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ALGORITHMIC RECOGNITION OF ACTIONS OF
2-HOMOGENEOUS GROUPS ON PAIRS

GRAHAM R. SHARP

Abstract

We give an algorithm that takes as input a transitive permutation
group(G, Q) of degreen = (’g) and decides whether or n@tis G-
isomorphicto the action & on the set of unordered pairs of some set
I" on whichG acts 2-homogeneously. The algorithm is constructive:
if a suitable action exists, then one such will be found, together with
a suitable isomorphism. We give a determinigfi¢sn log® n) im-
plemention of the algorithm that assumes advance knowledge of the
suborbits of G, ). This leads to deterministi® (sn2) and Monte-
Carlo O(sn log® n) implementations that do not make this assump-
tion.

1. Introduction
Let (G, I') be afinite permutation group, and define

I = {{a. B} |e. €T, o # )
and
'@ ={@p)|e.pel, a#p}

If G is transitive ol @, it is described as-FansitiveonT; if it is transitive only onl"2,
then it is described as2omogeneousnT .

Recall that twoG-setsI” and A are said to bes-isomorphic if and only if there is a
bijectionn : ' — A suchthatn® = yénforally e I'and allg € G.

The purpose of this paper is to describe an algorithm that takes as input a transiti
permutation grougG, 2) and determines whether or not there exists an actiai oh a
setI" such that2 andI'? are G-isomorphic. We will call such a sdt a solutionto the
exterior square-root problerfor (G, ©2). More precisely, a solution will be a paif’, n)
wherer is a G-set andy a G-isomorphism fronT'{? to Q. The problem is specified as
follows.

Specification 1.1.

Input A transitive permutation groupG, 2) of degreen = #Q > 1, wheren = (’;) for
some integem, given by generatorgy, ..., g € Sym().

Output A valueb € {TRUE, FALSE}.
If b = TRUE, then aG-setT" of sizem, and a bijectionp : I'? — Q are also

returned, satisfyingy;’, y5}n = ({y1, y2}m)* forall g € G, {y1, y2} € T2,
If b = FaLse then there does not exist a pdir, ) satisfying these conditions.
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Algorithmic Recognition of Actions @Homogeneous Groups on Pairs

The main result of this paper is an algorithm that satisfies Specificatiomnd that can
be implemented ir0 (sn?) time.

Note that for the purposes of complexity analysis, we take our standard operation
be finding the image of a given point @ under the action of a given permutation in
Sym(n) (as is usual in computational permutation group theory), even though this involve
manipulations with integers that require lodits to store.

We first use some group theory to classify the permutation gra@p¥) that can give
rise to solutionsi.e., those groups that are transitiveldd. The structure of the remainder
of the paper is based on the different classes of groups arising out of this taxonomy.

2. Classifying2-homogeneous groups

Lemma 2.1. Suppos€G, I') is a permutation group, and that is transitive on't? and
that#G is divisible by2. ThenG is transitive on"®.

Proof. G contains an involutiom, which must interchange two poinds 8 of I". Let y, §
be arbitrary points of . Sinceg is transitive orl"{?, there isg € G with {«, 8}8 = {y, 8}.
Now eitherg orrg maps(«, B) to (v, 8) as ordered pairs, and sbis 2-transitive ol”. O

Theorem 2.2. Suppose&G, I') is a permutation group, and tha is transitive onI"@.
Then one of two cases arises:

(i) the groupG has a normal subgroug which is non-abelian simple, ar@; (S) = 1,
so the action of5 on S by conjugation gives an embedding®@finto Aut(S), or

(i) the groupG contains an elementary abelian normal subgrdapvhich is regular on
r.

In each case, the subgroug or V) is the unique minimal normal subgroup Gf
If G is transitive on'2 but not onI"® then G satisfies the conditions for casi)
above.

Proof. For 2-transitive groups the theorem is a result of Burnstgd&154, Theorem XIII].

If (G,T)is 2-homogeneous but not 2-transitive, th@rs of odd order, by the lemma
above. By the Odd Order Theorem of Feit and Thomp&dn is solvable. AlsoG is
clearly primitive, and a minimal normal subgroup of a solvable primitive group is both
elementary abelian and regular [9, Theorem 11.5]. O

In Theoren®.2, if the minimal normal subgroup ¢f is simple non-abelian, we say that
G is almost simple, while if the minimal normal subgroup®fs elementary abelian, we
say thatG is of affine type. IfG has an elementary abelian regular normal subgiouthen
its degree is a prime powep? say, andV can be regarded as a vector space dyelve
will write V additively.

Proposition 2.3. Suppose a permutation grogg, I') has an elementary abelian regular
normal subgroup of order p?. ThenG embeds in the group

AGL(d, p) = AGL(V) = {x > x" +v | h e GL(V), v € V}

of affine transformations of , with vV mapping onto the translation subgrodp = {z, |

v € V}, wherer, is the map which sendsto x + v. The permutation grougG, V) with the
action of G on V arising from this embedding @ in AGL (V) is isomorphic to the group
(G, T).
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Proof. See, for example, [6, §2]. O

The structure of the algorithm in this paper is a series of subroutines, each solving
problem of the following form.

Specification 2.4.Let C be a class 0R-homogeneous permutation groups.

Input A transitive permutation groupG, 2) of degreen = #Q > 1, wheren = (”2’) for
some integem, given by generatorgy, . .., g € Sym(<2).

Output A valueb € {TRUE, FALSE}.
If b = TrRUE, then aG-setT" of sizem, and a bijectiony : T'*?' — Q are also
returned, satisfyindy;, y5}n = ({y1. v2}n)® forall g € G, {y1, y2} € T2
If b = FaLSE then there does not exist a pdir, n) that satisfies these conditions,
and wherg(G, I') lies in the clas<®.

Notice that if€ is the whole class of 2-homogeneous permutation groups, then this |
exactly equivalent to Specificatidnl. If we have a finite number of subroutines . . ., Ax
satisfying Specificatio.4for different classe€1, . . ., G, respectively such that the union
of the G; contains the class of all 2-homogeneous permutation groups, then the followir
procedure satisfies Specificatitri.

1. Fori :=1to kdo

2. CallA; with input (G, ) and outpub, T, .
3. If b = TrUE then Exit with outpub, T, n.
4. End for.

5. Exit (with outputh, which iSFALSE).

In practice, we will use Theore2and the classification of finite 2-transitive groups to
obtain our classeas;. The primary division will be into four classes, osg containing all 2-
homogeneous affine groups over fields of odd characteristic (by Thebgthis contains
all the 2-homogeneous, non-2-transitive groups); anathecontaining the 2-transitive
affine groups over fields whose size is even and strictly larger than 2; aghéahtaining
the almost simple groups of Lie type whose socle is BSY), Szg) or R(g) for some
q; and a fourth clas& containing all the other 2-transitive groups. The claswill be
subdivided further according to the families of groups in the classification of 2-transitive
groups. The formal definitions of the main classes and the subclasgesithbe given in
Tablel on pagel20.

None of the results in this paper are dependent on the classification of finite 2-transiti
groups (or the classification of finite simple groups), except the result which says that tl
union of the four classes,, 4., £ andZ contains all 2-homogeneous permutation groups.

The organisation of the rest of this paper is loosely based around this subdivision in
classes of groups. In Sectiofiso 6, we will give a largely combinatorial solution for the
classz, and in the process of doing this we will develop some combinatorial technique
that will be useful later. In Sectior'sand8 we will cover the affine classes,, and,, and
in Section9 we will cover the one remaining clasg, The final section describes results
obtained from aGAP implementation of these techniques.

3. Solution subsets

In this section we characterize all solutions as arising in a particular way from a subs
of © (a so-called ‘solution subset’) satisfying certain properties. We give an algorithm t
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check whether a given subset®@atisfies these properties, and, if so, to calculate a solutior
(T, n) from it.

Definition 3.1. A solution subsedf Q2 is defined to be a subsatof 2, of sizem — 1, such
that (i) #4% = m (whereAC is the orbit containingd in the natural action o& on the
power set 0f2) and(ii) for all g € G, eitherA = A8 or #(A N A$) = 1. In this situation,
define the mape : (A%)2 — Q by {X, Y}u = w whereX NY = {w}.

Proposition 3.2. LetA be a solution subset 6f. Then(A®, 1) is a solution pairas defined
atthe very beginning of the papeand for any solutiorI", n), there exists a solution subset
A and corresponding map, and aG-isomorphismr : I' — A¢ such that) = ru (where

7 is lifted to mapl'{? to (A9)12}.

Proof. We show first thatA“, u) is a solution. To show this, we need to show thds a
bijection, and that it preserves the action@fThere existg such thatd$® # A, and so
A8 N A = {wo}, say. Letw € Q. SinceG is transitive o2, there isg € G with wg = w,
and now{A¢, A%98} = w, sou is surjective. Sinc€A )2 andQ have the same size, this
means that is a bijection. Letg, g2, ¢ € G. Then

[{AS18 A%28) ) = AS18 M AS28 = (ASL N A%2)8 = [(ASL N AS2)u)S

and so(A%, ) is a solution.
Now suppose thafl", ) is a solution. Foy € T, define

Ay={lr.y'Im| v eT\{y}}.

and for someyg € T, takeA = A,,. CertainlyAj = A,: forally e I'and allg € G,
sincen is aG-isomorphism, S!S = {A, | y € T'}. ThereforeA“ has sizen; it is clear
from the definition thatd has sizen — 1. If y1, y» € I are distinct then we have

Ay N Ay, = {{y1, v2ln} )

which shows that the intersection of distinct elementa 9thas size 1, as required, 4ds
a solution subset. Defineby yt = A, ; itis clear that this is &-isomorphism. It is now
evident from (1) and the definition @f thatny = T u. O

This means that we may restrict our search for solutions to the exterior square-root proble
for (G, Q) to a search for solution subsets.

Lemma 3.3. Let A be a solution subset. Then for eashe 2 there are precisely two sets
X € A% such thatw € X.

Proof. Certainly there at least two sek§ containingw, since the mapu is surjective.
However the number of elements in the union of the ses4rcounting repetitionss only
m(m — 1) = 2#Q. Therefore there are exactly two such sets containing O

We now give an algorithm for deciding whether a given subset Q is a solution
subset.

Proposition 3.4. There is an algorithm which giveA c Q of sizem — 1 will decide
whetherA is a solution subset, and find a solution péir, n) if itis, in O(sn) time.
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Proof. The algorithm is shown as Algorith@5. It takeg G, ©2) and the putative solution
subsetA as input, and outputs I,  as in Specificatiod.1, except that here if = FALSE
then we only know tha#l is not a solution subset, rather than that no solution exists.

The structure of the algorithm is basically that of a traversal of the graph with the point
of AY as vertices, and an edg¥, Y) for each of the original generators 6fthat maps
X toY. However, there are certain extra features that make use of the extra structure of 1
problem.

Algorithm 3.5. TestSolutionSubset(A)

1. Initialize W (w) := @ for all w € Q.
2. Foreachw € A, setW (w) := {A}.
3. Initialize Q := {A}, T := {A}, b := FALSE.

HereT stores the sets iA“ as they are found, and contains those sets fthat have been
found, but whose neighbours have not yet been checked. Foreacke, the setW (w)
will contain those elements df (that is, of that part of the orbit© so far discovered) that
containw.

At the start of the main loop, we choose a poththat has not been fully processed, and
process it by considering its neighbours:

4. While Q # ¢ do

5. ChooseX € Q, and setQ := Q0 \ {X}.

6 Forgin{gy,..., g5} do

7. FormsS := X$.

8. Choosev1, wp € S.

9 If W(wy1) = @ or W(wz) = @ or (#W(w1) = #W(w2) = 1 andW(w1) #
W (w2)) then

If the test in line9 is passed thes is a new element oAC. If it fails, then eithers is not
a new element oAC, or it is new, but there is another element4ff, which has already
been discovered, whose intersection witts not of size 1.

If the test is passed, we updafeandT'; if we have generated more thanelements of
A€ then we knowA is not a solution subset. We then updéte

10. SetQ := QU {S}andT :=T U {S}; if#T > m then Exit.
11. SetlU := .

12. Forw € S do

13. If#W(w) > 1Lor W(w)N U # ¥ then Exit

14. Else

15. SetU := U U W(w).

16. SetW (w) := W(w) U {S}.

17. End if.

18. End do.

We know that nd¥ (w) should ever contain more than two elements, and that nditéo)

that both contain two elements should ever be the same. If either of these situations ari
we can immediately deduce thatis not a solution subset. If neither of these situations
arises in any of théV (w) corresponding to those € S, then we can updat# by adding

S to theseW (w). This concludes the processing in the case where we have a possible ne
member ofS, and we now turn to the other case:
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19. Else if #),cs W(w) # 1 then Exit.
20. End if.

This ‘else’ matches the ‘if’ in lind, so if this code is executed then we know that either
is already inT', or it is not but either has intersection of size greater than 1 with an elemer
of T, or contains a point that already lies in two different element&.of he test in this
line determines whethet is already inT'; if not, then the program concludes thais not
a solution set; otherwise, we continue, ready to consider a new eleiment

The loops now repeat, and so we traverse the erBiin the usual way.

21. End for.

22. End while.

23. If #T = m then

24.  Setb := Trug, I := T and define; : T? — Q by {X1, X2}n := w, where
{w} = X1N Xo.

25. End if.

26. Exit.

If the loops are completed theh= A, so if the condition in the final ‘i’ statement is
true thend© has sizen, andm — 1 copies of then elements 0fA® have been formed into
m(m — 1)/2 setsW (w) in such a way that n& (w) contains more than two elements, and
everyW (w) is different. Therefore all th& (w) are pairs, and

(W) | we Q) =A%,

ForanyX e T,X ={w e Q | X € W(w)}, and therefored N A8 is eitherA itself or has
size 1, sincd = A%, and soA is a solution set. It now follows from the earlier results on
solution sets thatl", ) is a solution, wher& andn are as defined in the algorithm.

When implementing this algorithm, we can number the elemerfissfthey are created,
and use these index numbers, instead of the elemeritsledmselves, as the elements of
W, U and Q. Under the (standard) assumption that manipulations with natural numbers
magnitudeO (n) can be made in constant time (see the beginning of the paper), this enabl
us to implemen® so that all references to it require only constant time, to do the test ir
line 9in constant time, and the testin lia®in O (m) time (recall that each (w) has size at
most 2). MakingS can be done i (m) time, as can addin§ to 7. This is also the case for
the inner ‘For’ loop, if we implement the sét as a look-up table indexed by the numbers
1,...,k, so determining whether a particular number lied/iriakes constant time. The
main loop (lines7—20) is executed no more tham times. Thus the overall complexity of
the main loop is0 (sm?), that is, O (sn).

Extending the idea of the index numbers, we can refuea {1, ..., m}; if g € G then
the image of € I' under the action o can be found by taking two points;, wy in the
set inT corresponding t@, and then$ is the one point in the intersection W(a)f) and
W(wg). Calculating the images of the generators in this way requirgs:) time.

Computing the map still requires onlyO (n) time, as we can do it in reverse: to create
an array indexed by'{? containing the image of that pair under the mappingve can
take eachw € 2, read off the corresponding pair of indices fra¥i{w), and entet in the
appropriate place in the array.

Therefore the given algorithm can be implementedian) time. O
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4. The adjacent-point set

We now introduce another type of subsetnfwhich also characterizes solutions, and
which is easier to find in practice. We give an algorithm for testing whether a given subs
is of this type and, if so, for constructing a solution.

Definition 4.1. Suppos4T, ) is a solution, and € Q. Define
Ar(w) = {a)’ €Q| o't Nnont £ (/)} .

ThusAr(w) is the set of the images undeof all those pairs in" 2 that are ‘adjacent’
to (have non-trivial intersection with) the pre-image:0fThis is aG ,-invariant set of size
2m — 3, containingw. The subscriptl is used to indicate the dependenceAgf on the
solution (T, n); perhaps better, but cumbersome, would be to includethe notation as
well. When a solution is given in terms of a solution subsgso that” = A¢ andn = pu,
we will use A 4 instead ofA 4¢. If A is a solution set, then there are group elements
andg> such thafw} = A81 N A82, and then it is easily checked thafy (w) = A8t U A82,
Clearly, Ar(w)8 = Ar(w?) forall g € G.

Now suppose we have @, -invariant subsef. of  which containsw and has size
2m — 3. We can decide whether or not there is a solutiory) such thatAr(w) = L, and
find one if one exists, as follows.

Algorithm 4.2. TestSet(w, L)
m

Input Generators for a transitive permutation grodg, 2) of degree#Q = n = (2)
wherem > 4,
a pointw € 2, and
a G, -invariant subseL of Q of size2m — 3 that containsw.

Output A valueb € {TRUE, FALSE}.
If b = TRUE, then aG-setT" of sizem, and a bijectiony : T2 — Q are also
returned, satisfyindyy, y5}n = ({y1, yoin)¢ forall g € G, {y1,y2} € T'?, and
with Ar (@) = L.
If b = FaLse then there does not exist a pdir, ) that satisfies these conditions.

1. Construct a sef; of translates ofL, stopping when two elements; and L, of
771 intersect in a set of size precisehy, or when #7 > m/2; if this limit is
exceeded without finding; and L, then Returrb := FALSE.

2. SetP := LN Lo.

3. Construct a sef of translates ofP, stopping when two elemeni¥ and P, of 7>
intersect in a set of size precisely — 1, or when #2 > m; if this limit is
exceeded without finding; and P, then returrb := FALSE.

4. SetB := PN Ps.

5. TestSolutionSubset(B).

The algorithm require® (sn) time.

Proof. We prove that if there exists a solution subgeguch thatA 4 (w) = L, then the set
B computed by the algorithm is a solution subset, Andw) = L. It then follows that the
call to TestSolutionSubset yields the correct answer. So suppose that such a saleseasts.
We can takd™ to be the set¢ of translates ofA. We have /A (%) = LS forall g € G,
so each translate df is an adjacent-point set.
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We consider the intersection of distinct adjacent-point sets. Suppoge ) = ASi UAS:
fori =1,2. Then

Aa(@1) N Ap(wp) = (AST U AS1) N (A%2 U A%2)
= (A1 N A2) U (A%1 N A%2) U (A% N A%2) U (AS1 N A%2).

As the A 4 (o) are distinct andi is distinct fromASi fori = 1,2, only two cases arise:
either all the four setd 8, A% are different, or there is one pair the same and the others ar
different; in that case we may without loss of generality assumeAfiat= As2.

If all four sets are different then by Lemn3a3, the intersection 4 (w1) N A 4 (w2) has
size 4. IfA81 = A$2 then

Ax(w1) N Ag(wz) = AT U (ASL N AS2),

which has sizen. Sincem > 4 the algorithm can distinguish between these two cases, an
the intersection of.1 and L» falls in the second case. Note that therearganslates of
A in T', and each translate d@f contains two translates of. If the pairwise intersections
of all the elements of; fall in the first case above, then the translated afivolved in the
elements offi; must all be different, so in this caSg can have size at mogt/2. Therefore,
if a pair L1, L exists, we must have found such a pair by the time we are processing tt
(Lm/2] + 1)-th distinct translate of.

For the next step, we can assume that A1 U (A2 A”3) for some distincid”1, A"2,
Ahs_ Translates oP are also of this form. Lett1 U (A2 N A"3) and A" U (A2 N A%3) be
distinct translates of, and consider their intersection.Af't = A1 then the intersection
containsA’; as the two translates are distinct and the siza’sfis only 1 less than that
of P, this must be the whole of the intersection. Thus in this case the intersection has si
m — 1 and is a solution set, as it is a translatedoBISOA 4, (w) = A (w) = L.

If AM - A" then their intersection has size 1; the only other points that could possibl
lie in the intersection of the two translates Bfare the points in the two singleton sets
Ah2 ) Ahs and A2 N A”3, so the intersection of these two translate® dfas size at most 3,
and asn > 4 the algorithm can recognise when the intersection is ofigizel. Observe
that if the set; of translates of is such that none of the pairwise intersections of elements
of 75 has sizen — 1, then the size df is at most#n, since each element 6 must contain
a different translate oAl

To implement the algorithm in the stated time bound we use a method similar to th:
of Algorithm 3.5. Consider the calculation 6%, which is shown in more detail in Al-
gorithm4.3 on pagell7. For each poirg of Q we store a listW (&) of elements ofr;
containing that point. To process a new translgtef L we use a listC indexed by7i,
whose entries are initially 0. For each pointf S, we find the list of elements of; con-
taining &, and for each elemerit of that list, incrementC (7). We thus find out the size
of the intersection of with each element of;. We use index numbers to represent the
elements off1, as in the implementation of Algorithi®.5. This enable$V, Q andC to
be manipulated quickly. The outer two loops execQtens) times, as #; is O (m). We
show that the body of the inner of these two loops, from lirie line 25, always executes
in O(m) time, except during the last iteration, when it execute®m?) time. This will
be clear if we can show that ;. #(SNT) is O (m) or 0 (m?) respectively, since all lines
apart from the nested loops calculati@gclearly run inO (m) time (if S is added tar” in
line 15, then it will be assigned an index number that will enable the subsequent updatil
of W (&) to be completed in constant time for eack S).
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Algorithm 4.3. Implementation of Step 1 of Algorith#.2

1. Initialize W (&) := @ forall & € @;

2. Foreactt € L setW(¢) :={L};

3. Initialize Q :={L}, 71 := {L};

4. While Q # ¢ do

5. ChooseX € Q,and setQ := 0\ {X};

6 Forgin{g1,..., g5} do

7 FormsS := X$;

8 Initialize C to be the zero function frorfi; to N;
9 For eaclt in S do

10. For eaclf" in W(¢) do

11. IncrementC(T);

12. End for;

13. End for;

14. IfC(T)=4forall T € 77 then

15. AddS to Q and to77;

16. If #71 > m/2 then exit withb := FALSE;

17. For& in S do

18. AddS to W (€);

19. End for;

20. Else if there exist¥ € 77 such thatC(T) = m then
21. ExitwithLy, Lo := S, T;

22. Else if there exist¥ € 71 such thatC(T) is not 4,m or 2m — 3 then
23. Exit withd := FALSE;

24. Else do nothing (% is already in77 *);

25. End if;

26. End for;

27. End while;

28. End (* This point will not be reached—one of the exit conditions above will be
satisfied first *).

Certainly) ;. #(SNT)is 0 (m?) since each intersection has size at mast23. If
this iteration of the main loop body is not the last then: every intersection has sizer4,
2m — 3; at most one has sizen2— 3 (as all entries ity are distinct); and none has size
Thus) ;. #(S N T) is at most 21 — 3 + 4#77, and s0 iSO (m).

A similar method is used to finé; and P, in the same time bound, and the other steps
of the algorithm can be implementeddn(sm?) time. The result follows, sinc® (sm?) is
the same a® (sn). O

Observe that we have not used the fact tha& G, -invariant at any point. However, we
will later use this requirement to restrict the possible candidates for the set

The following variant works even in the case= 4, but requires a Schreier tree and so
does not have such good asymptotic properties.

Algorithm 4.4. TestSet(w, L)
DefineL,, = L and fore’ € Q, defineL,, = L& wherew® = «'. This is a valid definition
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sinceL is G -invariant.

. Choosev; € L, \ {w}.

. Choosevy € Ly, N Ly, \ {w, w1}.

. LetX =L, N Ly, N Lg,.

. If#X =3thenB := L, N L, \ {w2}
. ElseB := X.

. TestSolutionSubset(B).

oOuUlh WN P

The proof is similar to that of the previous version, and is omitted here. Note, howeve
that whernm = 4, the solution subse® constructed by this algorithm may not actually be
a translate ofA (since whenn = 4 andA is a solution subsef2 \ A is also a solution
subset).

5. Using adjacent-point sets

We now use the results of the preceding sections to give an algorithm to handle one
the classes of groups introduced at the end of Setion

For a positive integek we will use the term ‘partition ok’ to mean a collection of
positive integers, possibly with repetitions, which sumktd-or a finite collectionS of
finite sets, define the functiop(S) = {#x | x € S} to give the partition of) " ¢ #x
corresponding to the sizes of the element§ ¢fiote that repetitions are not eliminated on
the right-hand side).

Recall thatZ is one of the classes of 2-homogeneous groups mentioned in S&¢tion
containing most of the almost simple 2-transitive groups and a few of the affine 2-transiti
groups. We will work with subclasség of Z. With each subclasg; we will associate two
functions. The functio/; will take a degree:, and give a partition of the numbem2- 4.

The functionr; will map the degree: to a natural number. We will choose the classes and
functions to satisfy two conditions for ea¢hin Z;. Let(H, I') € Z; have degree: = #T",
letw e I'? and letS be the collection of{,,-orbits onI'#2'. Then the following conditions
will hold:
(i) p{xesS ’ x € Ar(w)\ {{w}}}) = M;(m) (so the partition of & — 4 corresponding
to the H,,-orbits contained in the adjacent-point seMs(m));
(i) #{L € P(S\ {{w}}) | p(L) = M;(m)} < ri(m), whereP means ‘power set of’ (so
the total number of collections df,, orbits whose lengths partitiom2— 4 in this
way is bounded by; (m)).

We will also ensure that the functiong; andr; are easily computable.
A procedure fulfilling Specificatio.4 for the classz; is as follows.

Algorithm 5.1. TestClassZ;

Calculaten such thafy) = #.
If there are no groups i#; with degreen then exit withb := FALSE.
Fixw € € and calculate the collectiosiof G,,-orbits on<.
IfF#{L € P(S\ {{w}}) | p(L) = M;(m)} < ri(m) then
ForallL € P(S\ {{w}}) with p(L) = M;(m) do
TestSet(w, L U {w}); if b = TRUE then exit (with outpub, ', n as returned
by TestSet).

ok wnN e
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7. End for.
8. Endif.
9. Exit withb := FALSE.

The idea is that if G, Q) is the action on pairs of one of the groupsn then the
conditions on the lengths of th&,,-orbits making upAr (w) reduce the possibilities far;
not only that, but we know that this restriction must limit us to at mpgt) possibilities
for L—if there are more, we do not have to test any of them.

The setS can be formed ir0 (sn?) time, using the Schreier generatorsf. The re-
mainder of the time taken by this procedure is dominated by; the calls to the subroutine
TestSet, which has complexity) (sn).

Tablel uses Theorer.2and the classification of finite 2-transitive groups to classify all
the 2-homogeneous groups, giving the class, (4., £ or one of the classes;) for each
type. It gives details of the orbit lengths far-(w) and, for the groups of class, for which
TestSet is to be used, the functiof(m). For most types, the ‘Description’ column contains
a normal subgroup of the group in question, and each line represents several groups
contain the group listed as a normal subgroup.

Note that the lengths of th& ,-orbits making upAr(w) are only given for some of the
2-transitive groups and, where they are, the table actually gives the lengths of the orb
of the two-point stabilizeG, g in the 2-transitive action of the group. To obtain iig-
orbit lengths forA(w), replace the initial pair of ‘1's by a single ‘1’, and then double the
lengths of all other orbits. This is because if tig g-orbits onI" are{«}, {8}, T, ..., Tk
then theG, g)-orbits that make up\r ({«, B}) are{{«, g}} and the orbitg{e, 7} | t €
T;} U {{B, 18} | t € T;} whereg interchangesr and 8, andi runs from 1 tok. Such ag
exists because the groups under consideration are all 2-transitive. (Nogenbiathalizes
G, p and soT® is always aG, g-orbit.)

For certain affine groups, some orbits are denoted by the IEttdihis can be read as
‘1, 1, divisors ofe summing tog — 2. These orbits depend on what field automorphisms
are present in the group. The reason for the notation will be explained later, followin
Proposition8.3.

The table is derived from a similar one in [3], with a couple of corrections and som:
reorganisation. The functiomswere calculated by hand with assistance fiGAP [8]. Note
that, in order to calculate these functions, we need to know the sizes of &l tloebits
on €, and not just the number of such orbits. In most cases it is relatively straightforwar
to analyse the orbits o, on @ = I'?| to give the results as shown. For type 10, the
alternating and symmetric groups, we can tgke:) = 1 except whem: = 7. For type 11,
PSL(d, q), there are at mosly + 2)/4 suborbits of size @ — 1) and at most 4 of size
2¢%(g92 — 1)/(g — 1). Type 16, clas€g (symplectic groups ove) is harder. In this
case the number of suborbits on pairs is at most nine (for any valdg dhe author is
unaware of any published version of this resélppendix Acontains a calculation of the
lengths of these suborbits, from which it follows thatn) = 1.

It will be seen from the table that the worst-case asymptotic size of any of(he is
0 (m?), and soTestClassZ; has asymptotic complexitg (sn?), since we can also finé
in that time. It follows that we can handle the whole cl&ss= Uilil Z; in O(sn?) time.

In fact,r; is bounded by a constant for all classes exé&pntz; andZsg, so if we know the
G ,,-orbits in advance we can handle alldexcept these three subclasse®i@n) time. In

Section6, we present a® (sn logn) algorithm to handle the clasgs. The algorithms for
classL (Sectior) handle the remaining classes, in which the groups have socli@RBl
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Table 1: 2-homogeneous groups

(a) Affine Groups
Type Cl. Dimension Field size  Description G, p-0rbits ri(m)
1 A, d>?2 g=2°>2 T.SLd,q) K,q¢? —¢q
2 A, d>2,even g=2¢>2 T.Sp(d,q) K, g9 1 —¢q,
multiples
of qd—l
3 Ao d=26 qg=2°>2 T.Gag) K,q%—q,
q°—q>
multiples ofg®
4  Z d>?2 g=2 T.SL, 2) 1,1,20 -2 1
d=4 T.A7
5 Z, d>2een qg=2 T.Sp(d,2) 1,1, 21— 1
d=4 T.Ag 2d _d-1
6 Z3 d= g=2 T.Gy(2) 1,1,6,24,32 25
6a Za T.PSUS3,3) 1,1,6,16, 35
16, 24
7 A, d=2 g=2>2 T.SL2 q) K,
multiples ofg
8 A d=1 gq=2°>2 G<AIL(1,q) K
9 A, d>1 p odd G <ATL(, p)
(b) Almost Simple Groups
Type Class Description Degree (m) G, p-0rbits ri(m)
10 Zs A,,m>5 m 1,1,m -2 2
11  Zs PSLd,q),d >3 qq"_‘ll 1,1, -1, g+2
Ar(d=4,9=2) (T
12 Z7 PSL2.¢),q>4 g+1 1,1g-1or 3(qg+2
Zg 1,1,3(q-1, (q+2?
3(qg—1)
13 L S#qg),q=22t1d>1 42+1
14 £ PSUB,q),q>2 g3 +1
15 £ R@,q=34"1a>1 ¢3+1
PI'L(2,8) (g = 3)
16 Zo Sp(AU,2),d >3 2-12d+1) 1,1, 1
2292+ 1)
-1,
22(d—1)
17  Zio Mg, ke {11,12 k 1,1,k—2 1
22, 23,24}
Z11 Mn1 12 1,1,10 1
Z1> PSL2, 11) 11 1,1,3,6 8
Z13 HS 176 1,1,12,72,90 6
Z14 Cos 276 1,1, 112,162 1
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as these groups are of Lie rank one, just as are the other groups offcl@ke algorithm
presented there runs in nearly linear time, so is asymptotically better than that presen
here. The main reason for including these groups in the @dsghat in practice one may
find the the simpler algorithm presented here more useful.

6. Improved algorithm foPSL(d, ¢)

For type 11, PSld, ¢), we have M1(m) = {2(g — 1), 2g%(¢%=2 — 1) /(¢ — 1)} where
m = (g% —1)/(g — 1) andd > 3. There are at most 4 suborbits of the larger size,
2¢%(q92—1)/(qg — 1), but there can (depending on what extension of @Sk) we have)
be up toO(g) suborbits of the smaller size, and so the algorithm given in the precedin
section has complexit§ (snq), which (ifd = 3) can be as much a&(sn°/4). In this section
we present a variation on the theme of the preceding section that yields an algorithm f
PSL(d, ¢) for a fixed pair(d, g) wherem = (¢? — 1)/(q — 1) and(d, q) # (3,2), whose
complexity isO(snlogn). (If (d,q) = (3,2) then the original method will have to be
used.) We use the disparity in the sizes of the two suborbits to avoid searching through
the possibilities for the smaller suborbit.

Algorithm 6.1. TestPSL(d, q)

Input A set ofs generators for a transitive permutation grog@, 2) of degreetQ = n =
(3),apairofintegersd, q) whered > 3,q isaprime powerd, ¢) # (3,2)andm =
(g —1)/(g—1), apointw € 2, and aG,-orbit O C Q of size2(¢¢2—1)/(g—1).

Output Eithera G,-orbit O’ of © of size2(q — 1) such that if2 is G-isomorphic to"{2
where(G, I) is the2-transitive action of an extension BSL(d, ¢) onPG(d, ¢), and
O C Ar(w) thenAr(w) = {w}UO U O, or
FALSE, meaning that it is not the case th@tis G-isomorphic tol't?! where(G, I') is
the 2-transitive action of an extension BSL(d, g) onPG(d, ¢), andO C Ar(w).

=

LetL = O U {w).

2. Form a Schreier tree of translated gfwith edges labelled by the generato®that
was used to perform the translation. For each new translate formed, determil
the size of its intersection with each of the translates already found, and stc
when a paill.1, L, of translates intersect in a set of size greater than 4, or wher
lm/2] + 1 translates have been found.

3. IfapairLj, Ly were found with #L.1 N L2) > 4 then

4. Letg € G be such thalL; = L8 (g will be obtained from the Schreier tree as a

word of lengthO (m) in the generators fof).

5. If there is precisely on& ,¢-orbit O” of size g — 1) that intersectd., \ L1
non-trivially, then returr0’ := 0”5’71; else returrFALSE.

Else

ReturnFALSE.
End if.
End.

©ooNoe

The algorithm runs irO (sn) time.

Proof. Assuming that a solution set exists withL C A 4(w), every translate of. is a
subset of the corresponding translate/of (w). So the same cases arise as in the proof
of correctness ofestSet. Let L1 and L, be distinct translates df, and A; and A» the
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corresponding translates of4 (w). It could be the case that; = A, in which case the
intersection of.1 andL, must have size at least2g%(¢%~2—1)/(g—1)—2(qg — 1), which
is bigger than 4. If (as we supposelh) # Lo, thenL> must have non-trivial intersection
with the missing suborbit (of the conjugat®,: of G,,) which formsA1 \ L1, and in fact
all of L, \ L1 must be contained within this suborbit. Thus the subotBifound by the
algorithm is correct in this case.

Another possibility is that the intersection 4f and A2 has sizen. In this case exactly
half of L1 \ {w1}, and also exactly half af2 \ {w>}, will lie in the intersection of.; andL2
(herew; is the image ofv under the transformation used to obtdinfrom L). Therefore
L1 N Ly has size at least + ¢%(¢?~? — 1)/(g — 1) — (¢ — 1), which is greater than 4
since(d, ¢) # (3,2), and at most ¥ ¢2(¢¢=2 — 1)/(qg — 1), and is contained within the
intersectionA1 N As.

In this case we study the geometry more closely to showlthatL1 will meet exactly
one suborbit of size@ — 1), which will be the one needed to extehdto fill the whole of
A1 LetV = E4, withT = PG(V). We haveA; = A4 ({a;, i) for somew;, B; € I' and
i =1,2. Since #A1 N A) = m, we may assume that = ap, and that the three points
a1, B1 andpBy are distinct. Lety;, b; € V be such that; = (a;) andg; = (b;) fori =1, 2.
LetX; = {x e T\ {o;, Bi} | x C (ai. b))} andY; = {y € T | y ¢ (a;, b;)}, S0 the orbits
of G, g ONT arefa;}, {B;}, X; andY;, and #; = q — 1, #; = ¢°(¢* 2 - 1)/(q — 1).
Finally, we have thaL; = {{o;, Bi}} U U, ey, {ei, ¥} {Bis v}

We consider the7,, g,;-orbits that meeL, \ L1. There are two cases, depending on
whetherss liesin X1 orinYy. If B2 € X1 thenbs € (aj, b1), andinfactas, b1) = (a2, b2),
so Yy = Y». It follows that anyGq, g,}-0rbit containing a paif8,, y} for somey € >
must have size at least that Bf, sincey € Y1 andg, ¢ Y1. The only otherG 4, -
orbit containing a pair il \ L1 is the one that containg,, 82}, which is the suborbit
UxeXl{{al’ x}, {B1, x}} of size g — 1) that equalsA1 \ L1, and is thus the suborbit that
we seek. As ¥1 > 2(g — 1), this is the onlyG s, g,;-0rbit of size 2g — 1) that meets
Lo\ L.

On the other hand, i, € Y1 then anyG e, g,}-orbit containing a paifgs., y} for some
y € Y» must have size at Ieaé#Yl, sinceBz € Y1. The only other pairs iy \ Ly are
{ag, y}fory € Yo\ (Y1 U{B1}); asY2\ Y1 = X1 U{B1}, these pairs lie in th& ,, g,;-orbit
of length 24 — 1) that we are seeking. A%#Yl > 2(q — 1) since(d, q) # (3,2), thisis
the onlyG ., g,)-0rbit of size 2g — 1) that meetd., \ L;.

So we have seen how two of the possibilities fof N A2 enable us to identify the
suborbit that we need to exteiid to the whole ofA 1. The final possibility is that\1 N A2
has size 4, in which cade; N L, has size at most 4. Observe, a3éntSet, that by the time
we have consideregdn /2] + 1 distinct translates af, we must have found two of them,
L1 andL», say, whose intersection does not fall into this third category.

The algorithm can be implemented in much the same walgsiSet, and in the same
time bound. O

Obviously, the intention is that ifestPSL returns a suborbiD’ then we formL =
O U O’ U {w} and pass it tdestSet, which also has complexit@ (sn) and only needs to
be called once after each callTestPSL.

To complete our discussion of groups of Type 11, we need to consider how many differe
pairs(d, ¢) there can be, satisfying? — 1)/(¢g — 1) = m for a fixed value ofn. Note that
there can be more than oreeg.,31 = (2°—1)/(2—1) = (5 —1)/(5—1). Itis easy to see
that for a particular value af there can be at most one suitable valug odis the equation
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x?4=1 4 ... 4+ x + 1 = m has exactly one positive real solution. As> ¢?~1 > 2¢4-1 we
must havel — 1 < logm (logarithm to base 2), so there ab&logm) possible values aof
and so0 (logm) pairs(d, q).

Since there are at most 4 suborbits of sizg?2? — 1)/(¢ — 1) and so at most 4 calls
to TestPSL are needed for each pait, ¢), we can conclude that at moSt(logm) calls to
TestPSL, and accompanying calls f@stSet, are necessary to handle the class, which
can therefore be handled ((sn logn) time.

7. Affine groups of odd characteristic

We consider now the class of affine 2-homogeneous groups, and look for a procedt
satisfying SpecificatioB.4, taking® to be this class. Thusis a vector spack of dimension
r over a prime fieldF,, som = p". ThenG is a subgroup of AGLV) = AGL(r, q)
containing the translation subgrop In this section we shall assume that- 2, and that
(G, T is a group from the clasg,, the class of all 2-homogeneous affine groups defined
over finite fields of odd characteristic.

First, we give an important lemma, which applies for both odd and even pgimes

Lemma7.1. LetG = AGL(r, p), andV = ;. Letxy, ..., x; be a collection of vectors
in V, such that the number of vectors is not divisible by. Then there exists a vector
v € V such that for allg € G which leave the collection of; invariant, (i.e., there exists
a permutationr, of {1, ...} such thatxig = xix, forall i), thenv® = v.

Proof. Letv =¢~1 Zﬁzl x;, Sov is the average of the vectatg which exists since and
p are coprime. Let € G leave the collection of; invariant (as described); then

t t
fo = in. (2)
i=1 i=1

Write g as a composite of a linear transformatiore Gy, followed by a translation by a
vectorz € V, viz. x¢ = x" + z for all x € V. Then, using the linearity of,

! h
v8 = t_l(in) +z
i=1
t
Y
i—1
t

= f_lz(x,‘-g -2 +z

i=1
Then, by (2),
t
8 = lex,- —t7 Yz 4z =.
i=1

We apply this here in the cage# 2, and later in the case = 2.
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Corollary 7.2. Letp be an odd primei; < AGL(r, p) andV = [F,". Suppose\ is a block
of imprimitivity of (G, V{?) of size not divisible by. Then there exists € V such that
the setwise stabilize (4} of A is a subgroup of,.

Proof. Write A = {{u;, v;} | 1<i <#A}. InLemma7.l, taker = 2#A andx;_1 = u;,
X2i = V;. O

In the following theorem we make use of the one-to-one inclusion preserving correspo
dence between blocks of imprimitivity containing a painand subgroups containing the
stabilizerG,, (see [4, Theorem 1.5A], for example).

Theorem 7.3. Let p be an odd primeG < AGL(r, p) andV = E,, and suppose thak is
transitive onV1?. Let A be a maximal block ofG, V2!) subject ta#A not being divisible
by p. ThenGa, = G, for some vectop € V, and#A = (p" — 1)/2, so the block system
A9 has sizep’.

Proof. Fixw € A, s0 G, < Gyay. By Corollary7.2, there i € V such thaiGia, < G,.
ThenG,, < G, and saw®" is a block of(G, V{2 that containsA and has size

|Gy : Gol =1G : Gul/IG : Gyl = (p" = 1)/2,

sinceG is transitive on bott{? and V. This is not divisible byp, so by maximality of
A, we haveA = w%, and soG(a} = G,. By transitivity, the block system\¢ has size
HQHA = P O

Since transitive actions of the same group with identical point stabilizers are isomorphi
Theorem?7.3 suggests the following approach to Specificatiof for the classA, of 2-
homogeneous affine groups defined over fields of odd characteristic.

Algorithm 7.4. AffineFindBlocksOdd

1. b := FALSE.

2. If there does not exist an integéiand odd primep such that£ =n = (’g) where
m = p? then Exit.

3. SetB to be a system of blocks of imprimitivity faiG, €2) where the blocks have size
not divisible byp, and are maximal in this respect.

4. If#B # m then Exit.

5. Decide whether the group actiof@, ©2) and(G, B2 are isomorphic, and if so, set
b := Trut and find a solutior(I", ).

6. Exit.

The block systen® can be found by using an adaptation of an algorithm of Schénert anc
SeressT]. The algorithm given in7] tests deterministically i) (n log® #G + ns log#G)
time whether a transitive group is primitive by finding one minimal block; the authors
mention the possibility of extending it to find all minimal blocks, which enables us to finc
B by making a series of at most lagcalls to this algorithm.

It is claimed in [7] that the extended algorithm runs in the same deterministic, nearl
linear, time bound as the original algorithm, which is true if the orbit& gfare known in
advance, or if an explici® (log #G) bound on the length of subgroup chaingins known
in advance (otherwise every block found has to be checked, which tafses time, and
there can b& (n) blocks to test). In this case we know thatifis a subgroup of the affine
group AGL(d, p) then #G < p?“+D so log#G < %(logn + 2)logn. As a consequence,
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we have an explicit bound on the length of a chain of subgrougg.nfand so we obtain
a deterministic nearly linear time algorithm, even in the case where we do not know tf
orbits of G, in advance.

Similar techniques can be used to improve the calculation of Schreier trees. The cut
doubling routine from 1] normally builds a Schreier tree of depth at most 2 l6gith
O(sn + nlog? #G) time, so now the Schreier tree can be assumed to have depth at mc
log? n, and can be built ir0 (sn + nlog*n) time. As before, if this bound for log@ is
exceeded during the calculation, we can stop, knowing that the group cannot be affine act
on pairs.

(In practical implementations, the Schreier tree would normally be calculated by th
straightforward breadth-first search method, which is quick and usually yields a muc
shallower tree than th@ (n) worst case.)

A system of look-up tables will enable us to compute efficientlygirand thus inB!?},

To test whether the actions are isomorphic, we first check(tfiaB?) is transitive, and
then search for a point’ in B'? that is fixed byG,, for some poiniw € Q. If »’ exists then

the mapw'® > ¢ determines & -isomorphism. We use a generating setdgy to find

o', and the time taken i® (tn) wherer is the size of the generating set Gy, . If no better
generating set is available, then the Schreier generators can be calculated one by one
and their fixed points i8B! found; this can be done i@ (sn?) time if a whole transversal

is explicitly calculated and stored in a preprocessing step.

A better technique would be to calculate a sufficiently large random subset of the Schre
generators, such that the orbits of the subgrBugf G, generated by this set do not change
with the addition of, say, one or two more random Schreier generators, and ebloose
B2 to be fixed by this subgrouff. If no suchw’ exists, then the two actions cannot be
isomorphic; if such ary’ does exist, we can then find the isomorphigrexplicitly by
doing an orbit calculation oG, ), starting atw, and, as each new point is discovered,
calculating the corresponding point Bf2 from those already calculated. This will take
O(sn) time.

From this isomorphism we can construct a set which should be’ (i in fact in-
variant under the whole of;,) a solution set, and test this set using Algoritiib
(TestSolutionSubset), again inO (sn) time. If this test is failed then we go back and calcu-
late more Schreier generators, thus enlarging the subgtop G, and try again. This
technique therefore gives a randomized algorithm that cannot give a wrong answer, and
though itis not easy to give a useful estimate on the expected number of Schreier genera
needed, it will lead to a practical Las Vegas solution, most of which runs in nearly linee
time.

It is a theme of the rest of this paper to show that if the orbit€&;gfare known in
advance, then there is a deterministic nearly linear algorithm available for Specifization
for the appropriate clas8. Although there seems to be no obvious way to construct an
isomorphism betweef and B'? in this time bound if just these orbits are available, we
can do so (by the above method) if a suitably small subsét,of available that generates
a subgroup that has the same orbitsbasG,, does. In fact, we only need a subgroup of
G, that has the same fixed points@g, and it is easy to see how this may be constructed
from the orbits ofG,, in nearly linear time by iterating over the height of a subgroup chain
in such a group. At each stage we choose a poiithat is not moved by the subgroup so
far constructed but is moved lgy,,, and look at the action of the Schreier generator&on
until one is found that moves it. Of course, there is a certain pointlessness to this argum
(how did we obtain the orbits afr,, in the first place?) but it has been included here for
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completeness, to show that there is a deterministic nearly linear algorithm for this case
only the orbits ofG,, are known in advance.

Returning to the situation where no extra information ali@ytor its orbits is known in
advance, note that if Algorithr@.5 could be adapted to calculate (in nearly linear time) an
elementofG,,\ H whenitfailed, then we would have a deterministic nearly linear algorithm;
alternatively, if a suitably fast technique for producing genuinely random Schreier generatc
were available, then we would have a nearly linear Las Vegas algorithm. Finally, the Mont
Carlo method in]] could be used to provide a strong generating set with high probability
and this can be used to obtain generatorgiigr As explained earlier, the loggterms in
the analysis of this algorithm can be improved to?egn this situation using the known
bound on the size of the groups being sought. The technique outlined above can then
used to convert this into a true nearly linear Las Vegas algorithm, albeit not in a way th:
would actually be used in practice unless a strong generating set were needed for ot
reasons.

ThereforeAffineFindBlocksOdd can be implemented deterministically @(sn?) time,
deterministically in nearly linear time if the orbits 6f, are known in advance, or in nearly
linear Las Vegas time.

This concludes the analysis in the case- 2 (class#,), SO we now consider the case
p = 2 (classA,).

8. Affine groups of characteristiz

We consider now the clas$, which contains most of the affine 2-homogeneous groups
defined over fields of characteristic 2, and look for a procedure satisfying Specifization
takingC to be this class. The precise definition of which groups lie in this class is containe
in Table1; we explain below why the class has been defined in this way.

We assume thatG, Q) is the action on pairs of a permutation gro(@, I') that lies
in the class,.. From Tablel, there are well-defined parameters (well-defined becaust
the different rows of Tabld are disjoint)p, ¢, d, e such thatl’ is a vector spac& of
dimensiond over the fieldF,, wherep is prime (in factp = 2 in this section) ang = p°¢,
som = #I' = ¢¢ = p?¢. ThenG will be a subgroup of KL (V) = AT'L(d, ¢) containing
the translation subgroup’. ThereforeGg is a semilinear group ovef,. Note that, in
writing our algorithm, we cannot assume knowledge of these parameters: since we W
havem = ¢ = p¢ we will very quickly be able to identify» and the productle, but
some work will be needed to determidende (and hence) from the productie.

Some results, principally Propositi@l and Theoren8.2, will require only thaiG is
a subgroup of AGlde, p), and hence thaGy is a linear group over the prime fielg}
(observe that AL (d, g) can always be regarded as a subgroup bf.Ade, p), and that
ATlL(de, p) = AGL(de, p) asp is a prime). Later results will require thét be defined
as a subgroup of BL (d, q) wheregq is strictly larger than 2. The reader will observe from
Table1 that in order to enable us to make this restriction, the few groups for which this i
not the case have been moved from clasgo the classz. In Sections we took advantage
of the relatively small number of suborbits that these groups have to give an algorithm f
them based on entirely different methods.

Our strategy can be outlined as follows: we first show that if we know the action ot
orderedpairs, we can apply the same techniques as in the odd characteristic case to fin
block system on which (if; really is the action on pairs of a group.t,) G acts as it must
onTI'. We then study the suborbits of the actions on pairs of groups in the different row
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of Tablel, and give a means of identifying candidates for the stabilizer of an ordered pa
(which must have index 2 in the stabilizer of an unordered pairthe stabilizer of a point
in Q).

Recall thatV @ denotes the set afrderedpairs of distinct elements df .

Proposition 8.1. LetG < AGL(r, p) andV = F,". Suppose\ is a block of(G, V@) of
size not divisible by. Then there exists € V such thatG s} < G,.

Proof. Write A = {(u;, v;) | 1< i <#A}. InLemma7.l, taker = #A andx; = u; for
i=1,...,1 ]

Theorem 8.2. LetG < AGL(r, p) andV = F;, and suppose thaf is transitive onV .
Let A be a maximal block ofG, V@) subject to#A not being divisible by. Then the
setwise stabilizeG () of A is G, for some vectov € V, and#A = p” — 1, so the block
systemAC has sizep’.

Proof. This follows from Propositio8.1in much the same way that Theorén3follows
from Corollary7.2. O

Recall from Lemma.1that if (G, I') is 2-homogeneous and3#is divisible by 2 then
(G, I') is 2-transitive. It follows from Theore®.2that if we can find the action on ordered
pairs, then the techniques applied in the odd characteristic case will yield a solution for tl
class of affine groups defined over fields of characteristic 2 as well.

As G is 2-homogeneous and#is divisible by 2, the stabilizeG,, g of an ordered pair
is always a subgroup of index 2 in the stabiliziy,, g of the corresponding unordered pair.
So the problem of finding possibilities for the action on ordered pairs, given the action ¢
unordered pairs, reduces to that of finding relevant subgroups of inde& 2.in

We now make use of the fact that groupsAqn are defined over fieldsrger than the
prime fieldF,. Having fixedw € 2, we find aG,,-orbit A C Q such that the stabilizer
in G,, of any point inA must be contained in the ordered-pair stabilizer in which we are
interested. This will enable us to construct the actiogain cosets oG, g.

Proposition 8.3. Let G be a subgroup oAT'L(d, ¢) containing the translation subgroup,
whereq = 2°. LetV = E?, with G acting naturally onV. Letw = {v1, vp} € V&, and
let H = G,,,.,- ThenH is a direct factor ofG,, of index2. Also, there is & ,-invariant
subsetk of V of sizeg such that the group induced B on K {2} is cyclic of orderf where
f | e. Furthermore, ife > 1thenk {2 contains aG,-orbit of size2f.

This is the reason for the ‘khotation in Tablel.

Proof. Without lossw = {0, v}. ThenH = Go,, and in factG,, = H x (t,) since(r,) <
G, andr, (the translation map +— x + v on V) has order 2. Defin& = {av | a e T,
ThenKk is invariant undeif and under, (as(av)® = (a + 1)v), S0 it is invariant under
Gy.LetN = HNGL(d, q). ThenN acts trivially onK since it acts linearly ov and fixes
a generatoty, of the one-dimensional subspakeof V. Therefore N lies in the kernel of
the action induced by/ on K {2,

We know thafl'L (d, g) is the semidirect product of Gl, ¢) by a cyclic group of order
e generated by the Frobenius automorphésnso H/ N is cyclic of order dividinge. Thus
H induces a cyclic groupg on K (and hence ok 12} of order f, say, wheref | e, andC
acts onK as a group of field automorphisms. legenerate the multiplicative group Bf,
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and letg € C. Then(a")8 = («8)" for any integer-, and so ifC does not act faithfully on
the orbitX containingav, then it cannot act faithfully ok, which would contradict the
choice ofC. As C is abelian and acts faithfully and transitively &n it must act regularly
on X. ThereforeX is an orbit ofC on K of size f. The required orbit o, acting on pairs
is now{{z, x} | z € {0, v}, x € X}, as this has size2except whenf = e = 1. O

If (G, V) liesin ., and so can be defined over a field of siZevheree > 1, and if we
know K {2, we can use this proposition to find a set of at most three subgroups of index
in G, one of which is the desired subgro#h To do this, we first take & ,-orbit Y in
K12 of maximum size; this size should be even, and wefset#Y /2. By the above(,,
should induce a regular group isomorphic@p x C» onY. The desired subgroup (if it
exists) will be the pre-image 6, of one of the cyclic subgroups of sizeof this group.
(The number of such cyclic subgroups dependsfoit is one if f is odd, two if f is
divisible by 4, and three if = 2 mod 4.) The orbit systems of these cyclic subgroups are
systems of imprimitivity ofG,, and can be found quickly (or shown not to exist) using the
regularity and cyclicity conditions; the desired subgroup is the kernel of the acti6y, of
on one of these block systems. We summarise this as an explicit procedure to find suita
block systems or show that they do not exist.

1. LetY be aG,-orbit in K2 of maximum size.
2. If #Y is not divisible by 2 then Exit.
3. Else Setf := #Y/2.
4. End if.
5. Fixy € Y, and find a transversd!l for G, , in G,. (N.B. If (as hoped)r ¢« is
regular, then the images @fare the elements df%.)
6. LetZ be the set of orbits!") asr ranges over those elementgothat induce elements
of orderf onY.
7. Check that the number of sets4nis correct (one iff is odd, two if f is divisible by
4, and three iff = 2 mod 4).
8. Each set irZ will be a block forG,,, and the corresponding block systems are the
ones required.

Much of the calculation can be carried out in the group induced'hyn Y, which is of
degreef = 0O(logg). If a suitable regularity test is available, it might be worthwhile to
check that this group is regular before calculating the orbits.in

The small degree ofthe grog@,, Y) means that this calculation is cheap:gfenerators
are given forG,, then the above procedure has complexity(s + f) f), as O(sf)time is
required to form the induced action, and subsequent calculations can all be d@ag4n
time. If we use Schreier generators f6t,, the complexity of the procedure becomes
O (snlogn), where the timing is now dominated by the calculation of the induced action.

Having found aG,-block X (here X is one of the elements df in the preceding
paragraph) whose stabilizer @&, is a candidate fof, the stabilizer of the ordered pair
corresponding to the (as yet hypothetical) unordered gait is now an easy matter to
construct the action af on right cosets oH in G as an action on the cartesian product of
Q and a seC = {Trug, FaLsE} of size 2. Fix a transversdl for G, € G. For a generator
g of G, and a poin{/, x), the imaggw’, x)8 is given by

(@¢,x), if x@e@H™ — x

/ 8 —
(@, x) ! (@, —x), if X1 @@ £ x
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wherer (o) is the element of mappingw to w’. Perform this calculation for all generators
and points to get the images of the generators in the new group. The trangveesabe
stored in a Schreier tree if desired; testing whetki&f )¢ @)™ — X can be done by
examining just one point oX, since the translating element liesdh, and X is a block
for G,. Using a look-up table to check membershipXof the whole procedure can be
completed inO (sn) time if T is stored explicitly, 010 (snl) time if T is stored in a Schreier
tree of depth.

This action can now be tested as described earlier: we find a maximal block in it
size not divisible by 2, and if the corresponding block system has the right size, we run :
isomorphism test to see if we have a solution. If not, we repeat for EaehZ, and if no
solution is found over all these tests, or if we failed when trying to calcutatere may
conclude that no solution exists for groups in the classof affine groups defined over
fields of characteristic 2 where the field is larger tffanand wherek 12! is known.

We now turn to the problem of identifying {2}

Lemma 8.4. Letx, e be positive integers ang = 2¢. Then
(i) if e > 1and3q dividesde then2 < e < 4

(i) ife> landx > 2theng* — g > 4de(x + 3);

(i) if e=21andx > 4theng® — g > 4x + 4.

Proof. The proof is straightforward, and is omitted here. O
Fix a pointw € Q. Given a positive integer, define the subsead, of 2 by
Q. = {0 € Q| #(w'°) divides 2},
that is, the union of aliG ,-orbits of size dividing 2.

Proposition 8.5. Suppos€G, V) is a group of one of the types 1 to 8 in Talileand let
Q = V12 Letq, e andd be the corresponding parameters from this table, and letde,
som = #V = 2". Then one of the following holds:

() the setQ, has size2*~1(2¢ — 1);
(i) G =ASL(2, %),
(i) G=AXL(2,4) =ASL(2,4):2;0r
(iv) ASL(2,16)< G < AZL(2,16)=ASL(2,16): 4.
Furthermore, in the first case, is the largest integer dividing such thatQ, has size

2¢~1(2¢ — 1). In the second case, the largest integédividing » such thatQ, has size
2¢"=1(2¢" — 1) is 4. In the third and fourth cases there is no such integer

Proof. Definee* to be the largest integer dividingsuch thaiQ . has size ¢ ~1(2¢" — 1),
or 0 if no such integer exists. We suppose #ia- ¢, and show that then eithet = 0 and
one of the third and fourth cases arises, or #iat 4, andG = ASL(2, 4).

From Propositior8.3, we know thaQ, containsk (2. Therefore (under our assumption
thate* # e), thereis an orbif’ of G,, on Q2 of size dividing 2, and which is not contained
in K12, since eithee* > e, or Q, strictly containsk 12!, Clearly, therefore, it is impossible
for G to be of type 8 under our assumption, as for that tipe- V. If U is an orbit ofG, g
on V such that pairs if” contain elements af/, then %#U | #T, and # | 2¢* | 2r by
hypothesis. It follows that it/ is an orbit ofG,, (or G4,g) on V, andU is of minimal size
subject to not being contained in, then%#U < 2r.
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From the lists ofG,, g orbit lengths in Tablel, and LemmaB.4, it is immediate that if
G is not of type 7, therr = 1 andd is 3, 4 or (for types 6, 6a) 6. It is straightforward to
check manually or bysAP [8] that in all these remaining cases, = ¢ = 1. Similarly, it
is immediate from Tablé and LemmaéB.4that if G is of type 7 (sad = 2) thene = 2, 3
or 4; again, it is straightforward to check that in this case4f 3 then als@* = 3.

The suborbit lengths of the groups containing A314) and of some of those containing
ASL(2, 16) are displayed in Tablg, with the value ok*. The table was computed using
GAP [8].

Table 2: Suborbit lengths of exceptions in Propositidh
Group Number ofG,-orbits onQ = V@ e*

Lengths: 1 2 4 6 8 12 16 24

ASL(2, &) 2 11 12 4
ASL2,4:2 2 1 5 4 4 0
AGL(2, 4) 2 2 3 4 2
ATL(2, 4) 2 1 1 1 4 2
Lengths: 1 2 4 8 16 32 64 128
ASL(2, 16) 8 56 225 960 0
ASL(2,16):2 4 10 24 9 108 48 456 0
ASL(2,16):4 2 1 5 13 4 58 22 228 0

Lengths: 1 2 24 40 96 160
ASL(2,16):3 8 56 75 320 4
ASL(2,16):5 8 56 45 192 4

The table includes groups isomorphic to each of the three subgroupd.gPA16)which
contain ASL(2, 16) as a maximal proper subgroup. It also includes groups isomorphic
to each subgroup of BL (2, 16) in which the index of ASI2, 16) divides 4. Suppose
G < AT'L(2, 16), but Gis not isomorphic to a group in the table. Then (A3'L(2, 16) :
ASL(2,16)| = 60),|G : ASL(2, 16)| must be divisible by 3 or 5, and 8 must contain
a subgroupH isomorphic to one of the groups in the last two rows of the table. The grouj
H has a correct* of 4, and since the suborbits 6f are unions of suborbits dff, yet K
remains the same, this means thlfafor G also has the correct value, 4.

The claimed results now follow from this discussion and the entries in the tablél

Let 4, be the class of groups consisting only of AL4), ASL(2,4) : 2, and those
groupsG with ASL(2,16) < G < ASL(2,16) : 4. Let A} = A, \ A,. We now have a
procedure for the clasg?.

1. If there does not exist an integesuch that £ = n = (') wherem = 2’, then
conclude thatG, €2) is not a group froma’ acting on pairs.

2. Fixw € © and calculate thé& ,,-orbits on<2.

3. Calculate the largest integerdividing » and such thaD, has size ¢ ~1(2¢" — 1).

4. If ¢* > 1 then apply previously described techniques, assumingkft= Q.
(and therefore that = ¢* andd = r/e).
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5. Else conclude thdG, Q) is not a group froma} acting on pairs.
6. End if.

Observe that it G, Q2) is one of the affine groups i# (i.e.,an affine group defined over
%) acting on pairs, then the above test will gife= 1. This may be used to speed up an
implementation of the procedure for groups of clZss

The classA,, which contains only five groups, need not detain us long. The simples
technique here is to divide it into five classes, each containing one group. The first test
each case will be to check that there are the correct number of suborbits of each length,
comparison with Tabl@. If that test is passed, we test a series of candidates for a large
G ,,-orbit lying in K12, using information about thé,,-orbit lengths ink (2. For example,
for ASL(2, 16) : 4, these orbits have length 8, and we test two of@hgeorbits of this
length, since twelve out of the thirteh,-orbits of length 8 lie ink (%, In the other cases
the number of orbits to be tested is between one and ten. Each can@jglaibit is tested
in the same way that a largest, orbit in K (% is tested in the procedure fet.

As in the odd characteristic case, this algorithm can be implemented deterministically
O (sn?) time, or in nearly linear Monte-Carlo time. The analysis is the same as for that cas
except that we have to find relevant subgroupé&gfof index 2, which take® (sn logn)
time, and that we get up to three actions of degregiristead of just one of degree to
which to apply the block-finding routine.

9. The remaining almost simple groups

The classt consists of the group&’, I') that contain a normal subgrogpisomorphic
to one of the simple groups P$8] ¢) (for ¢ a prime power greater than 2) (acting on
isotropic points), S@) (for ¢ an odd power of 2 greater than 2) o(qR (for ¢ an odd
power of 3 greater than 3) as a normal subgroup, and the degiee® + 1, ¢ + 1 or
¢% + 1 respectively. We also include the non-simple Ree grop) B PT'L (2, 8) acting
on 28 points in the class. For the moment, however, we shall ignore it; it will be discussed
at the end of this section.

The groups int are groups of Lie type, and all have Lie rank one; the other family of
groups of Lie rank one is PSR, ¢), for ¢ a prime power greater than 3, acting on projective
points, which has many similarities to these families, but sufficient differences for us to tre.
it in the classZ. However the results of this section apply to this family of groups as well.
In what follows,£” will be used to denote the class of 2-transitive groups that either lie ir
L, or whose socle is PSR, ¢) for some prime powef > 3.

We refer the reader to4[ pp. 248-252] for a brief description of these groups. The
notation here follows that of [4] in most respects.

We consider the groups which are themselves all 2-transitive. The two-point stabilizer
Se.p = H is cyclic of order(g? — 1)/d for PSUS3, ¢), whered is (3, ¢ + 1), and cyclic
of orderg — 1 for the other cases. The stabilizgr is the semidirect product of a Sylow
p-subgroupr” of S by H (wherep is the prime dividing;), andT acts regularly ol \ {«}
sofl" =#T + 1.

Proposition 9.1. Let(G, ') be amember of the clag’. Leta, 8 € T". LetX be a subgroup
of G, with G, g < X. SupposgX : G gl is a power of the unique primedividingm — 1.
Then eitherX is contained inG, or Gg, or p = 2andX = Gq,p)-

Proof. We shall assume that £ G, X £ Gg andX # G4 g}, and seek a contradiction.
Letc = |X : Gq pl, SO certainlye > 1. LetY = X N S where as beforé is the socle of5.
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SincesS is 2-transitive G = G, gS. ThereforeG = X S and by the second isomorphism
theorem|X : Y| = |XS : S|, and sdX : Y| = |Gy, : H| and thereforeY : H| = c. By
the modular lawG, g(S N X) = Gq S N X, sinceX > Gg g, SO SINCEG = Gy S We
haveGq gY = X. ThereforeY £ S, Y & Sg, andY # Siq ). SINCENS(H) = Sio,p}, it
follows thatH is not normal inY .

Recall thatS,, is the extension of a Sylow-subgroudl” (of sizem — 1) of S by H. This
means thaiVs(T) = S,, and so there is precisely one Sylgasubgroup ofS fixing each
point of I'; as T acts regularly o™ \ {«}, the intersection of any two Sylow-subgroups
of S is trivial.

Let P be a Sylowp-subgroup ofY, so # = ¢ since #{ is not divisible byp. We
also getP N H = 1 since the orders are coprime, and therefére- PH. By Sylow’s
Theorem,P is contained in a Sylow-subgroup ofS, and soP has a unique fixed point
and acts semi-regularly dn \ {y}. SinceY £ S, andY & Sg, ¥ ¢ {o,B}. AsP < Y,
andY = PH, we get thatr = Y, H and soH is transitive on the -orbit . That is,y”
is anH-orbit onT" \ {«, 8}. The possible lengths of th€-orbits onI" \ {«, 8} areq — 1,
(g —1)/2,9% — 1 and(¢? — 1)/3 (see, for example, [3, Table 1]).

We also know that # = 1 modc, sinceP acts semi-regularly op” \ {y}. Now ¢
andg are both powers of the prime. If ¢ — 1 = 1 modc, or if g2 — 1 = 1 modc, then
p=c=2.1f(g—1)/2=1modc, thenp = ¢ = 3. 1f (4° —1)/3= 1 modc, thenp = 2
andc is 2 or 4. Thus X ¢ < 4. Howevere cannot be 2 as that would imply that <1 Y,
which we know contradicts our hypothesis.

Therefore either (case p)= ¢ = 3andS = R(g) (because Ry) is the only possibility
with an H-orbit of length(g — 1)/2, or (case 2p = 2,¢ = 4 andS = PSUS, ¢) where
3| g + 1 (as this is the only possibility with aH-orbit of length(¢g? — 1)/3).

Now #(«, B)¥ = ¢ and by hypothesi¥ does not fix eithetr or . Thus in case 1 we
must have #¥ = #8Y = 3. However, the’ -orbits are unions off -orbits, and the4 -orbits
all have lengthy — 1 except{«}, {8} and one orbit of lengtlly — 1)/2. Sincey is at least
27, this clearly leads to a contradiction. Similarly for case @ #nd #3Y must each be
either 2 or 4. TheH -orbits all have lengtlig — 1)/3 except for{«}, {8} and one orbit of
lengthg — 1. Since the situation” = ¥ = {«, B} gives #a, B)¥ = 2, rather than 4, this
cannot happen unlesg? — 1)/3 is 1, 2 or 3, all of which contradict the choiceqf

Thus we have reached a contradiction, and so conclude that Eifkerontained within
Gy 0rGg, or p=2andX = Gq,p). O

Recall thatl"@ is the set of ordered pairs of distinct element§ of

Corollary 9.2. Let(G, I') be a member of the clas8'. Fix a, 8 € T'. Then{(a, x) | X €
'\ {a}} and{(x, B) | x € I"\ {B}} are blocks of imprimitivity in the action @ onT"®;
they are maximal among blocks in this action containieags) and of size dividing: — 1;
furthermore they are the only such maximal blocks in this action apart fiorthe case
where2 | m — 1) the block{(«, B), (B, a)}.

Proof. This is an application of the one-to-one correspondence between blocks of imprin
itivity containing (¢, ) and subgroups containir@,, g (see [4, Theorem 1.5A], for exam-
ple). Maximality of the blocks given is a consequence merely of their size; the remainds
of the result follows from Propositio8. 1. O

Observation 9.3. SupposeD is one of the two blocks of imprimitivity @2 in Corol-
lary 9.2. Then the subset = {{x, y} | (x,y) € D} of I'? is a solution subset.
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We can perform the projection frof@ to "2} even if we only know the stabilizer of
a pointinI"® as a subgroup of index 2 in the stabilizer of a poinfi&!, and do not know
the structure of either set as a set of pairs. In particular, it is straightforward to perform th
projection if we have constructed the supposed actiofi @hfrom a subgroup of index 2
of G, in the manner indicated in Secti@n

This means that given a subgrodipf index 2 inG,,, we can solve Specificatich4 for
the class£ under the added condition that= G, g wherew = {«, B} as follows:

1. Form the action on the sat of cosets of/ in G.

2. Find a block of imprimitivity D that is of size dividingn — 1, contains the trivial
cosetJ and does not contain the cosg}, \ J, and is maximal among such
blocks.

3. If#D =m — 1 then

4. ProjectD from A back onto2 (by the map/x — %), and test to see whether

the resulting set is a solution subset.

5. If we find a solution subset, retuén := TrRUE andT", n calculated from the

solution subset. Otherwise, retusn= FALSE.

6. Else

7. Returnb := FALSE;

8. Endif;

9. End.

Obviously, if we have several candidatesor G, g we can test each one in turn by the
above procedure.

The subgroug,, g is a subgroup of index 2 in the stabilizét, of a point in the input
action. We can find the subgroups of index 2 using the following result, whose proof can t
found in Appendix B. Recall that a base for a permutation group is a subset of the doma
such that the point-wise stabilizer of the subset is trivial. (Many authors regard a base as
ordered set; however, that will not be necessary for present purposes.)

Theorem 9.4. Let (G, T) liein £'. Letw € Q = I''? and letR be a largestG,,-orbit.

Letx € R. ThenG,, , has size at mos?, G, acts faithfully onR and eitherR U {w} is

the adjacent-point set - (w) or there are at mos2 Iogp (m — 1) elements.” of R such that
{w, 1, 1} is not a base foG (herep is the prime dividingn — 1).

Proof. This is reasonably straightforward to show; it is proved\ppendix B. O

Note that for groups i, and indeed some of the groups whose socle is(BS)), this
can be strengthened to the effect thaf , is actually trivial. This also follows from results
in Appendix B.

This result enables us to find the action@®§, on R, and find a subset a® of size at
most 2 which is a base fa@r,,. We can then enumerate the element&gfby traversing a
Cayley graph, identifying the vertices of the graph with the images of the base. This enabl
us to form the subgrouﬁfu as a block in the regular action 6f,,. The index ofou in G,
is 2, 4 or 8, sincés,, is an extension of a cyclic groufd by a group of order 2, and then by
a cyclic group of field automorphisms. We can factor Gﬁtin our regular action o6,
inducing an elementary abelian action®f, on 2, 4 or 8 points. The 1, 3 or 7 subgroups of
index 2 in this induced group yield the subgroupsf of index 2. As there are at most 7
of these, using the previously described algorithm to check all possible subgroups of ind
2 is feasible.
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We now give an explicit algorithm to perform these tasks.

If m — 1 is not the power of a primg then Exit.

Fixw € €, and setS to be the set o ,-orbits on<2.

SetR to be an element of of maximum size.

Test whether the s®& U {w} is an adjacent-point sétr (w) usingTestSet.

Form the group induced liy,, on R.

Fix A € R. CalculateG,, , as a group of permutations &f if it has size larger than
2 then Exit, else if it is non-trivial, find’ € R such that = {A, 1} is a base
for G,,; otherwise také = {1} as a base fot,.

7. Use the known base fa@¥,, to enumerate all the elements Gf, as images of the
baseb and as permutations .

8. Calculate the subgroud of G, generated by the element$asg runs overG,, as
a subset containing of the set of images df; this is a block in the action of
G, on base-images.

9. Ifx =#G,/#M € {2, 4, 8}and there are—1 blocks of size #,/2 that containV in
the action ofG,, on base-images, then return the block systems correspondin
to these blocks.

10. Else conclude thd(G, ) is not the action on pairs of a group 4.

11. End if.

o0k~ wNE

We form the action ofG,, on R as follows. FixA € R and chooseé.’ € R\ {A};
we will assume thati, A} is a base foiG,,. By Theorem9.4 we may have to run the
algorithmoO (logm) times with different values fax’ before we are certain that if the group
is the action on pairs of a group fromd’ then we have at some point considered a base.
As #R = O(mlogm), there areO (m?log? m) possible images of the 2-element base, so
in 0(m?log? m) space and) (sin) time (where! is the depth of a Schreier tree) we can
evaluate each of th@ (sn) Schreier generators fa@¥,, on the points of the (assumed) base
and decide if there are more thanRdistinct base images. (We use h&(#R)?) space to
store a table of flags that enables us to decide whether we have seen a particular base in
before in constant time.) If that is the case tlenis too large, and we may terminate the
procedure. Otherwise we can, in the same time bound, and still assumir{g thgtis a
base forG,, evaluate on the whole at the Schreier generators that led to distinct base
images, and arrive at a set Of#R) generators for the action ¢f,, on R. We test whether
these elements generate a group that is transitiv; @mot, then{i, 1’} cannot be a base,
and we must return to the start and choose a diffexeitowever, the converse does not
hold: if the group generated is transitive 8nwe cannot deduce thét, 1’} is necessarily
a base.

We now calculate5,, ,; here we have) ((#R)?) Schreier generators, and still assume
that{A, A’} is a base. There should be at most 2 distinct base images (including the trivi
one); if any more are found, we can terminate the whole procedure (as ¢xen'if is not
a base, we now know that,, is too large). If 2 elements af,, ; are found, then we may
conclude that eithej, A/} is a base foG,, or (G, ) is not the action on pairs of a group
of £/, and so we can continue to the next stage of the algorithm. However, if it appears th
G, acts regularly orr, then we must repeat the whole procedure with other valug§ of
and only conclude that that is really the case when we have tre2ilbg, (m — 1) different
values for).'.

ThusinO (sin logn) time and using? (n log? n) space we can obtain: a subset of $®n
of size at most 2&, which generate§€,, if (G, Q) is the action on pairs of a group iff;
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a permutation ok, of order 1 or 2, which (under the same condition) gener@tgs; and

a subseb of R, of size at most 2 and containirag which (under the same condition) is a
base forG,,. It is now straightforward to use these to enumerate the elemea@ts,dfoth as
images ob and as permutations &, in time O ((#R)2). Then the required block/ in the
action ofG,, on images ob can be formed in the same time, and the blocks corresponding
to subgroups of index 2 i, can be found quickly.

Note that this procedure can be significantly simplified if it is only desired that we chec
for members of£’ for which G,, acts regularly on a largest subort#it this includes all
members ofL. In particular, in that case we can assume {haais a base foiG,,, since if
it is not, then the group is not one we are interested in.

The general case would probably be implemented slightly differently from the outline
above: we would use a subset®fof size 1+ Iogp(m — 1) as an assumed base, to avoid
having to repeat the procedure with different guesses as the base, and use some so
hashing technique to check whether we had seen each new base image before; howe
although hashing has good average case complexity, the worst-case asymptotic comple
of this method would not be nearly linear, and the aim in this section is to obtain a near
linear algorithm.

For each block system found by the above procedure we can then find the action on cos
of the kernel of the action af,, on the system, using the same methods as in Setidhe
procedure given earlier in this section, which assumed knowledge of the sub@roup
can then be used. The implementation issues for this part of the algorithm are essentic
the same as those for the equivalent part of the algorithm for affine groups. In Séatéon
obtained a deterministic nearly linear-time algorithm for this problem, and a similar resu
is easily obtained here in the same manner. Of course, the remarks made there about fin
shallow Schreier trees and bounding # terms of the degree to give an algorithm that
is linear up to a factor that is a poly-logarithmic functionmodlone (instead of and #G,
as is usual with these ‘nearly linear’ algorithms) apply here as well.

We therefore have a deterministic nearly linear algorithm for recognising groups of cla:
L' if we know the orbits ofG,, in advance, and thus we get a Monte-Carlo nearly linear
implementation with no prerequisites. Using the Schreier generators as generatoys for
yields a deterministi@© (sn?) algorithm.

The non-simple Ree grouR(3) = PI'L(2, 8). We apply similar techniques as for the
rest of the clas<C to the group R3), in its 2-transitive representation on 28 points. Propo-
sition 9.1 no longer holds, but there is a pgiisuch that the smallest block 6f acting on
'@ containings and(a, B) is the desired block. It can be shown (us@wP [8]) that when
the action on ordered pairs has been found, every one of the four blocks of imprimitivity c
sizem — 1 that arise in this way projects to a solution subset. Therefore, a suitable bloc
can be found by repeated calls to Atkinson’s algorithm, or similar.

As for the other Ree groups; = R(3) has the property that,, acts regularly on a
largest suborbit; the part of the procedure concerned with finding subgroups of index 2
G, is the same as in the general case.for

10. Summary and practical results

We have given a deterministi®),(sn?) solution to the problem of Specificatidnl, and
a deterministic nearly linear algorithm which solves Specificatidrif the G ,-orbits are
known in advance.
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Using the techniques ofl], this result leads to a Monte-Carlo algorithm, also in nearly
linear time, for all except the alternating groups (in the natural action), since the collectic
of all other 2-homogeneous groups is a class of small-base groups. Note that thisisa o
sided Monte-Carlo algorithm: if the algorithm finds an action on pairs then its output i
always correct; it is only if it reports that no such action exists that there is a possibility ©
error.

The O (sn?) algorithm based on the full set of Schreier generators is spatially expensiv
(Q(n?), and so in practice it seems important to reduce the number of generators us
for G, to a more manageable level, or to accept a slight decrease in asymptotic tempo
efficiency to handle the Schreier generators in a spatially more efficient manner.

Experimental results. The procedures described in the foregoing sections have beenimple
mented iNGAP [8]. The GAP code for the implementation is made availabl&ppendix C.

The important part of this paper is the deterministic algorithms that start with generato
for G, and it is only these that have been tested, usingsthe implementation of the
Schreier—Sims procedure to provide generator&fprThe time to run the Schreier—-Sims
routine has not been included in these timings.

The program was tested on a 200MHz. Pentium with 32Mb. of main store, ruGARg
under the Linux operating system. Timings are given in seconds of C.P.U. time, as report
by GAP, averaged over several runs with different random generating sets, usually of size
or 3; each time, the generators were conjugated by a different randomly chosen permutat
of the points of2, to hide the structure a2 as a set of pairs.

As is to be expected, the routine for the cl&ausing adjacent-point sets, runs fastest.
For the groups with smat}, the times taken showed little variation for any particular group,
and were approximately proportional to the input degree, with the group&8P3Lacting
on pairs of input degre€"), and Cg acting on pairs of input degrgé,°), requiring 10
and 11 seconds respectively (in addition to the time spent in the Schreier—Sims procedul

The running times for the other classes were significantly longer than these timing
Typical results include recognising the action on pairs of &B) (input degree(zg3)) in
under 30 seconds, the action on pairs of AZL17) (input degree(zgg)) in under a minute

and the action on pairs of ASB, 7) (input degree(3§3)) in 1.5 minutes (all these timings
are the average over several runs of the algorithm). The even characteristic is slower, ¢
requires more memory: AQU, 256) acting on pairs (input degre(ége)) was recognised
in about 25 minutes, and AS(2, 16) (same input degree) in 4-5 minutes.

When the input is not an action on pairs, the program normally recognises this quickl
using the suborbit structure. However, it is possible to create examples that take some tir
For example, (usingTLAS notation) the group 1% 28 : 17 has order 6528& 2(236). The

action on the cosets of one of the subgroups of order 2 is therefore an action of@@ree
with suborbits of length at most 2, and the program took neaByn@nutes to establish
that this was not an action on pairs.

Acknowledgements.| am indebted to my supervisor, Peter Neumann, for suggesting thi:
problem and for assistance in preparation of this paper. | have also incorporated an i
provement to my proof of Propositiaghl which he suggested, and also improvements to
one of the proofs iMppendix B. | am grateful to the referees for many helpful comments
and suggestions. My doctoral research is supported by the E.P.S.R.C.
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Appendix A. Orbits of Sp(, 2)

The groups S(2d, 2) each have two 2-transitive actions, and we study the suborbits o
the actions on unordered pairs arising out of these actions. We prove that there are at mo
suborbits and calculate their lengths. It follows immediately from the result of this appendi
thatrg(m) = 1 (see Tablel); it is shown in Sectiorb how this leads to an efficient test
based on th&@estSet subroutine.

We follow [4, p. 247ft.]. LetF be a fieldd > 1 a fixed integer, an#f = F2, the space
of row vectors of length 2 over F. Define two block matrices over as follows:

(0 1 _ 0 1)\ T
e_<0 O)andf_<_1 O>_e—e

where 0 and 1 denote thkex d zero and identity matrices respectively. Then Sp(Z) is
the group of all 2 x 24 invertible matrices: such thatc fx” = f.
Associated withf is the antisymmetric bilinear formp : V x V — F defined by
¢(u,v) =ufv’. We consider quadratic fornts: V — F satisfying
¢(u,v) =0+ v) —60um) —0(v) (A1)

forall u, v € V. If char F £ 2 then there is a unique such form, namefy) = %(])(u, u),
but if char F = 2 then this relationship breaks down, and in general there may be mar
quadratic forms associated with a given bilinear form, or none at all.
In this case, lef" = [F>. We summarise results from][ It can be seen that the quadratic
form
Oo(u) = ueuT(: ueTuT)

satisfies (A.1) for the specifig defined earlier. LeX denote the set of all quadratic forms
satisfying this condition. Then it is shown th¥t= {6, | a € V}where

Oa(u) = ueu’ +ufal = 6ou)+ ¢u,a). (A.2)

Now G = Sp(2, F) acts onX by 6%(u) = 6(ug~1) whered € X, g € G andu € V.
Define transvectiong, € G by ut, = u + ¢ (u, a)a. Thenta_1 =1, andg g = tqq fOr
allg e G.

Lemma A.l. [4, Lemma 7.7A]
(i) Foralla,ceV wehave

g [ 0 ifOu(0)=1
a Opre ifO,(c) =0.
(i) Forall a,b € V there is at most one € V such that. mapsd, to 6,. Such a exists
if and only if6p(a) = 6p(b) (and therc = a + b).
It follows that X splits into twoG-orbits, namely
X" = {64 | bo(a) = 0}
and

X~ = {04 | bo(a) =1}

of sizes#+ = 2¢-1(2¢ + 1)and #~ = 2¢-1(2¢ — 1). Itis then shown in4] thatG acts
2-transitively onX+ and onX .

https://doi.org/10.1112/51461157000000164 Published online by Cadrdridge University Press


https://doi.org/10.1112/S1461157000000164

Algorithmic Recognition of Actions @Homogeneous Groups on Pairs

We use techniques similar to those #j fo determine the orbits of the stabilizer of two
points in the 2-transitive actions. We then do the same for the orbits of the various 3-poi
stabilizers in these actions, and deduce the suborbits in the action on unordered pairs.

In places our analysis will hold only faf > 5. It has to be checked by hand®AP [8]
that the same result is true ford < 4.

The following lemma is a generalisation of Lemma 7.7B4h where it is part of the
proof of 2-transitivity. Fom € V ande € I, defineL(a,€) = {v € V | ¢(v,a) = €}. As
in[4],if a1, ..., a, € V arelinearlyindependentagg, . .., ¢, € > thenL(ag, e1)N---N
L(a,, €;) = U 4+ wo for some subspacdg of V of dimension 2: — r and somewg € V.
When all¢; = 0 we havewg = 0.

Lemma A.2. Letasy, ..., a, be linearly independent elements Wf wherer < d. Let
K = L(a1,€1) N--- N L(ay, &) for someey, ..., ¢ € F>. Then the set& ™ = K N {a |
fo(a) = 0} andK ~ = K N {a | 6p(a) = 1} both have size at leagf~" 2.

Proof. Since they; are linearly independent] = L(a1,0)N---NL(a,, 0) is a subspace of
V of dimension Z — r > r. It therefore contains an eleménthat is linearly independent
ofai,...,a. ThusKg = K N L(b, €) has size 2"~ for anye € F>. Fixe = 6g(b) + 1.
Let w € Kp. By choice ofb, bothw andw + b lie in K. In fact, they both lie inKy,
sinceg (w + b, b) = ¢p(w, b) + ¢ (b, b) and¢ (b, b) = 0. On the other handg(w + b) =
Oo(w) +6g(b) +¢ (w, b) = Og(w)+6o(b) +€ = Bg(w)+1, soone ofv andw+b liesin K+
and the other lies ilX ~. This gives a pairing of the elements&§, since(w +b) +b = w,
with one element of each pair i+ and the other irk —. Therefore half o lies in K+
and the other half irk — and each of these sets contains at le&5t’22 elements. O

Lemma A.3. Supposev1, v, t, w are distinct elements o, with 6p(v1) = 6p(v2) =
Oo(t) = Hp(w) = €. If there isg € G fixing 6,, and 6,, and mapping; to 6,, then
¢, v1+v2) = ¢ (w, v1+ v2).

There are22/—2 elements € V with6gb = € and¢ (¢, v1 + v2) = 6p(v1 + v2) + 1, and
24-1(2d-1 1 (—1)¢) elements € V with6gr = € and¢ (¢, v1 + v2) = Op(v1 + v2).

Proof. Letg € G, 6,,- Thenéy, (u) + 65, (u) = 6y, (1) + 6,,(u) for allu € V and so by
(A.2) and the definition of the action df,

¢>(Mg_l, v1+v2) = ¢, v1+ vp) forallu e V. (A.3)

Now suppose; = 6,,. For u € V we haved,, (u) = Oy 440 Ug™t) = 0y, (g™ +
¢ (ug™t, a1 + 1) by two applications of (A.2). Thefy, (ug™%) = 6,, (u) ande (ug*, vy +
t) = ¢(u, (v1 + t)g) sinceg € Sp(A, 2). Therefore (by further applications ofA@2))
Ow = Ouititng, and sow = v1 + (v1 + 1)g. NOW ¢ (vy + (v1 + 1)g, v1 + v2) =
¢ (v1, v1+v2) + ¢ ((v1+1)g, v1 + v2) and by A.3) applied to the second term this equals
@ (t, v1 + v2).

For the second part, consider Lem#a with » = 0. In the proof, we get/ = V, and
we can certainly také to bev1 + vy asv1, vo are distinct. TherkKg = L(v1 + v2, 6p(v1 +
v2) + 1) contains 2¢-2 vectorsv with 6p(v) = 0 and 292 with 6(v) = 1, so the set
of pointsz € V with 6g(t) = € and¢(r, v1 + v2) = 6o(v1 + v2) + 1 has size 22,
Since there are®1(2? 4+ (—1)) elements € V with 6p(t) = e, it follows that there
are 27129 4 (—1)°) — 224-2 = 2d-1(2d-1 1 (1)) pointsv € V with fp(v) = € and
¢ (t, v1+ v2) = Op(v1 + v2). O
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Proposition A.4. Letd > 4. Supposes, az, b, ¢ are distinct elements df, with 6g(a1) =
Oo(az) = 0p(b) = Oo(c) = €. Then ifp (b, a1 + az) = ¢(c, a1 + a2) there isg € G fixing
04, andé,, and mapping) to ..

Proof. We show that there exisis € V such thatip(w) = € and
Oy (b +w) =04 (c +w) =04, (b + w) =0Og,(c+w) = 1. (A.4)

It will then follow from LemmaA.1 thatg = #5114 has the desired properties.
We haveb,, (b + w) = 04, (b) + 04 (W) + ¢ (w, b) = Oo(b) + bo(w) + ¢ (b, a1) +
¢ (w, a1) + ¢(w, b) and similarly for the others, so the conditions (A.4) are equivalent to

¢pw,a1+b) =1+¢(b,a1), ¢p(w,a1+c) =1+¢(c,ay),
¢w,a2+b) =1+ ¢(b,a2), p(w,a2+c) =1+ ¢(c,a).
The set ofw € V satisfying these conditions is

K =L(a1+b,1+¢(,a1)) N L(az+c, 1+ ¢(c,a1)) N
L(ap +b,1+ ¢(b,a)) N L(az +c, 14+ ¢(c, a2)).

Now az 4+ ¢ = (a1 + b) + (a1 + ¢) + (a2 + b) and sincep (b, a1 + az) = ¢(c, a1 + a),
we have 4+ ¢ (¢, ap) = (L+ ¢ (b, a1)) + (L + ¢(c, a1)) + (L+ ¢ (b, a2)). Therefore

K=La1+b,1+¢b,a1))NLiar+c,1+ ¢(c,a1)) N Liaz+ b, 1+ ¢ (b, a2)).

If it can be shown thai1 + b, a1 + ¢ andas + b are linearly independent, then it will follow
by LemmaA.2 thatfg is non-constant ok, and the proof will be complete.

Clearly a1 + b andaz + b are linearly independent sinea, a2 and b are distinct
(and& has only 2 elements). Similarlgs + ¢ is non-zero, and not equal tq + b or
a1 + a2 = ((a1 + b) + (a2 + b)). Therefore eitheas + b, a1 + ¢ andaz + b are linearly
independent, o#1 + ¢ = a2 + b. So we certainly have a proof except in the case where
¢ = a1+ az + b. In this case there is always some V with 6p(x) = €, ¢ (x, a1+ a2) =
¢ (b, a1+ a2) = ¢(c, a1+ ap) andx ¢ {as, a2, b, ¢}, since (by the preceding lemma) there
are at least2—2 — 2¢-1 elements fulfilling the first two of these conditions, ahd> 4
by hypothesis so this number is larger than 4. Now by the proof in the linearly independe
case there exigty, g2 € G that both fix9,, andd,,, and such thag; mapsf; to 0,, whilst
g2 Mapsdy 0 0. = Oyy4a,+b. Theng = g1g> will suffice. O

Corollary A.5. In the action ofG onT = X¥, the two-point stabilizeiG,, g has four
orbits: {a}, {8}, one of siz€2@~D and one of siz8(2¢~2 + (—1)¢) (2?1 — (—1)¢), where
e=0ifC =XTande =1if" = X".

Proof. Leta = 6,, andp = 6,,, wherefp(a1) = 6p(a2) = €. Note thaip (a;, a1 + a2) =
Oo(a1 + ap) fori = 1, 2. The result now follows by the preceding proposition and lemma,
since 2712971 + (1)) — 2 =222 + (—1)) (2171 — (—=1)°). O

We can calculate the orbits of any 3-point stabilizer, as well.

Proposition A.6. Letas, ap, a3z € V, with6p(a;) = € fori = 1,2, 3. Leteg = ¢ (a3, a1 +
az) +6o(ar+az). Thenthe subs¢b € V | 6p(v) = €} of V is partitioned by the setX; ,,
wherei, u € > and

Xou={veV]|b(v) =e€}NLar+ az, Op(ar + a2) + A + pu + €o)
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N L(ay + a3, 6o(ar + az) + 1)
N L(az + a3z, 6p(az + az) + w).
If eg = Othen#Xgp = 297 1(29-2 4+ (—1)%) and#Xo1 = #X10 = #X11 = 22473 If ¢g =
1then#Xoo = #Xo1 = #X10 = 2972271 4+ (=1)°) and#X11 = 2¢72(2¢"1 — (—1)%).

Proof. Note thatg (u, a1 + a2) = ¢(u,a1 + az) + ¢(u, a2 + az) for u € V, and that
Bo(a1+az2) = Op(a1+az)+0o(az+az)+¢ (a1+as, az+az) = Op(a1+az)+0o(az+as)+ep.
It follows that

Xy ={veV|b(v) =e€}NLar+ as, Oo(ar + az) + A)
N L(az + a3, Op(az + az) + )

and so theX,,, do indeed partitiofv € V | 6g(v) = €}.
Supposep = 0. Then

XooU Xo1={v € V | 6o(v) = €} N L(a1 + as, Oo(a1 + a3))
XooU X10={v € V | 6o(v) = €} N L(az + ag, Bo(az + a3))
XooU X11 = {v € V | 6p(v) = €} N L(a1 + az, (a1 + a2))
and each of these sets has si¢e’227-1 + (—1)¢) by LemmaA.3. Also
Xo1UX10={v eV |0(v) =€¢}NL(ag+ az, Op(ar +a2) +1)

and similar expressions fofg; U X11 and X10 U X11. Each of these sets has siZ& 2
by LemmaA.3. It follows that #Xo1 = #X10 = #X11 = 223 and #gp = 2¢-1(2¢1 +
(—1)f —#Xo1 = 2¢71(279-2 4 (—1)%). Theeg = 1 case is entirely analogous. O

Proposition A.7. Letd > 5. Letas, az, az € V,with6p(a;) = e fori = 1,2, 3. Leteg and
the setsX,,, be as in the previous proposition. Then the sets

Eap = {0x | x € Xop \ {a1, az, a3, a1 + az + as}}

form Go,, .4,,.0.,-Orbits.
Proof. First note thab,, +ay+az(#) = 04y (1) +¢ (1, az+az) forallu € V and so by 4.3),
Oay-+ar+az Must be fixed byGe,, 4,,.0,,- A cOnsequence of Lemnia3 is therefore that the
setsE;, must be unions 0500179‘12’5a3-0rbit5.

Fix A, uw € B, and leth, ¢ € Xy, with b, ¢ ¢ {a1, az, a3, a1 + a2 + az}. As in Proposi-
tion A.4, we show that there exists € V such thatp(w) = € and

Ou D+ w) =04 (c+w)=1 (A.5)

fori = 1,2, 3. It will then follow from LemmaA.l thatg = 4.4y has the desired
properties.
As in PropositionA.4, the equations (A.5) are equivalent to

¢p(w,a; +b) =1+ ¢, a;), ¢p(w,a; +c) =1+ ¢(c,a;)
fori = 1,2, 3. The set of elements 6f satisfying these conditions is

K=La+b,1+¢(b,a1)NLiaz+b, 1+ ¢(b,az))
NL(az+b, 14+ ¢(b,a3))NLa1+c, 1+ ¢(c,ay))
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sincea; +c¢ = (a1 +b) + (aj +b) + (a1 +c) ande(c, a;) = ¢ (b, a)) + ¢ (b, aj) + ¢ (c, a1)
for j = 2, 3, becausé andc are in the same séf, .

In the case wherey + b, a> + b, az + b anday + ¢ are linearly independent, the result
now follows by LemmaA.2, sinced > 5. Nowaj + b, az + b andaz + b must be linearly
independent, sincey, az, az andb are distinct and # a1 + az + asz. Similarly a1 + ¢,
az+c andaz+c are linearly independent.df + b, ax + b, az+ b anday + ¢ are not linearly
independent, they span a space of dimension at most 3, and soXsintas size at least
224=3 _ 2d=1 - 8) there is an element € X;,, such that; + x is linearly independent
of a1 + b, ap + b, az + b anda1 + ¢, and therefore bothuy + b, ap + b, az + b, a1 + x}
and{ay + ¢, a2 + ¢, as + ¢, a1 + x} are linearly independent. We have therefore shown
that we can map fron, to 6y, and fromé. to 6 within Gg,, 4,,.6,, @nd so the proof is
complete. O

Corollary A.8. If ¢g = Othenthere are eighl?gal,%,ga3 -orbits: four of sizel, three of size
221-3 gand one of siz@?~1(29 24 (—1)*) —4 = 42972 — (=1)6) (2?34 (=1)%). Ifeg = 1
thenthere are sevefy, g, 4,,-0rbits: three of sizé, three ofsized2(24-14(—1))—1=
(2972 4 (=1))(29-1 — (=1)%) and one of siz@4—2(24-1 — (—1)°).

Proof. Firstly 6p(a1 + a2 + az) = 6o(az) + 6p(a1 + a2) + ¢(as, a1 + a2) = € + €g. SO
Ou1+ar+as li€s in the samés-orbit asd,, if and only if g = 0. Taken with the three orbits
{a;}, this gives the singleton orbits listed.

Secondlyg (a;, a; + a;) = 6o(a; + a;) for distincti, j € {1,2, 3}. This means that if
€0 = 0thena; € Xoofori = 1,2, 3, and ifeg = 1 thena; € Xo1, a2 € X10andasz € Xoo.
We also havep(ay + az + az, a; + aj) = ¢(ak, a; + a;) where{i, j, k} = {1,2, 3} and
¢ (ak, a; +aj) = Oo(a; +a;) + €0 (€.9.,¢ (a1, a2 + az) = Op(az + az) + (¢ (az, a1 +az) +
Oo(a1+a2))). Therefore ifeg = 0,a1 +az+az € Xoo. The results follow from the previous
proposition and the sizes of the sétg, as calculated in Propositioch.6. O

We can now calculate the sizes of the suborbitg;oéicting on unordered pairs. Let
o =6y, = 04, Wheretp(a;) = € (i =1,2).Letw = {«, B}, and consider the action 6f,
onQ = {0, | 6o(v) = €}!?. Observe thaG,, is generated b¥s,, 4., and the transvection
h = tayray- LELB = {b | 60(b) = €, (b, a1 + a2) + bo(ar + az) = 0, b ¢ {az, az}},
andC = {c¢ ! Oo(c) =€, ¢(c,a1+ a2) +6p(ar +az) =1, ¢ ¢ {a1, ax}}. By LemmaA.l,

O) = Opar+a, Or b € B, andg = o, forc e C.

It is easy to see that the sefts}, {{0,,, 605} | i € {12}, b € B} and{{6,,.6:} | i €
{1,2}, c € C} areG,-orbits, of sizes 1, 28 and 2# respectively, and that the adjacent-
point setAr(w) is the union of these three sets.

For the remaining orbits we look first at orbits orderedpairs. By Propositior\.7 and
its corollary, there are threégﬂl,gaz-orbits of ordered pairédy, , 65,) wherebq, b € B,
of sizes #B, #B.#Eqg and #B .#E11, since ifaz € B theneg = 0 andB C Xgo U X11.
The orbit containing6y,, 65,) must have the same size as that contairifiag, 95,), and
S0, since these three orbits have different sizes, each must be symmetric, that is, contain
pair (05,, 0p,) for every pair(0,, 0p,) lying in it. Therefore these three orbits correspond
to three orbits of unordered pairs, each half the size. Bedawse, + a2 € B wheneveh
does, if any of these orbits were not alsg-orbits, then there would have to be a pair of
them, such that the union of the pair wa§ g-orbit. The two orbits would have to have the
same size for this to happen, and this is not the case, so each is iglbebit.
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There are twoGgal,gaz-orbits of ordered pairgd,,, 6.,) wherecy,c2 € C, of sizes
#C #Ep0 and # #E11. As before, these have different sizes so they are symmetric, an
there are two corresponding orbits on unordered pairs each of half the size of its ‘image
They are alsds,,-orbits, since: fixeso, for ¢ € C.

Table A.1: Suborbit Lengths of Sp{22) acting on pairs

1

22(2472 4 (1)) (2771 — (=1)9)

22d—1

(2972 4 (=19 (2471 - (-1))

22d73(2d72 + (_1)6)(2(171 _ (_1)6)

42972 — (=1))(2973 + (=1)) (2972 + (=1)) (2?71 — (=1)9)
22d—3(2d—2 + (_1)6)(2d—l _ (_1)6)

22d—32d—2(2d—l o (_1)6)

221202+ (1)) - (=1))

Finally, there are twchal,ga -orbits of ordered pairgd,, 6,) wherec € C, b € B, of
sizes # #Zo1 and #C #E10. These are clearly not symmetric, and the corresponding orbits
of unordered pairs have the same sizes as their ‘images’. Note that the orbits are of the s
size as each other, and thatif = c andb € Xg1 thenb + a; + a2 € X0 sinceeg = 1.
Therefore the union of the two orbits ig&,-orbit.

A summary table of the orbit lengths 61, acting on€2 is included in Table\.1. Checks
using GAP have shown that the table is correct in the cases 2 < 4, although in the
d = 2 cases and one of thk= 3 cases there are fewer suborbits, as one or more of the
orbit lengths given in the table evaluate to O.

Appendix B. Bases for Groups of Lie Rarik

This appendix contains results about the groups of cldsshat is, the groups of Lie
rank 1. If (G, I) is the 2-transitive action of such a group then we consider the action o
G onQ = I''?); more precisely, we take € Q and look at the action of2 on a largest
G,-orbit R. We show that this action is faithful and either regular or very nearly regular,
and we examine how to extend a set containirgnd one element a® to form a base for
G. (Recall that a base for a permutation group is a subset of the domain whose point-wi
stabilizer is trivial.)

These results are used in Sectto provide a means of finding the subgroupsf
of index 2. Recall from that section thdt denotes the 2-transitive groups whose socle is
one of PSU3, ¢) (for ¢ a prime power greater than 2), @z (for ¢ an odd power of 2
greater than 2) and®) (for ¢ an odd power of 3 greater than 3). The cla&scontains
these groups and those with socle R&ly) for ¢ a prime power greater than 3.

Proposition B.1. Let (G, I') lie in the class£, and letQ = I''?, Then there exists a base
for (G, Q) of size2.

Proof. As in Sectior9, we refer the reader to [4] for a description of these groups.
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Let K denote the field of elements (4 for the PSU3, ¢) case, when we denote the
fixed field of the automorphism — x of order 2 ofK by Kp), and letp be the prime
dividing ¢. Let S denote the socle of the group.

As was mentioned in Sectidh the stabilizerS,, is the semidirect product of a Sylow
p-subgroupr” of S by the two-point stabilizes,, g, which we denote byi. The elements
of T can be parametrised by 2 or 3 parameters fionfor PSU3, ¢), T = {t,.» | a,be
K, aa + b + b = 0} (note that the parameters here are interchanged with respect to tho
in [4] to be consistent with the other groups); for(gx T = {t. | a,b € K} (of
course, the, , have completely different interpretations in the two cases) and ¢gy,R

={tab.ec | a, b, ¢ € K}. Note that for any automorphisai* of one of these groups that
is mduced by a field automorphissnof K , we havegb = 140 po (and similarly forz, p ).

The cyclic groupH has in all cases a natural identification with either the multiplicative
groupK * of K, or the subgroup of index 3 ik *; the latter situation arises if and only if
Sis PSUS, g) and 3| ¢ + 1. Thus we can writdd = {5, | « € Hp} for some subgroup
Hp of K*. The action by conjugation @ onT satisfies;’f =ty (OF t(’j“b o = lach ¢
as applicable) for som&, ¢’ € K.

Itis sufficient to find pointsy, 8, y € T suchthaiG, g, = 1since therf{o, 8}, {«, y}}
is a base fo(G, Q). Becaus€G, I') is 2-transitive, we can take, 8 to be arbitrary points
of I, as before, and use the notation introduced earlier. The problem then reduces to t
of finding an element of that is moved by every non-trivial element@f, 4 in the action
on T by conjugation.

If we can find an elemenit of K that is moved by all automorphisms &f, and (if
is PSUS3, ¢)) for which 1 ;, (or 71, . for somec) is an element of’, then we have done.
This is because for any € H or, in the PSW3, ¢) case where 3qg+ 1 any product:
of a diagonal automorphism and an elementiothe conjugat , (Or tl ».c) is not of the
forms y (orty ) foranyd’ (ord’, ¢’) in K. Since every element @, g may be written
as a product of a field automorphism followed by such an eleigtitis means that the
elementry ;, (or r1,5.c) is moved by every non-trivial element 6f, g.

There are always elements & moved by every field automorphism: just take any
element that generateX over the prime field. If it is fixed by a field automorphism, then
it must lie in a proper subfield of, contradicting the choice df. Therefore we are done
whens is a Suzuki or Ree group.

For the unitary case, we require an elemest K that is moved by every field automor-
phism, and for which % b + b = 0. This is equivalent to showing that there is an element
b in K that does not lie in any proper subfield &fand for which 1+ b + b5 = 0. The
number of elements of K with 1+ b + b = 0 is ¢, since the trace mafi — Ko given
by x — x + x is surjective anKp-linear. LetN be the number of these elements that lie
in proper subfields oK. We will show thatNV < g.

Letr be the integer such that= p”. Thenk has sizep? and the maximal subfields of
K areKg and the fields of size¢?/s for odd prime divisors of r. If b € Ko thenb = b;
if in addition 14 b + b = 0 then 1+ 2b = 0 so this is impossible i = 2 and otherwise
there is precisely one suéh The number ob with 1 + b + b = 0 that lie in the field of
size p?/s is at mostp?/* — 1, since 0 is not a solution to this equation. Therefore

N<1+) (PP -1

where the sum is over all odd prime divisaref r. Therefore ifr is a power of 2 we have
N < 1, otherwiseN < 1p%/2 wherer is the number of odd prime divisors of It is easy
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to see that < p'/3,s0 N < g = ¢. This concludes the proof in the unitary case. [

The remainder of this appendix is concerned with groups whose socle 2 RSL

Lemma B.2. Letq = p" wherep is prime, and letz be a group of field automorphisms
of If;, acting naturally onf,. Then there exists € F,; such thats, = 1. Furthermore if
g ¢ {2, 4} thena may be chosen so that! does not lie in the samB-orbit asa. If g is
odd thena is not a square irFy’, but in this case iy ¢ {3,5, 9} then there also exists a

squareb € F, with T, = 1andb! ¢ b=,

Proof. Leta generatéF,*. Thena has orderp” — 1 anda~! = a? ~2. Leto € X\ {1}.

Theno (a) = a”* where 1< e < r. Clearly none ofp, p2, ..., p"~Lis congruent to 1
mod p” — 1, soX, = 1. Also —1 is only congruent mog"™ — 1 to a member of the set
(1, p. P2 ....p" 1} if p=2andris1or2, scu—! does not lie in the orbit> unlessy
is2or4.

Now assume is odd, sa: is a non-square satisfying both conditions. ket a2. Then
b has orden(p” — 1)/2 and ifp¢ = 1 mod (p" — 1)/2 for somee with 1 < ¢ < r then
(p"—1)/24+1 = p° (since(p” — 1)+ listoo big). Then g¢ = p" + 1. Sincep” > 3p°,
this is impossible. Finally, ip¢ = —1 mod(p" — 1)/2 for somee with 0 < e < r then
p¢ = (p" —3)/2 0orp¢ = p" — 2. In the first case 2° + 3 = p" and asp” > 3p° this
requiresp® < 3, and sop” < 9. Thereforer < 2 and so eithee = 0 andp” = 5, or
e=1,r =2andp” = 9. In the second case, ass odd we must havp” = 3. Therefore
if g ¢ {3,5,9}thend is a square satisfying both conditions. O

Proposition B.3. Let (G, I') be a group with socl®SL(2, g) (whereq > 3) acting on
projective pointgso#I" = m = ¢ + 1), and letQ = I'? If (G, I') is not3-transitive then
there exists a base @G, 2) of size2.

Proof. We can regard as the projective lin&,; U {oo}, and the elements oflR. as trans-
formationsx — (ax + b)/(cx + d) composed with field automorphisms acting naturally.

Supposés is not 3-transitive oi". Thenp is odd andG o, ~ has two orbits o \ {0, oo},
namely the set of squares )* and the set of non-squares. Field automorphisms mar
squares to squares, but the non-trivial diagonal automorphism maps squares to non-squ
and vice-versa. Thus if the group contains any outer automorphism not contained in t
group of field automorphisms then it is 3-transitive onSo we may reduce the problem
to the case BL(2,q) = PSL(2, g) x (¢) whereg is the automorphism induced by the
Frobenius map — x? on F, andg is odd, since any non-3-transitive group of R3\g)-
type is cor;tained in this group, and so it suffices to find a base of size 2 for this group acti
onQ =T,

We takex = oo andp = 0. Our strategy will be to fixo = {«, 8} and choose a suitable
point w1, then show thatw, w1} is a base by taking an arbitrary eleméng G fixing w
and showing that i fixesw; as well them: = 1. So leth € G,,. Then there exist € F,
andi > 0 such thak = g¢' orh = gj¢' whereg : x — r°x andj : x > —x L.

We distinguish two cases, depending on whether 1 mod 4 org = 3 mod 4. In the
first case—1 is a square ifi;,. By LemmaB.2, there exista € [, which is a non-square
fixed only by the trivial element ofg), and such that ! does not occur in the orbit af

under(¢). Letw1 = {1, a}. Thenwfl = {1, a1} wherea; # a,a Y unlessp’ = 1, and also
ai is not a square. Themf"’ = {12, t%a1} and is only equal te if 2 = 1 andr?a; = a,
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sincer? and 1 are squares anth; anda are not. Thusoi"”l = w1 only in the case where
¢ = land¢’ = 1. Also,a)i'jd’l = {—12, —tzal_l} and is only equal taw; if —1%2 = 1
and —tzal_l = a, since 1 and-r? are squares and the other two elements are not. Thu:

wi"’” = w1 only whena = al‘l, which is impossible. Thugy, w1} is a base.

In the second case;1 is not a square ifi,. By LemmaB.2 there is a squark € F that
is not fixed by any non-trivial element &) and is such thai =1 ¢ %), Letw; = {1, b}.
Thenw‘f = {1, b1} whereb~! # by andb = by only if ¢/ = 1. Thenwi"pl = {2, %b1),
which equalswy only if the ratio of the two elements is the same, that is to say only if
b1 € {b, b~1}. Thus to fixw;, we would need; = b and sap’ = 1, and then we would also

needr? = 1 sinceb # b1 sor? = b and 1= +?b is not possible. Therefor@f‘pl = w1

onlyif ¢! = g =1. Also,wf-"l’l is a pair of two non-squares, so can never eqyalvhich
is a pair of squares. Thys, w1} is a base. O

Proposition B.4. Let (G, ") be a group with socl®SL(2, g) (whereq > 3) acting on
projective points. LeR2 = I'? and letw = {a, B} lie in Q. Let R € Q be aG,,-orbit of

largest size. The#G,, ) < 2for » € R, andG,, acts faithfully onR. If R is not contained
in the adjacent-point sekr(w) then the number of points of R such thatG,, ; ;» # 1is

at most2 log, ¢, wherep is the prime dividing;.

Proof. As before, we can identiff’ with the projective line, and take = oo andg = 0.
The elements o&; can be expressed as a produét: of a transformatiork of the form
x = (ax +b)/(cx + d) and a maw * induced by the action of an automorphisnof [, .
The elements o6, g are those for whiclt is a scalar transformatian — [x for some
lel,.

Iqu = PGL(2, ¢) then the orbits of5, on 2 are as follows. There ig»} and one other
orbit, of size 2q — 1), which together make up the adjacent-point/sgtw). All the others
are G, g-orbits of sizeg — 1, of the formX,, = {{a, ak} \ a € F*} where the different
orbits are obtained by varying the valuekah I, , except ifg is odd then the orbit containing
{1, -1} has sizelg — 1)/2. If G = PSL(2, ¢) then the orbits are the same, except that the
orbit of size 2g — 1) splits into two orbits of sizg — 1. In both cases§, acts regularly
on any largest suborbit. In the general case, a largest suborbit is either containe@in
(and so has siz¢ — 1 or 2(qg — 1)) or is a union of set¥X; each of sizey — 1.

First we show that if a largest suborlittis contained inAr(w) and has size at least
%#Gw thenG,, acts faithfully on it. We may assume th@f, does not act regularly oR, so
by the preceding propositiod; acts 3-transitively o’ and soR must have size@ — 1).

By the assumption on the size &f the stabilizer of a point oR in G, must have size 2,
which means thatr must be the extension of P@2, ¢) by a field automorphism of order 2.
This field automorphism will fix the paf0, 1}, for example, but as there must be elements
of I, which it does not fix, it cannot fix every pair of the forf, a} wherea € F,. Thus

G, acts faithfully onR in this case.

Now we consider the other possibility f&, and show first that there always exists a
suborbit of size at Ieas}#Gw, so any largest suborbR has size at Ieas}#Gw. Secondly
we will show that ifR is a union of setX; thenG,, acts faithfully on it, and iiG,, does not
act regularly onk then each point stabilizer in the action@f, on R fixes at most 2logq
points of R. The result will then follow.

Let z generatdl,, soz is moved by every non-trivial automorphismIgf. Consider the
action of a general element’ of G, g on{1, z}; hereh is a scalar transformation— Ix
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for somel € F,. If {1,2}°" = {1, z} then{l,1z°} = {1, z}. So if eithera* or & is not
the identity we must have= z andlz® = 1, which gives? = z~1; this is only possible
if ¢ < 4. Thus ifg # 4 thenG, g acts semi-regularly on thé,,-orbit containing{1, z},
which thus has size at Iea##Gw. However ifg = 4 then the group of field automorphisms
of [, has size 2 so i; is 3-transitive then the suborbit containedin (w) has size at least
%#Gw. If G is not 3-transitive theiis,, acts regularly on a largest suborbit, by the previous
proposition.

Now we consider certain special elementsg’ of G,,, and show that for eadhat least
one of these elements fixes a poiniip, but that neitheg nor g’ fixes more than two points
of any setX, of sizeq — 1.

In the casep = 2, consider the map : x — x~1, which lies inG,,. Let! ¢ F, have
12 = k1 (this is always possible since 2 does not divide the ord@&y’gfhowever there is
only one elementwith this property). Thedl, [k}8 = {I, Lk}, but this is the unique pair in
X\ that is fixed byg, since the only element &, fixed by g is 1 (which equals-1) so any
pair {a1, ao} fixed by g must have:; = a» anda = a;.

If pisodd, more care is needed. By the previous propositi@r ifloes not act regularly
on a largest suborbit, tha® must act 3-transitively ofi. Furthermore ifG is a 3-transitive
extension of PS(2, ¢) by a group of order 2, the@,, still acts regularly on the suborbit
of size 2g — 1) that is contained iMAr(w). This means that we may actually assume
that G contains PGI2, ¢), as the only 3-transitive extension of P&lg) that does not
contain PGI(2, ¢) contains PSI2, ¢) as a subgroup of index 2. It follows that(which
has determinant-1 so does not lie in PSR, ¢)) does lie inG. However, there are now
either 0 or 2 elementssuch that? = k1, depending upon whethéris a square ik,
or not. Since the only elements Bf fixed by ¢ are+1, and the paif1, —1} lies in the
setX_1 that has siz€g — 1)/2 notq — 1, we see that if the sef, has size; — 1 theng
must interchange the points of any pairip that it fixes, and sg fixes at most 2 pairs in
any X, of sizeq — 1. For half the set, that is, those for values @ffor whichk~1 has
a square root ifff,, the elemeng has a fixed point irX; we now look for an elemeny’
with similar properties, that fixes a point in all tho¥g that do not contain fixed points of
g. Assumek has no square root ifj,. Let c be an element dF, that is not a square. The
transformatiorg’ : x — cx~! lies in G, and there are precisely two elemehfer which
1?2 = ck~1. Then{l, Ik}¢ = {I, Ik} andg’ fixes a point ofXy; as beforeg’ fixes at most 2
points of any seX, sinceg’ does not fix any points df, .

Thus for any seKy, there exists a non-trivial elemegior g’ of G, that fixes a point of
X but does not fix all 0ofX;, and so ifR is a union of set(; and the stabilizer of a point
Ain Rin G, is of size 2, therG,, must act faithfully onR (using transitivity ofG,, on R
in the case wherg itself is not fixed byg or g’). Furthermoreg or g’ (as applicable) fixes
at most 2 points of each s&Y, of sizeq — 1, and so ifR is a union of sets(; andx € R
then there are at most 2 ng pointsA” € R for which G, ;- # 1, sinceRr is a union of
at most log g setsXy, all of which have sizeg — 1.

This is sufficient to prove the proposition. O

The following theorem summarises the foregoing propositions.

Theorem B.5. Let (G, I) lie in £'. Letw € © = I''? and letR be a largestG,,-orbit.

LetAr € R. ThenG,, , has size at mos, G,, acts faithfully onR, and eitherR U {w} is

the adjacent-point set - (w) or there are at mos? Iogp (m — 1) elements.” of R such that
{w, A, A’} is not a base folG (here p is the prime dividingn — 1).
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Appendix C. GAP script to implement UOP algorithm

This appendix is available to subscribers to the journal at:
http://mww.Ims.ac.uk/jcm/1/lms97008/appendixc/.
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