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THE CHARACTERIZATION OF 
A LATTICE HOMOMORPHISM 

JONGSIK KIM 

1. Introduction. We shall give a simple characterization of a lattice 
homomorphism from a linear lattice E to a linear lattice F. This paper is 
motivated by the following two theorems in Kaplan [2] : 

(1) If 0 is a lattice homomorphism, then (j>t(Fb) is an ideal in Eb. 
(2) If (j> is a lattice homomorphism, then <j>u is a lattice homomorphism 

from Fbb into Ebb. 
The main theorem is stated and proved in section 3. In section 1, we shall 

give notations and in section 2, we shall prove a main lemma. For details, we 
refer to Vulikh [3]. 

The author wishes to thank the referee for revising the statements of the 
main theorem. 

2. Notations and definitions. Throughout this paper E and F will be 
linear lattices. We shall denote by [x, y] an interval {z £ E\x ^ z ^ y\. The 
complete linear lattice of all the order-bounded linear functionals on E will 
be denoted by Eb. We shall denote by Ec the band in Eb of all the order-
continuous linear functionals on E. For any subset S of E, we define the 
disjoint complement S' of 5 by the set 

S' = {x e E\ \x\ A \y\ = 0 for any y £ S}. 

When A is an ideal in Ec or in Eb, A± wrill denote the null space of A in E. 
We shall use the following definitions. 

Definition. A subcone A of E+ is called a positive ideal if x £ A and 
0 ^ y ^ x implies y G A. 

When E and F are complete linear lattices and 0 is a bounded linear mapping 
from E into F, we denote by <t>1 the transpose of <t> from Fb into Eb or from 
Fc into Ec when <t>l(Fc) C £ c . 

When £ is a direct sum of two ideals / and / , we set E = I ® J. 
For any x Ç E, its components in / and J will be denoted by Xx and Xj. 

3. Lemmas. We shall use the following lemma contained in Kaplan [1] 
without proof. 
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LEMMA 1. Let E be a complete linear lattice such that Ec separates the points 
on E. If Ec = I ® J for two ideals I and J, then E = I-1 © J\ 

We prove the following lemma. 

LEMMA 2. Let E and F be complete linear lattices such that Fc separates the 
points on F. Let <j> be a continuous linear mapping from E into F such that for 
every positive ideal A of E, <t>(A) is a positive ideal in F. Then <j>* : Fc —» Ec is 
a lattice homomorphism. 

Proof. Since $ is positive, <£' is positive. Since <t> is continuous, (t>l(Fc) C Ec. 
Le t / , ^ ^ , / , ^ 0 and / A g = 0. We want to show that <j>f A <t>lg = 0. 
Let I be the closed principle ideal generated by / and let J = V. Then Fc — 
I © J and F = I1- + J\ We note that g 6 J. 

Now for any x 6 E+, 

(*'/ A *f£)(*) = inf {*'/(*!) + t'gfa)}. 
Z l , £ 2 ^ 0 

Therefore, if we can prove that 

E+ = 0-1(/ i-) r\ E+ + Ï-'V-L) H £+, 

then it follows that 4>f A <fr'g = 0. 
Let iV = {x G 0_1(O)|x ^ 0}. Then E = N" + N' such that 0(x) = 0 for 

x e N" and 

0(x) > 0 for x > 0 and x 6 iV'. 

Since (0 ' / A <l>tg)(x) = 0 for x £ iV", it is enough to show that 
(0 ' / A *'g)(tf) = 0 for x G (iV')+, that is, we may take E = N', without loss 
of generality, or, equivalently, we may assume that 

(1) x > 0 implies <j>(x) > 0. 

Let us set A = « " H ^ ) ^ £ + and 5 = 0-1(^±) ^ £ + - T h e n A and J3 are 
closed positive ideals. And it follows easily that A + B is a closed positive 
ideal. 

We shall prove that (4 + B)" = (A + B) - (A + B). In fact, {A + B)" 
is the smallest closed ideal containing A + B. We noted that (A + B) — 
{A + B) is an ideal and it can be easily shown that {A + B) — (A + B) is 
closed when 4̂ + 2$ is closed. Hence we obtain our equality. It follows that 
(A + B)" r\ E+ = A + B. 

Now let us show that £+ = A + B. If we can show that (4 + £ ) ' H E+ = 
{0}, then for any x G £ + x = X(A+B)" £ A -\- B. Therefore it is enough to 
show that (A + BY Pi E+ = {0}. Consider x 6 (A + B)r C\ E+; then0(x) = 
(0(x))7± + (<I>(X))J-L', hence there exist positive elements y and z in Ix, the 
principal ideal generated by x such that <j>(y) = (0(x)) 7± and <j>(z) = (<t>(x))j±.. 
But y e A C -4 + B and. y G Ix £ (4 + 5 ) ' . Hence y = 0. Similarly z = 0. 
This shows that <£(x) = 0. Therefore by (1) x = 0. This completes the proof. 
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3. Main theorem. 

THEOREM. Let E and F be linear lattices. Assume that Eb (respectively Fb) is 
separating on E (respectively F). If $ is a linear mapping from E into F, then 
the following are equivalent: 

( 1 ) 0 is a lattice homomorphism; 
(2) ifxAy = 0, then </>(x) A <t>(y) = 0; 
(3) for anyf G (Fb)+y 4>*[0,f] = [0, 0 ' / ] ; 
(4) for any positive ideal I in Fb, </>'(/) is a positive ideal in Eb; and 
(5) <t>(E) is a linear sublattice of F, <t>(E+) = (<£(£))+, and for any ideal I 

in Fb, <t>l(I) is an ideal in Eb. 

Proof. (1) => (2). This is clear. 
(2) => (1). This is well-known. 
(1) =» (3). Let / £ (Fb)+ and g 6 [0, <t>f]. We want to show that there 

exists h G [0,/] such that g = <t>l(h). # - 1(0) is an ideal; denote it by / . Then 
<t>l(Fb) C I-1 and 1^ is isomorphic with (E/I)b, (E/I) is isomorphic with 
<j>(E). Therefore IL is isomorphic with 4>(E)b. Moreover, $* can be identified 
with the mapping ir : Fb —> ((t>(E))b defined by irf = f\<f>(E). Therefore it is 
enough to show that if g € [0, irf], then there exists h Ç [0,/] such that 
g = irh. But if <f> is a lattice homomorphism, then <f>(E) is a linear sublattice 
of F and hence g can be extended to a linear functional h on F such that 
0 ^ h ^ f. Then 7r& = g. This completes the proof that (1) implies (3). 

(3) =» (1). We shall prove that the bitranspose 4>u : Ebc -» Fftc is a lattice 
homomorphism. Once this is done, then since £ (respectively F) can be regarded 
as a linear sublattice of Ebc (respectively Fbc), it follows that <f> = (t>tl\E is a 
lattice homomorphism. 

To prove that 4>u is a lattice homomorphism, it is enough to show that for 
every x £ Ebc, <j>tlx+ = (4>tlx)+. Since <j>u preserves order, 4>t%x+ ^ <j>ux, hence 
<j>tlx+ è (<t>ux)+. To prove the opposite inequality, we shall show that 
(*"*+)(/) £ (<t>tlx)+(f) for a l l / e FbJ^ 0. Now 

( * " * + ) ( / ) = (*'/)(**") = sup **(*), 

while 

(<j>tlx)+(f) = sup &(*"*) = sup (<t>lh)(x). 

By the assumption (4), if 0 ^ g g <£'(/), then g = </>'(&) for some h satisfying 
0 ^ h ^ / . Therefore 

sup g(x) g sup (<!>%) (x). 

Hence (3) implies (1). 
(3) ==> (4). This is clear. 
(4) => (1). If 0 ' maps positive ideal to a positive ideal, then <£' is continuous. 
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Since Ebc is separating on E, <j>tl is a lattice homomorphism by the Lemma 2. 
Therefore $ is a lattice homomorphism. 

(1) => (5). If </> is a lattice homomorphism, then 0(JS) is a linear sublattice 
and «(£+) = («(£))+. Let J be any ideal in F&. Then J+ = {x G J|x ^ 0} is a 
positive ideal and I = 1+ - I+. Hence 0(7) = 0(7+) - tf(7+). By (4) 0(7+) 
is a positive ideal. Hence </>(/) is an ideal in Eb. 

(5) =* (3). L e t / G (F&)+ and g G [0, 0 ' /] . Let If be the ideal generated by 
/ in Fb. Then g Ç <£'//, since </>'// is an ideal. Therefore there exists h £ If such 
that g = <t>lh. Let us set k = ft|0(E). Then 0 ^ k ^ &|0(E) on (0(E)). In fact, 
for any y Ç (<j>(E))+, let 3> = $(x) for some x G E+ . Then 

fe(y) = k(4>(x)) = h(<j>(x)) = <t>lh(x) = g(x) ^ 0. 

Moreover, & = h\<f>(E) ^ / o n 0(E). In fact, for any g G («(£))+, let y = <£(*) 
for some x G E + . Then 

k(y) = *(*(*)) = * ( 0 W ) =*%(*) = g(*) £* ' / (* ) = /(*(*)) = f(y). 

Hence À | 0 ( £ ) = & can be extended to a linear functional, say k again, denned 
on F such that 0 ^ k g / . 

We have 0 ^ = 0% = g. Therefore (5) implies (3). This completes our proof. 
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