THE CHARACTERIZATION OF A LATTICE HOMOMORPHISM

JONGSIK KIM

1. Introduction. We shall give a simple characterization of a lattice homomorphism from a linear lattice E to a linear lattice F. This paper is motivated by the following two theorems in Kaplan [2]:

(1) If ϕ is a lattice homomorphism, then $\phi^t(F^b)$ is an ideal in E^b .

(2) If ϕ is a lattice homomorphism, then ϕ^{tt} is a lattice homomorphism from F^{bb} into E^{bb} .

The main theorem is stated and proved in section 3. In section 1, we shall give notations and in section 2, we shall prove a main lemma. For details, we refer to Vulikh [3].

The author wishes to thank the referee for revising the statements of the main theorem.

2. Notations and definitions. Throughout this paper E and F will be linear lattices. We shall denote by [x, y] an interval $\{z \in E | x \leq z \leq y\}$. The complete linear lattice of all the order-bounded linear functionals on E will be denoted by E^b . We shall denote by E^c the band in E^b of all the order-continuous linear functionals on E. For any subset S of E, we define the disjoint complement S' of S by the set

 $S' = \{x \in E \mid |x| \land |y| = 0 \text{ for any } y \in S\}.$

When A is an ideal in E^c or in E^b , A^{\perp} will denote the null space of A in E. We shall use the following definitions.

Definition. A subcone A of E^+ is called a positive ideal if $x \in A$ and $0 \leq y \leq x$ implies $y \in A$.

When E and F are complete linear lattices and ϕ is a bounded linear mapping from E into F, we denote by ϕ^i the transpose of ϕ from F^b into E^b or from F^c into E^c when $\phi^i(F^c) \subset E^c$.

When E is a direct sum of two ideals I and J, we set $E = I \oplus J$.

For any $x \in E$, its components in I and J will be denoted by x_I and x_J .

3. Lemmas. We shall use the following lemma contained in Kaplan [1] without proof.

Received August 10, 1973 and in revised form, December 7, 1973.

LEMMA 1. Let E be a complete linear lattice such that E° separates the points on E. If $E^{\circ} = I \oplus J$ for two ideals I and J, then $E = I^{\perp} \oplus J^{\perp}$.

We prove the following lemma.

LEMMA 2. Let E and F be complete linear lattices such that F^c separates the points on F. Let ϕ be a continuous linear mapping from E into F such that for every positive ideal A of E, $\phi(A)$ is a positive ideal in F. Then $\phi^t : F^c \to E^c$ is a lattice homomorphism.

Proof. Since ϕ is positive, ϕ^t is positive. Since ϕ is continuous, $\phi^t(F^c) \subset E^c$. Let $f, g \in F^c$, $f, g \ge 0$ and $f \land g = 0$. We want to show that $\phi^t f \land \phi^t g = 0$. Let I be the closed principle ideal generated by f and let J = I'. Then $F^c = I \oplus J$ and $F = I^{\perp} + J^{\perp}$. We note that $g \in J$.

Now for any $x \in E^+$,

$$(\phi^{t} f \wedge \phi^{t} g)(x) = \inf_{\substack{x_{1}+x_{2}=x\\x_{1,x_{2}}\geq 0}} \{\phi^{t} f(x_{1}) + \phi^{t} g(x_{2})\}.$$

Therefore, if we can prove that

$$E^+ = \phi^{-1}(I^\perp) \cap E^+ + \phi^{-1}(J^\perp) \cap E^+,$$

then it follows that $\phi^{t} f \wedge \phi^{t} g = 0$.

Let $N = \{x \in \phi^{-1}(0) | x \ge 0\}$. Then E = N'' + N' such that $\phi(x) = 0$ for $x \in N''$ and

$$\phi(x) > 0$$
 for $x > 0$ and $x \in N'$.

Since $(\phi^t f \wedge \phi^t g)(x) = 0$ for $x \in N''$, it is enough to show that $(\phi^t f \wedge \phi^t g)(x) = 0$ for $x \in (N')^+$, that is, we may take E = N', without loss of generality, or, equivalently, we may assume that

(1) x > 0 implies $\phi(x) > 0$.

Let us set $A = \phi^{-1}(I^{\perp}) \cap E^+$ and $B = \phi^{-1}(J^{\perp}) \cap E^+$. Then A and B are closed positive ideals. And it follows easily that A + B is a closed positive ideal.

We shall prove that (A + B)'' = (A + B) - (A + B). In fact, (A + B)''is the smallest closed ideal containing A + B. We noted that (A + B) - (A + B) is an ideal and it can be easily shown that (A + B) - (A + B) is closed when A + B is closed. Hence we obtain our equality. It follows that $(A + B)'' \cap E^+ = A + B$.

Now let us show that $E^+ = A + B$. If we can show that $(A + B)' \cap E^+ = \{0\}$, then for any $x \in E^+$ $x = x_{(A+B)''} \in A + B$. Therefore it is enough to show that $(A + B)' \cap E^+ = \{0\}$. Consider $x \in (A + B)' \cap E^+$; then $\phi(x) = (\phi(x))_{I^{\perp}} + (\phi(x))_{J^{\perp}}$; hence there exist positive elements y and z in I_x , the principal ideal generated by x such that $\phi(y) = (\phi(x))_{I^{\perp}}$ and $\phi(z) = (\phi(x))_{J^{\perp}}$. But $y \in A \subset A + B$ and $y \in I_x \in (A + B)'$. Hence y = 0. Similarly z = 0. This shows that $\phi(x) = 0$. Therefore by (1) x = 0. This completes the proof.

173

3. Main theorem.

THEOREM. Let E and F be linear lattices. Assume that E^b (respectively F^b) is separating on E (respectively F). If ϕ is a linear mapping from E into F, then the following are equivalent:

(1) ϕ is a lattice homomorphism;

(2) if $x \wedge y = 0$, then $\phi(x) \wedge \phi(y) = 0$;

(3) for any $f \in (F^b)^+$, $\phi^t[0, f] = [0, \phi^t f]$;

(4) for any positive ideal I in F^{\flat} , $\phi^{\iota}(I)$ is a positive ideal in E^{\flat} ; and

(5) $\phi(E)$ is a linear sublattice of F, $\phi(E^+) = (\phi(E))^+$, and for any ideal I in F^b , $\phi^t(I)$ is an ideal in E^b .

Proof. $(1) \Rightarrow (2)$. This is clear.

 $(2) \Rightarrow (1)$. This is well-known.

 $(1) \Rightarrow (3)$. Let $f \in (F^b)^+$ and $g \in [0, \phi^t f]$. We want to show that there exists $h \in [0, f]$ such that $g = \phi^t(h)$. $\phi^{-1}(0)$ is an ideal; denote it by I. Then $\phi^t(F^b) \subset I^{\perp}$ and I^{\perp} is isomorphic with $(E/I)^b$, (E/I) is isomorphic with $\phi(E)$. Therefore I^{\perp} is isomorphic with $\phi(E)^b$. Moreover, ϕ^t can be identified with the mapping $\pi : F^b \to (\phi(E))^b$ defined by $\pi f = f|\phi(E)$. Therefore it is enough to show that if $g \in [0, \pi f]$, then there exists $h \in [0, f]$ such that $g = \pi h$. But if ϕ is a lattice homomorphism, then $\phi(E)$ is a linear sublattice of F and hence g can be extended to a linear functional h on F such that $0 \leq h \leq f$. Then $\pi h = g$. This completes the proof that (1) implies (3).

 $(3) \Rightarrow (1)$. We shall prove that the bitranspose $\phi^{tt} : E^{bc} \to F^{bc}$ is a lattice homomorphism. Once this is done, then since E (respectively F) can be regarded as a linear sublattice of E^{bc} (respectively F^{bc}), it follows that $\phi = \phi^{tt}|E$ is a lattice homomorphism.

To prove that ϕ^{it} is a lattice homomorphism, it is enough to show that for every $x \in E^{bc}$, $\phi^{it}x^+ = (\phi^{it}x)^+$. Since ϕ^{it} preserves order, $\phi^{it}x^+ \ge \phi^{it}x$, hence $\phi^{it}x^+ \ge (\phi^{it}x)^+$. To prove the opposite inequality, we shall show that $(\phi^{it}x^+)(f) \le (\phi^{it}x)^+(f)$ for all $f \in F^b$, $f \ge 0$. Now

$$(\phi^{it}x^{+})(f) = (\phi^{i}f)(x^{+}) = \sup_{0 \le g \le \phi^{i}f} g(x),$$

while

$$(\phi^{it}x)^+(f) = \sup_{0 \le h \le f} h(\phi^{it}x) = \sup_{0 \le h \le f} (\phi^{it}h)(x).$$

By the assumption (4), if $0 \le g \le \phi^t(f)$, then $g = \phi^t(h)$ for some *h* satisfying $0 \le h \le f$. Therefore

$$\sup_{0\leq g\leq \phi^t f}g(x)\leq \sup_{0\leq h\leq f}(\phi^t h)(x).$$

Hence (3) implies (1).

 $(3) \Rightarrow (4)$. This is clear.

(4) \Rightarrow (1). If ϕ^t maps positive ideal to a positive ideal, then ϕ^t is continuous.

Since E^{bc} is separating on E, ϕ^{tt} is a lattice homomorphism by the Lemma 2. Therefore ϕ is a lattice homomorphism.

 $(1) \Rightarrow (5)$. If ϕ is a lattice homomorphism, then $\phi(E)$ is a linear sublattice and $\phi(E^+) = (\phi(E))^+$. Let I be any ideal in F^b . Then $I^+ = \{x \in I | x \ge 0\}$ is a positive ideal and $I = I^+ - I^+$. Hence $\phi(I) = \phi(I^+) - \phi(I^+)$. By (4) $\phi(I^+)$ is a positive ideal. Hence $\phi(I)$ is an ideal in E^b .

 $(5) \Rightarrow (3)$. Let $f \in (F^b)^+$ and $g \in [0, \phi^t f]$. Let I_f be the ideal generated by f in F^b . Then $g \in \phi^t I_f$, since $\phi^t I_f$ is an ideal. Therefore there exists $h \in I_f$ such that $g = \phi^t h$. Let us set $k = h | \phi(E)$. Then $0 \leq k \leq h | \phi(E)$ on $(\phi(E))$. In fact, for any $y \in (\phi(E))^+$, let $y = \phi(x)$ for some $x \in E^+$. Then

$$k(y) = k(\phi(x)) = h(\phi(x)) = \phi^{t}h(x) = g(x) \ge 0.$$

Moreover, $k = h | \phi(E) \leq f$ on $\phi(E)$. In fact, for any $g \in (\phi(E))^+$, let $y = \phi(x)$ for some $x \in E^+$. Then

$$k(y) = k(\phi(x)) = h(\phi(x)) = \phi^{t}h(x) = g(x) \leq \phi^{t}f(x) = f(\phi(x)) = f(y).$$

Hence $h|\phi(E) = k$ can be extended to a linear functional, say k again, defined on F such that $0 \leq k \leq f$.

We have $\phi^{t}k = \phi^{t}h = g$. Therefore (5) implies (3). This completes our proof.

References

- 1. S. Kaplan, The second dual of the space of continuous functions. II, Trans. Amer. Math. Soc. 93 (1959), 329-350.
- The second dual of the space of continuous functions. V, Trans. Amer. Math. Soc. 113 (1964), 512-546.
- 3. B. Vulikh, Introduction to the theory of partially ordered spaces (Wolters-Noordhoff Scientific Pub. Ltd., 1967).

Seoul National University, Seoul, Korea