + v2).

There are22d−2 elementst ∈ V with θ0b = ε andφ(t, v1 + v2) = θ0(v1 + v2) + 1, and
2d−1(2d−1 + (−1)ε) elementst ∈ V with θ0t = ε andφ(t, v1 + v2) = θ0(v1 + v2).

Proof. Let g ∈ Gθv1,θv2
. Thenθ

g
v1(u) + θ

g
v2(u) = θv1(u) + θv2(u) for all u ∈ V and so by

(A.2) and the definition of the action ofG,

φ(ug−1, v1 + v2) = φ(u, v1 + v2) for all u ∈ V . (A.3)

Now supposeθg
t = θw. For u ∈ V we haveθw(u) = θv1+(v1+t)(ug−1) = θv1(ug−1) +

φ(ug−1, a1 + t) by two applications of (A.2). Thenθv1(ug−1) = θv1(u) andφ(ug−1, v1 +
t) = φ(u, (v1 + t)g) sinceg ∈ Sp(2d, 2). Therefore (by further applications of (A.2))
θw = θv1+(v1+t)g, and sow = v1 + (v1 + t)g. Now φ(v1 + (v1 + t)g, v1 + v2) =
φ(v1, v1 + v2) + φ((v1 + t)g, v1 + v2) and by (A.3) applied to the second term this equals
φ(t, v1 + v2).

For the second part, consider LemmaA.2 with r = 0. In the proof, we getU = V , and
we can certainly takeb to bev1 + v2 asv1, v2 are distinct. ThenK0 = L(v1 + v2, θ0(v1 +
v2) + 1) contains 22d−2 vectorsv with θ0(v) = 0 and 22d−2 with θ0(v) = 1, so the set
of points t ∈ V with θ0(t) = ε andφ(t, v1 + v2) = θ0(v1 + v2) + 1 has size 22d−2.
Since there are 2d−1(2d + (−1)ε) elementst ∈ V with θ0(t) = ε, it follows that there
are 2d−1(2d + (−1)ε) − 22d−2 = 2d−1(2d−1 + (−1)ε) pointsv ∈ V with θ0(v) = ε and
φ(t, v1 + v2) = θ0(v1 + v2).
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Proposition A.4. Letd > 4. Supposea1, a2, b, c are distinct elements ofV , withθ0(a1) =
θ0(a2) = θ0(b) = θ0(c) = ε. Then ifφ(b, a1 + a2) = φ(c, a1 + a2) there isg ∈ G fixing
θa1 andθa2 and mappingθb to θc.

Proof. We show that there existsw ∈ V such thatθ0(w) = ε and

θa1(b + w) = θa1(c + w) = θa2(b + w) = θa2(c + w) = 1. (A.4)

It will then follow from LemmaA.1 thatg = tb+wtc+w has the desired properties.
We haveθa1(b + w) = θa1(b) + θa1(w) + φ(w, b) = θ0(b) + θ0(w) + φ(b, a1) +

φ(w, a1) + φ(w, b) and similarly for the others, so the conditions (A.4) are equivalent to

φ(w, a1 + b) = 1 + φ(b, a1), φ(w, a1 + c) = 1 + φ(c, a1),

φ(w, a2 + b) = 1 + φ(b, a2), φ(w, a2 + c) = 1 + φ(c, a2).

The set ofw ∈ V satisfying these conditions is

K = L(a1 + b, 1 + φ(b, a1)) ∩ L(a1 + c, 1 + φ(c, a1)) ∩
L(a2 + b, 1 + φ(b, a2)) ∩ L(a2 + c, 1 + φ(c, a2)).

Now a2 + c = (a1 + b) + (a1 + c) + (a2 + b) and sinceφ(b, a1 + a2) = φ(c, a1 + a2),
we have 1+ φ(c, a2) = (1 + φ(b, a1)) + (1 + φ(c, a1)) + (1 + φ(b, a2)). Therefore

K = L(a1 + b, 1 + φ(b, a1)) ∩ L(a1 + c, 1 + φ(c, a1)) ∩ L(a2 + b, 1 + φ(b, a2)).

If it can be shown thata1 +b, a1 + c anda2 +b are linearly independent, then it will follow
by LemmaA.2 thatθ0 is non-constant onK, and the proof will be complete.

Clearly a1 + b and a2 + b are linearly independent sincea1, a2 and b are distinct
(andF2 has only 2 elements). Similarly,a1 + c is non-zero, and not equal toa1 + b or
a1 + a2 = ((a1 + b) + (a2 + b)). Therefore eithera1 + b, a1 + c anda2 + b are linearly
independent, ora1 + c = a2 + b. So we certainly have a proof except in the case where
c = a1 + a2 + b. In this case there is always somex ∈ V with θ0(x) = ε, φ(x, a1 + a2) =
φ(b, a1 + a2) = φ(c, a1 + a2) andx /∈ {a1, a2, b, c}, since (by the preceding lemma) there
are at least 22d−2 − 2d−1 elements fulfilling the first two of these conditions, andd > 4
by hypothesis so this number is larger than 4. Now by the proof in the linearly independent
case there existg1, g2 ∈ G that both fixθa1 andθa2, and such thatg1 mapsθb to θx , whilst
g2 mapsθx to θc = θa1+a2+b. Theng = g1g2 will suffice.

Corollary A.5. In the action ofG on 0 = X±, the two-point stabilizerGα,β has four
orbits: {α}, {β}, one of size22(d−1) and one of size2(2d−2 + (−1)ε)(2d−1 − (−1)ε), where
ε = 0 if 0 = X+ andε = 1 if 0 = X−.

Proof. Let α = θa1 andβ = θa2 whereθ0(a1) = θ0(a2) = ε. Note thatφ(ai, a1 + a2) =
θ0(a1 + a2) for i = 1,2. The result now follows by the preceding proposition and lemma,
since 2d−1(2d−1 + (−1)ε) − 2 = 2(2d−2 + (−1)ε)(2d−1 − (−1)ε).

We can calculate the orbits of any 3-point stabilizer, as well.

Proposition A.6. Leta1, a2, a3 ∈ V , with θ0(ai) = ε for i = 1,2, 3. Letε0 = φ(a3, a1 +
a2)+ θ0(a1 + a2). Then the subset{v ∈ V | θ0(v) = ε} of V is partitioned by the setsXλµ,
whereλ, µ ∈ F2 and

Xλµ = {v ∈ V | θ0(v) = ε} ∩ L(a1 + a2, θ0(a1 + a2) + λ + µ + ε0)
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∩ L(a1 + a3, θ0(a1 + a3) + λ)

∩ L(a2 + a3, θ0(a2 + a3) + µ).

If ε0 = 0 then#X00 = 2d−1(2d−2+(−1)ε) and#X01 = #X10 = #X11 = 22d−3. If ε0 =
1 then#X00 = #X01 = #X10 = 2d−2(2d−1 + (−1)ε) and#X11 = 2d−2(2d−1 − (−1)ε).

Proof. Note thatφ(u, a1 + a2) = φ(u, a1 + a3) + φ(u, a2 + a3) for u ∈ V , and that
θ0(a1+a2) = θ0(a1+a3)+θ0(a2+a3)+φ(a1+a3, a2+a3) = θ0(a1+a3)+θ0(a2+a3)+ε0.
It follows that

Xλµ = {v ∈ V | θ0(v) = ε} ∩ L(a1 + a3, θ0(a1 + a3) + λ)

∩ L(a2 + a3, θ0(a2 + a3) + µ)

and so theXλµ do indeed partition{v ∈ V | θ0(v) = ε}.
Supposeε0 = 0. Then

X00 ∪ X01 = {v ∈ V | θ0(v) = ε} ∩ L(a1 + a3, θ0(a1 + a3))

X00 ∪ X10 = {v ∈ V | θ0(v) = ε} ∩ L(a2 + a3, θ0(a2 + a3))

X00 ∪ X11 = {v ∈ V | θ0(v) = ε} ∩ L(a1 + a2, θ0(a1 + a2))

and each of these sets has size 2d−1(2d−1 + (−1)ε) by LemmaA.3. Also

X01 ∪ X10 = {v ∈ V | θ0(v) = ε} ∩ L(a1 + a2, θ0(a1 + a2) + 1)

and similar expressions forX01 ∪ X11 andX10 ∪ X11. Each of these sets has size 22d−2

by LemmaA.3. It follows that #X01 = #X10 = #X11 = 22d−3 and #X00 = 2d−1(2d−1 +
(−1)ε − #X01 = 2d−1(2d−2 + (−1)ε). Theε0 = 1 case is entirely analogous.

Proposition A.7. Letd > 5. Leta1, a2, a3 ∈ V , withθ0(ai) = ε for i = 1,2, 3. Letε0 and
the setsXλµ be as in the previous proposition. Then the sets

4λµ = {θx

∣∣ x ∈ Xλµ \ {a1, a2, a3, a1 + a2 + a3}}
formGθa1,θa2,θa3

-orbits.

Proof. First note thatθa1+a2+a3(u) = θa1(u)+φ(u, a2 +a3) for all u ∈ V and so by (A.3),
θa1+a2+a3 must be fixed byGθa1,θa2,θa3

. A consequence of LemmaA.3 is therefore that the
sets4λµ must be unions ofGθa1,θa2,θa3

-orbits.
Fix λ, µ ∈ F2, and letb, c ∈ Xλµ, with b, c /∈ {a1, a2, a3, a1 + a2 + a3}. As in Proposi-

tion A.4, we show that there existsw ∈ V such thatθ0(w) = ε and

θai
(b + w) = θai

(c + w) = 1 (A.5)

for i = 1,2, 3. It will then follow from LemmaA.1 that g = tb+wtc+w has the desired
properties.

As in PropositionA.4, the equations (A.5) are equivalent to

φ(w, ai + b) = 1 + φ(b, ai), φ(w, ai + c) = 1 + φ(c, ai)

for i = 1,2, 3. The set of elements ofV satisfying these conditions is

K = L(a1 + b, 1 + φ(b, a1)) ∩ L(a2 + b, 1 + φ(b, a2))

∩ L(a3 + b, 1 + φ(b, a3)) ∩ L(a1 + c, 1 + φ(c, a1))
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sinceaj +c = (a1+b)+ (aj +b)+ (a1+c) andφ(c, aj ) = φ(b, a1)+φ(b, aj )+φ(c, a1)

for j = 2, 3, becauseb andc are in the same setXλµ.
In the case wherea1 + b, a2 + b, a3 + b anda1 + c are linearly independent, the result

now follows by LemmaA.2, sinced > 5. Nowa1 + b, a2 + b anda3 + b must be linearly
independent, sincea1, a2, a3 andb are distinct andb 6= a1 + a2 + a3. Similarly a1 + c,
a2+c anda3+c are linearly independent. Ifa1+b, a2+b, a3+b anda1+c are not linearly
independent, they span a space of dimension at most 3, and so (sinceXλµ has size at least
22d−3 − 2d−1 > 8) there is an elementx ∈ Xλµ such thata1 + x is linearly independent
of a1 + b, a2 + b, a3 + b anda1 + c, and therefore both{a1 + b, a2 + b, a3 + b, a1 + x}
and{a1 + c, a2 + c, a3 + c, a1 + x} are linearly independent. We have therefore shown
that we can map fromθb to θx , and fromθc to θx within Gθa1,θa2,θa3

and so the proof is
complete.

Corollary A.8. If ε0 = 0 then there are eightGθa1,θa2,θa3
-orbits: four of size1, three of size

22d−3 and one of size2d−1(2d−2+(−1)ε)−4 = 4(2d−2−(−1)ε)(2d−3+(−1)ε). If ε0 = 1
then there are sevenGθa1,θa2,θa3

-orbits: three of size1, three of size2d−2(2d−1+(−1)ε)−1 =
(2d−2 + (−1)ε)(2d−1 − (−1)ε) and one of size2d−2(2d−1 − (−1)ε).

Proof. Firstly θ0(a1 + a2 + a3) = θ0(a3) + θ0(a1 + a2) + φ(a3, a1 + a2) = ε + ε0. So
θa1+a2+a3 lies in the sameG-orbit asθai

if and only if ε0 = 0. Taken with the three orbits
{ai}, this gives the singleton orbits listed.

Secondly,φ(ai, ai + aj ) = θ0(ai + aj ) for distinct i, j ∈ {1,2, 3}. This means that if
ε0 = 0 thenai ∈ X00 for i = 1,2, 3, and ifε0 = 1 thena1 ∈ X01, a2 ∈ X10 anda3 ∈ X00.
We also haveφ(a1 + a2 + a3, ai + aj ) = φ(ak, ai + aj ) where{i, j, k} = {1,2, 3} and
φ(ak, ai + aj ) = θ0(ai + aj ) + ε0 (e.g.,φ(a1, a2 + a3) = θ0(a2 + a3) + (φ(a3, a1 + a2) +
θ0(a1+a2))). Therefore ifε0 = 0,a1+a2+a3 ∈ X00. The results follow from the previous
proposition and the sizes of the setsXλµ as calculated in PropositionA.6.

We can now calculate the sizes of the suborbits ofG acting on unordered pairs. Let
α = θa1,β = θa2 whereθ0(ai) = ε (i = 1,2). Letω = {α, β}, and consider the action ofGω

on� = {θv

∣∣ θ0(v) = ε}{2}. Observe thatGω is generated byGθa1,θa2
and the transvection

h = ta1+a2. Let B = {b ∣∣ θ0(b) = ε, φ(b, a1 + a2) + θ0(a1 + a2) = 0, b /∈ {a1, a2}},
andC = {c ∣∣ θ0(c) = ε, φ(c, a1 + a2) + θ0(a1 + a2) = 1, c /∈ {a1, a2}}. By LemmaA.1,
θh
b = θb+a1+a2 for b ∈ B, andθh

c = θc for c ∈ C.
It is easy to see that the sets{ω}, {{θai

, θb}
∣∣ i ∈ {1,2}, b ∈ B} and{{θai

, θc}
∣∣ i ∈

{1,2}, c ∈ C} areGω-orbits, of sizes 1, 2#B and 2#C respectively, and that the adjacent-
point set30(ω) is the union of these three sets.

For the remaining orbits we look first at orbits onorderedpairs. By PropositionA.7 and
its corollary, there are threeGθa1,θa2

-orbits of ordered pairs(θb1, θb2) whereb1, b2 ∈ B,
of sizes #B, #B.#400 and #B.#411, since ifa3 ∈ B thenε0 = 0 andB ⊆ X00 ∪ X11.
The orbit containing(θb2, θb1) must have the same size as that containing(θb1, θb2), and
so, since these three orbits have different sizes, each must be symmetric, that is, contain the
pair (θb2, θb1) for every pair(θb1, θb2) lying in it. Therefore these three orbits correspond
to three orbits of unordered pairs, each half the size. Becauseb + a1 + a2 ∈ B wheneverb
does, if any of these orbits were not alsoGω-orbits, then there would have to be a pair of
them, such that the union of the pair was aGω-orbit. The two orbits would have to have the
same size for this to happen, and this is not the case, so each is itself aGω-orbit.
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There are twoGθa1,θa2
-orbits of ordered pairs(θc1, θc2) wherec1, c2 ∈ C, of sizes

#C.#400 and #C.#411. As before, these have different sizes so they are symmetric, and
there are two corresponding orbits on unordered pairs each of half the size of its ‘image’.
They are alsoGω-orbits, sinceh fixesθc for c ∈ C.

Table A.1: Suborbit Lengths of Sp(2d, 2) acting on pairs

1
22(2d−2 + (−1)ε)(2d−1 − (−1)ε)

22d−1

(2d−2 + (−1)ε)(2d−1 − (−1)ε)

22d−3(2d−2 + (−1)ε)(2d−1 − (−1)ε)

4(2d−2 − (−1)ε)(2d−3 + (−1)ε)(2d−2 + (−1)ε)(2d−1 − (−1)ε)

22d−3(2d−2 + (−1)ε)(2d−1 − (−1)ε)

22d−32d−2(2d−1 − (−1)ε)

22d−1(2d−2 + (−1)ε)(2d−1 − (−1)ε)

Finally, there are twoGθa1,θa2
-orbits of ordered pairs(θc, θb) wherec ∈ C, b ∈ B, of

sizes #C.#401 and #C.#410. These are clearly not symmetric, and the corresponding orbits
of unordered pairs have the same sizes as their ‘images’. Note that the orbits are of the same
size as each other, and that ifa3 = c andb ∈ X01 thenb + a1 + a2 ∈ X10 sinceε0 = 1.
Therefore the union of the two orbits is aGω-orbit.

A summary table of the orbit lengths ofGω acting on� is included in TableA.1. Checks
usingGAP have shown that the table is correct in the cases 26 d 6 4, although in the
d = 2 cases and one of thed = 3 cases there are fewer suborbits, as one or more of the
orbit lengths given in the table evaluate to 0.

Appendix B. Bases for Groups of Lie Rank1

This appendix contains results about the groups of classL′, that is, the groups of Lie
rank 1. If (G, 0) is the 2-transitive action of such a group then we consider the action of
G on � = 0{2}; more precisely, we takeω ∈ � and look at the action of� on a largest
Gω-orbit R. We show that this action is faithful and either regular or very nearly regular,
and we examine how to extend a set containingω and one element ofR to form a base for
G. (Recall that a base for a permutation group is a subset of the domain whose point-wise
stabilizer is trivial.)

These results are used in Section9 to provide a means of finding the subgroups ofGω

of index 2. Recall from that section thatL denotes the 2-transitive groups whose socle is
one of PSU(3, q) (for q a prime power greater than 2), Sz(q) (for q an odd power of 2
greater than 2) and R(q) (for q an odd power of 3 greater than 3). The classL′ contains
these groups and those with socle PSL(2, q) for q a prime power greater than 3.

Proposition B.1. Let (G, 0) lie in the classL, and let� = 0{2}. Then there exists a base
for (G, �) of size2.

Proof. As in Section9, we refer the reader to [4] for a description of these groups.
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Let K denote the field ofq elements (q2 for the PSU(3, q) case, when we denote the
fixed field of the automorphismx 7→ x̄ of order 2 ofK by K0), and letp be the prime
dividing q. Let S denote the socle of the groupG.

As was mentioned in Section9, the stabilizerSα is the semidirect product of a Sylow
p-subgroupT of S by the two-point stabilizerSα,β , which we denote byH . The elements
of T can be parametrised by 2 or 3 parameters fromK: for PSU(3, q), T = {ta,b

∣∣ a, b ∈
K, aā + b + b̄ = 0} (note that the parameters here are interchanged with respect to those
in [4] to be consistent with the other groups); for Sz(q), T = {ta,b

∣∣ a, b ∈ K} (of
course, theta,b have completely different interpretations in the two cases) and for R(q),
T = {ta,b,c

∣∣ a, b, c ∈ K}. Note that for any automorphismσ ∗ of one of these groups that
is induced by a field automorphismσ of K, we have tσ

∗
a,b = taσ ,bσ (and similarly forta,b,c).

The cyclic groupH has in all cases a natural identification with either the multiplicative
groupK× of K, or the subgroup of index 3 inK×; the latter situation arises if and only if
S is PSU(3, q) and 3| q + 1. Thus we can writeH = {ηκ | κ ∈ H0} for some subgroup
H0 of K×. The action by conjugation ofH onT satisfiestηκ

a,b = taκ,b′ (or t
ηκ

a,b,c = taκ,b′,c′
as applicable) for someb′, c′ ∈ K.

It is sufficient to find pointsα, β, γ ∈ 0 such thatGα,β,γ = 1 since then{{α, β}, {α, γ }}
is a base for(G, �). Because(G, 0) is 2-transitive, we can takeα, β to be arbitrary points
of 0, as before, and use the notation introduced earlier. The problem then reduces to that
of finding an element ofT that is moved by every non-trivial element ofGα,β in the action
onT by conjugation.

If we can find an elementb of K that is moved by all automorphisms ofK, and (if S
is PSU(3, q)) for which t1,b (or t1,b,c for somec) is an element ofT , then we have done.
This is because for anyh ∈ H or, in the PSU(3, q) case where 3| q + 1, any producth
of a diagonal automorphism and an element ofH , the conjugateth1,b (or th1,b,c) is not of the
form t1,b′ (or t1,b′,c′ ) for anyb′ (or b′, c′) in K. Since every element ofGα,β may be written
as a product of a field automorphism followed by such an elementh, this means that the
elementt1,b (or t1,b,c) is moved by every non-trivial element ofGα,β .

There are always elements ofK moved by every field automorphism: just take any
elementb that generatesK over the prime field. If it is fixed by a field automorphism, then
it must lie in a proper subfield ofK, contradicting the choice ofb. Therefore we are done
whenS is a Suzuki or Ree group.

For the unitary case, we require an elementb ∈ K that is moved by every field automor-
phism, and for which 1+ b + b̄ = 0. This is equivalent to showing that there is an element
b in K that does not lie in any proper subfield ofK and for which 1+ b + b̄ = 0. The
number of elementsb of K with 1 + b + b̄ = 0 is q, since the trace mapK → K0 given
by x 7→ x + x̄ is surjective andK0-linear. LetN be the number of these elements that lie
in proper subfields ofK. We will show thatN < q.

Let r be the integer such thatq = pr . ThenK has sizep2r and the maximal subfields of
K areK0 and the fields of sizep2r/s for odd prime divisorss of r. If b ∈ K0 thenb̄ = b;
if in addition 1+ b + b̄ = 0 then 1+ 2b = 0 so this is impossible ifp = 2 and otherwise
there is precisely one suchb. The number ofb with 1 + b + b̄ = 0 that lie in the field of
sizep2r/s is at mostp2r/s − 1, since 0 is not a solution to this equation. Therefore

N 6 1 +
∑

(p2r/s − 1)

where the sum is over all odd prime divisorss of r. Therefore ifr is a power of 2 we have
N 6 1, otherwiseN 6 tp2r/3 wheret is the number of odd prime divisors ofr. It is easy
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to see thatt < pr/3, so N < pr = q. This concludes the proof in the unitary case.

The remainder of this appendix is concerned with groups whose socle is PSL(2, q).

Lemma B.2. Let q = pr wherep is prime, and let6 be a group of field automorphisms
of Fq , acting naturally onFq . Then there existsa ∈ Fq such that6a = 1. Furthermore if
q /∈ {2, 4} thena may be chosen so thata−1 does not lie in the same6-orbit asa. If q is
odd thena is not a square inF×

q , but in this case ifq /∈ {3,5,9} then there also exists a

squareb ∈ Fq with 6b = 1 andb−1 /∈ b6 .

Proof. Let a generateFq
×. Thena has orderpr − 1 anda−1 = apr−2. Let σ ∈ 6 \ {1}.

Thenσ(a) = ape
where 1< e < r. Clearly none ofp, p2, . . . , pr−1 is congruent to 1

modpr − 1, so6a = 1. Also −1 is only congruent modpr − 1 to a member of the set
{1, p, p2, . . . , pr−1} if p = 2 andr is 1 or 2, soa−1 does not lie in the orbita6 unlessq
is 2 or 4.

Now assumeq is odd, soa is a non-square satisfying both conditions. Letb = a2. Then
b has order(pr − 1)/2 and ifpe ≡ 1 mod(pr − 1)/2 for somee with 1 < e < r then
(pr − 1)/2+ 1 = pe (since(pr − 1)+ 1 is too big). Then 2pe = pr + 1. Sincepr > 3pe,
this is impossible. Finally, ifpe ≡ −1 mod(pr − 1)/2 for somee with 0 6 e < r then
pe = (pr − 3)/2 orpe = pr − 2. In the first case 2pe + 3 = pr and aspr > 3pe this
requirespe 6 3, and sopr 6 9. Thereforer 6 2 and so eithere = 0 andpr = 5, or
e = 1, r = 2 andpr = 9. In the second case, asp is odd we must havepr = 3. Therefore
if q /∈ {3,5,9} thenb is a square satisfying both conditions.

Proposition B.3. Let (G, 0) be a group with soclePSL(2, q) (whereq > 3) acting on
projective points(so#0 = m = q + 1), and let� = 0{2}. If (G, 0) is not3-transitive then
there exists a base for(G, �) of size2.

Proof. We can regard0 as the projective lineFq ∪ {∞}, and the elements of P0L as trans-
formationsx 7→ (ax + b)/(cx + d) composed with field automorphisms acting naturally.

SupposeG is not 3-transitive on0. Thenp is odd andG0,∞ has two orbits on0\{0, ∞},
namely the set of squares inFq

× and the set of non-squares. Field automorphisms map
squares to squares, but the non-trivial diagonal automorphism maps squares to non-squares
and vice-versa. Thus if the group contains any outer automorphism not contained in the
group of field automorphisms then it is 3-transitive on0. So we may reduce the problem
to the case P6L(2, q) = PSL(2, q) o 〈φ〉 whereφ is the automorphism induced by the
Frobenius mapx 7→ xp onF , andq is odd, since any non-3-transitive group of PSL(2, q)-
type is contained in this group, and so it suffices to find a base of size 2 for this group acting
on� = 0{2}.

We takeα = ∞ andβ = 0. Our strategy will be to fixω = {α, β} and choose a suitable
point ω1, then show that{ω, ω1} is a base by taking an arbitrary elementh ∈ G fixing ω

and showing that ifh fixesω1 as well thenh = 1. So leth ∈ Gω. Then there existt ∈ Fq

andi > 0 such thath = gφi or h = gjφi whereg : x 7→ t2x andj : x 7→ −x−1.
We distinguish two cases, depending on whetherq ≡ 1 mod 4 orq ≡ 3 mod 4. In the

first case,−1 is a square inFq . By LemmaB.2, there existsa ∈ Fq
× which is a non-square

fixed only by the trivial element of〈φ〉, and such thata−1 does not occur in the orbit ofa

under〈φ〉. Letω1 = {1, a}. Thenω
φi

1 = {1, a1} wherea1 6= a, a−1 unlessφi = 1, and also

a1 is not a square. Thenωgφi

1 = {t2, t2a1} and is only equal toω1 if t2 = 1 andt2a1 = a,
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sincet2 and 1 are squares andt2a1 anda are not. Thusωgφi

1 = ω1 only in the case where

g = 1 andφi = 1. Also, ωgjφi

1 = {−t2, −t2a−1
1 } and is only equal toω1 if −t2 = 1

and−t2a−1
1 = a, since 1 and−t2 are squares and the other two elements are not. Thus

ω
gjφi

1 = ω1 only whena = a−1
1 , which is impossible. Thus{ω, ω1} is a base.

In the second case,−1 is not a square inFq . By LemmaB.2 there is a squareb ∈ F that
is not fixed by any non-trivial element of〈φ〉 and is such thatb−1 /∈ b〈φ〉. Let ω1 = {1, b}.
Thenω

φi

1 = {1, b1} whereb−1 6= b1 andb = b1 only if φi = 1. Thenω
gφi

1 = {t2, t2b1},
which equalsω1 only if the ratio of the two elements is the same, that is to say only if
b1 ∈ {b, b−1}. Thus to fixω1 we would needb1 = b and soφi = 1, and then we would also

needt2 = 1 sinceb 6= b−1 so t2 = b and 1= t2b is not possible. Thereforeωgφi

1 = ω1

only if φi = g = 1. Also,ωgjφi

1 is a pair of two non-squares, so can never equalω1, which
is a pair of squares. Thus{ω, ω1} is a base.

Proposition B.4. Let (G, 0) be a group with soclePSL(2, q) (whereq > 3) acting on
projective points. Let� = 0{2} and letω = {α, β} lie in �. LetR ⊆ � be aGω-orbit of
largest size. Then#Gω,λ 6 2 for λ ∈ R, andGω acts faithfully onR. If R is not contained
in the adjacent-point set30(ω) then the number of pointsλ′ of R such thatGω,λ,λ′ 6= 1 is
at most2 logp q, wherep is the prime dividingq.

Proof. As before, we can identify0 with the projective line, and takeα = ∞ andβ = 0.
The elements ofG can be expressed as a productσ ∗h of a transformationh of the form
x 7→ (ax + b)/(cx + d) and a mapσ ∗ induced by the action of an automorphismσ of Fq .
The elements ofGα,β are those for whichh is a scalar transformationx 7→ lx for some
l ∈ Fq .

If G = PGL(2, q) then the orbits ofGω on� are as follows. There is{ω} and one other
orbit, of size 2(q −1), which together make up the adjacent-point set30(ω). All the others
areGα,β -orbits of sizeq − 1, of the formXk = {{a, ak} ∣∣ a ∈ Fq

×} where the different
orbits are obtained by varying the value ofk in Fq , except ifq is odd then the orbit containing
{1,−1} has size(q − 1)/2. If G = PSL(2, q) then the orbits are the same, except that the
orbit of size 2(q − 1) splits into two orbits of sizeq − 1. In both casesGω acts regularly
on any largest suborbit. In the general case, a largest suborbit is either contained in30(ω)

(and so has sizeq − 1 or 2(q − 1)) or is a union of setsXk each of sizeq − 1.
First we show that if a largest suborbitR is contained in30(ω) and has size at least

1
2#Gω thenGω acts faithfully on it. We may assume thatGω does not act regularly onR, so
by the preceding proposition,G acts 3-transitively on0 and soR must have size 2(q − 1).
By the assumption on the size ofR, the stabilizer of a point ofR in Gω must have size 2,
which means thatG must be the extension of PGL(2, q) by a field automorphism of order 2.
This field automorphism will fix the pair{0, 1}, for example, but as there must be elements
of Fq which it does not fix, it cannot fix every pair of the form{0, a} wherea ∈ Fq . Thus
Gω acts faithfully onR in this case.

Now we consider the other possibility forR, and show first that there always exists a
suborbit of size at least12#Gω, so any largest suborbitR has size at least12#Gω. Secondly
we will show that ifR is a union of setsXk thenGω acts faithfully on it, and ifGω does not
act regularly onR then each point stabilizer in the action ofGω onR fixes at most 2 logp q

points ofR. The result will then follow.
Let z generateFq , soz is moved by every non-trivial automorphism ofFq . Consider the

action of a general elementσ ∗h of Gα,β on{1, z}; hereh is a scalar transformationx 7→ lx
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for somel ∈ Fq . If {1, z}σ ∗h = {1, z} then{l, lzσ } = {1, z}. So if eitherσ ∗ or h is not
the identity we must havel = z andlzσ = 1, which giveszσ = z−1; this is only possible
if q 6 4. Thus ifq 6= 4 thenGα,β acts semi-regularly on theGω-orbit containing{1, z},
which thus has size at least1

2#Gω. However ifq = 4 then the group of field automorphisms
of Fq has size 2 so ifG is 3-transitive then the suborbit contained in30(ω) has size at least
1
2#Gω. If G is not 3-transitive thenGω acts regularly on a largest suborbit, by the previous
proposition.

Now we consider certain special elements,g, g′ of Gω, and show that for eachk at least
one of these elements fixes a point inXk, but that neitherg norg′ fixes more than two points
of any setXk of sizeq − 1.

In the casep = 2, consider the mapg : x 7→ x−1, which lies inGω. Let l ∈ Fq have
l2 = k−1 (this is always possible since 2 does not divide the order ofFq

×; however there is
only one elementl with this property). Then{l, lk}g = {l, lk}, but this is the unique pair in
Xk that is fixed byg, since the only element ofFq fixed byg is 1 (which equals−1) so any
pair {a1, a2} fixed byg must haveag

1 = a2 anda
g

2 = a1.
If p is odd, more care is needed. By the previous proposition, ifGω does not act regularly

on a largest suborbit, thenG must act 3-transitively on0. Furthermore ifG is a 3-transitive
extension of PSL(2, q) by a group of order 2, thenGω still acts regularly on the suborbit
of size 2(q − 1) that is contained in30(ω). This means that we may actually assume
that G contains PGL(2, q), as the only 3-transitive extension of PSL(2, q) that does not
contain PGL(2, q) contains PSL(2, q) as a subgroup of index 2. It follows thatg (which
has determinant−1 so does not lie in PSL(2, q)) does lie inG. However, there are now
either 0 or 2 elementsl such thatl2 = k−1, depending upon whetherk is a square inFq

or not. Since the only elements ofFq fixed by g are±1, and the pair{1,−1} lies in the
setX−1 that has size(q − 1)/2 notq − 1, we see that if the setxk has sizeq − 1 theng

must interchange the points of any pair inXk that it fixes, and sog fixes at most 2 pairs in
anyXk of sizeq − 1. For half the setsXk, that is, those for values ofk for which k−1 has
a square root inFq , the elementg has a fixed point inXk; we now look for an elementg′
with similar properties, that fixes a point in all thoseXk that do not contain fixed points of
g. Assumek has no square root inFq . Let c be an element ofFq that is not a square. The
transformationg′ : x 7→ cx−1 lies inGω and there are precisely two elementsl for which
l2 = ck−1. Then{l, lk}g = {l, lk} andg′ fixes a point ofXk; as before,g′ fixes at most 2
points of any setXk, sinceg′ does not fix any points ofFq .

Thus for any setXk, there exists a non-trivial elementg or g′ of Gω that fixes a point of
Xk but does not fix all ofXk, and so ifR is a union of setsXk and the stabilizer of a point
λ in R in Gω is of size 2, thenGω must act faithfully onR (using transitivity ofGω onR

in the case whereλ itself is not fixed byg or g′). Furthermore,g or g′ (as applicable) fixes
at most 2 points of each setXk of sizeq − 1, and so ifR is a union of setsXk andλ ∈ R

then there are at most 2 logp q pointsλ′ ∈ R for whichGω,λ,λ′ 6= 1, sinceR is a union of
at most logp q setsXk, all of which have sizeq − 1.

This is sufficient to prove the proposition.

The following theorem summarises the foregoing propositions.

Theorem B.5. Let (G, 0) lie in L′. Let ω ∈ � = 0{2} and letR be a largestGω-orbit.
Let λ ∈ R. ThenGω,λ has size at most2, Gω acts faithfully onR, and eitherR ∪ {ω} is
the adjacent-point set30(ω) or there are at most2 logp(m − 1) elementsλ′ of R such that
{ω, λ, λ′} is not a base forG (herep is the prime dividingm − 1).
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Appendix C. GAP script to implement UOP algorithm

This appendix is available to subscribers to the journal at:
http://www.lms.ac.uk/jcm/1/lms97008/appendixc/.
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