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Introduction 

Let & be a finite group, & a field. A TWISTED GROUP ALGEBRA S/(^) on & 
over IF is an associative algebra whose elements are the formal linear 
combinations 

and in which the product (A)(B) is a non-zero multiple of (AB), where AB 
is the group product of A, B e&: 

One gets the ordinary group algebra &\f§) by taking each fAB = 1. 
Twisted group algebras play a central part in Schur's theory of the projec­

tive representations of finite groups [17], [18]. They also arise naturally in 
the theory of ordinary representations. Let & be an irreducible ̂ "-represen­
tation of a normal subgroup .Jf of ^. Miss Tucker [21]1 has shown that the 
analysis of the induced representation JSf* of & depends on a twisted group 
algebra j/pf") on a certain subgroup C%" of ^\3^. Clifford [5] encountered 
much the same algebra in the analysis of the restriction to of an 
irreducible representation of IS. 

The aim of the present paper is to develop the theory of twisted group 
algebras by exploiting their analogy with ordinary group algebras. This 
approach permits a unified treatment of such problems as Miss Tucker's 
cited above. It will be seen that the theory of ordinary group algebras 
carries over in considerable detail. 

In § 1, a normalization theorem is proved which brings out the multi­
plicative similarity between ordinary and twisted group algebras. This 
theorem is fundamental for the subsequent work. In § 2, a two-fold generali­
zation of Miss Tucker's paper is given. Firstly, the ordinary group algebras 
of and are replaced by twisted ones. Secondly, the representation .S? is 

2 *A(A) 

(A)(B) = fA>B(AB) 

1 Kleppner [14] has extended the theory to infinite discrete groups. 
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[2] Twisted group algebras and their representations 153 

assumed to be indecomposable rather than irreducible. As in Miss Tucker's 
theory, the analysis of •Sf depends on the decomposition of a certain twisted 
group algebra into indecomposable left ideals. 

A first step towards such a decomposition is to obtain the decomposition 
into two-sided ideals. This leads to the consideration, in § 3, of the blocks of 
a twisted group algebra. Here we follow the treatment of Rosenberg [16] 
rather than the original treatment of Brauer [4]. Finally, in § 4, we develop 
Higman's theory of relative projectivity [9], [11] and Green's theory of 
vertices and sources [8] for twisted algebras. 

This paper is based on part of a Ph. D . dissertation submitted to the Uni­
versity of Cambridge. I gratefully acknowledge the help of Professors 
D. Rees and H. Cartan, and Dr. G. E. Wall, during the course of the work. 

1. Normalization of twisted group algebras 

We take a twisted group algebra as defined in the introduction. 
For A e we write <Ё{А) for the centralizer of A in <&. Let denote the 
set of non-zero elements of Let P be the characteristic of !F; we allow 
P = 0. E will be the identity element of 'S. 

The elements K(A) of (K E ^ * , A E @) form a multiplicative sub­
group Г . The elements K(E) form a multiplicative subgroup К such that 
Г/К s У, and the (A) are coset representatives for К in Г . 

An element A e 'S is called a «-element if 

(В)-ЦА)(В) = {A), 

for all В e ^ { A ) . Thus the centraUzer of (A) IN Г consists of all multiples 
K{B), where K E!F*, В E^(A). All conjugates of А ЯТЕ also w-elements. 

The condition of associativity of is equivalent to 

for all A , В, С e Thus the set {FA, В} forms a factor system2 for ^. If we take 
a new basis of 

(1) (A) = dA{A), 

where dA E ^ * , A E & , then the /л_в are modified to 

r dAdB , JA.B = U,B-dAB 
1 The factor systems { / „ } , modulo the principal factor systems {dA} form an abelian group, 

which Schur [17] has called the "Multiplikator". Further discussion of the group is found in 
[2] and [3]. 
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154 S. B . Conlon [3] 

(a) fi>B=l(nodd) 
f%B = 1 (» even) 

(for all A, BE', 

(b) THE REPRESENTATIVES (A), (B),- • -, (A, B, • • -, e3i) FORM A NORMAL 

SUBGROUP OF r, 

(c) (A)-1={A~L) (alinéa?), 
(d) (X)~1(A)(X) = (X~LAX) WHENEVER A IS A U-ELEMENT, XE<3. 

PROOF, (i) Since 

we have 
tA,B fAB,C — fB.cfA.BC-

FA,B = HAHB\HAB (for A, B E&), 

where D = order of 2>, HA = JJcss IA,C- Replacing (A) by H2LLD{A), 

we have 

F%B=L (IOVA.BE®)-

Since D is a power of P, F A B — 1, all A , B If X e 0, A e 2, 

(X)-i(A)(X) = L(X-*AX), 

where / e and so 

( Z ) - 1 ^ ) " ^ ) = I'IX^AXY. 

Thus 
I* = 1. 

Hence 
1 = 1 , and (b) holds. 

(ii) Similarly, 
FLB = KAKBLKAB (all A, BE&), 

where KA = YLCEVFA.C- For each A. e 18, choose a definite value for KJ11". 

Replacing (A) by KA

LLN(A), we may assume FA B = 1 for all A, BE&. 

(For A , BE SI, 

1 = FA,B = KAKB/KAB, 

whence KA = 1; choose 1-V» in & as 1; then (b) still holds.) 

(iii) Let =i { A 1 , • • •, A T } be any conjugacy class of w-elements not in 2. 

Transformations given by (1) correspond to taking a different choice of 
coset representatives in r\K. 

THEOREM. LET N BE THE ORDER OF ^S. LET 3i BE THE LARGEST NORMAL P-SUBGROUP OF 

& IF P z£ 0, 3i = {E} IF P = 0. AFTER MAKING A FINITE NUMBER OF PRIMARY 

RADICAL EXTENSIONS TO THE FIELD IF, IF NECESSARY, IT IS POSSIBLE TO CHOOSE THE COSET 

REPRESENTATIVES (A) SUCH THAT: 
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The M-condition tells us that (AX) has R conjugates IN T. Choosing (AT) 
arbitrarily and taking ( A 2 ) , • • •, (AT) as its other conjugates in T we have 
condition (d) holding, and we still have /j} B = 1. 

(iv) Consider the elements in IS not in 3I. For such an element, (A)(A~1) = 

1(E)(I For one, say A , out of each pair A, A - 1 of non-involutory, 
non-M elements, leave (A) as before and replace (A'1) by (-4)-1 = L~L(A~L). 

For each non-M involution A , replace (A) BY L~L(A). AS L N = \ , (L~1)"=L, 

N odd, ( H ) 2 n = 1, N even. 
Now consider the M-class 

= {ALT • • •, AR}. 

We still have the choice of (AT) at our disposal. If ^ X ~ X = { A ^ 1 , • • - , 
A~X}, we choose (AJ), (A^1) as above in the case A ^ A - 1 . If (X)~1(A1)(X) 

= (A{), then (X)-I(AJ-I(X) = (A()-I = ( A t 1 ) , by choice of (AT), (A^). 

Finally, let be self-inverse. Thus 

and 
(*) = (D-HAJIT). 

Replacing (AJ by L-I(AJ), and so all (AT) by L~L(A(), we still have (*) and 
also (AT1) = (AT)~\ 

REMARKS. 1. (E) is now the identity element of $T{<&). Further (A)(A-1) 

= (A-1)(A) = (E). If we write SF(3I) to denote the natural restriction of 
(<&) to the subspace spanned by the elements (D) (D e 3>), then S / ( 2 ) 

is precisely the group algebra W ( 2 ) . 
2. If S4(<S) satisfies (c) [(c), (d)] [[(b), (c), (d)]] then we shall call S4(&) 

normalized [w-normalized] [[̂ -M-normalized]]. 
3. If A is a w-element, and if T is prime to the order of A , then A* is a 

w-element. In particular A - 1 is a w-element. 
If P 0, and if A has order a power of P, then A is a w-element. 
Even if A is non-w, (c) ensures that 

(X)-I(Y)~HA)(Y)(X) = (X-IY-*)(A)(YX), 

for all X,YE&. 

4. If S/C&) is w-normalized and X X , • • •, Jf, are the w-classes, then the 
M-class sums KA = Joe*-. fo r m a basis for the centre £?(&) OIS/(@), 

which has dimension T.3 

5. A twisted group algebra S/(&) is actually an (two-sided) ideal direct 
summand of a group algebra4: suppose S/(@) has been normalized as in 

* c. f. Satz 1, p. 83 of [20]. Tazawa's formulation is not so explicit and is confined to the 
non-modular case. 

* I am indebted to the referee for this remark and its oroof. 
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(ii) above so that all F A B satisfy F \ B = 1. If & has characteristic J>, and 
n = MP", (M, P) = 1, then in fact F A B = 1. Thus the FA¡B all belong to the 
multiplicative group WM of w-th roots of unity. Let / -> /* be an isomorphism 
onto some other cyclic group Vm of order M, generated by fi*, and define a 
central extension 9* of 3? by ifra in which a?* is generated by elements 
SA(A E&) and V M , with S A S B = ¡Xb^ab- Then considered as 
embedded in is in the centre'of .F («?*); let 

SB - 2?i+ • • • + E M , 
where 

I m-l 

M a-0 

be a decomposition of the identity SE of & ( 9 * ) into primitive idempotents 
of ^"(ifj. It is readily verified that .af (S?) ~ EX^(9*). 

As "̂(S?*) is symmetric6, it follows thats¿{f&) is symmetric. (This can 
also be seen directly without using &(9*).) 

6. If P = 0, or P f N (non-modular case) (thus P f ,F(á?*) is semi-
simple, and so STIF&) is semi-simple *. In this case there are T different irre­
ducible representations of S/(@), where T = number of «-conjugacy classes. 

In the modular case, the number of irreducibles is equal to the number of 
-̂regular w-conjugacy classes of 3?7. (An element A e 9 is /«-regular if its 

order is prime to P.) This can be proved using Brauer's Theorem 3A, p. 410 
of [4]. 

7. From remark 1, any twisted group algebra on a -̂group 3> 
over a field & of characteristic P ^= 0 is the group algebra & ( 2 ) . This is a 
local algebra whose radical is spanned by the elements (P) — (E), P e S , 
E identity of 3>. The regular representation of &(&) is indecomposable. 

8. This last result can be extended a little further. LET 9 BE A CYCLIC 

EXTENSION OF A NORMAL P-SUBGROUP 3 , WHERE P ^ 0. THEN SI (2?) IS THE GROUP 

ALGEBRA ON 'S. 

PROOF. Clearly it can be assumed that |S?/S| = M, prime to P. Take 
G e & such that the coset G2 generates 9\2. Write 

GM = K E 9 , 

(G)M = D(K), (DE&*). 

Any element of & can be written uniquely in the form G"D, where 0 = K < M, 

* See definition of symmetric on p. 440 of [6]. 
• This can also be seen by a direct calculation of the discriminant of e. g. see p. 80 

of- [20]. 
' See also p. 207 of [2]. 
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By the theorem, s/(9) can be supposed to be />-M-normalized. If now 
we replace {GkD) by d~klm(G)k(D) this ensures that si (9) is the group alge­
bra &{9). 

9. If a twisted group algebra si(9) has one representation of degree 1, 
then it is the group algebra 1F[9). 

2. Induced representations 

Let si(9) be a normalized twisted group algebra and let si(jf) be the 
natural restriction of si (9) to a subgroup Jf of 9. Let ifbea left s/(Jf)-
module. (Throughout this apper all modules will be taken as having finite 
dimension considered as vector spaces over the base field &.) We define £f 
to be the left si (9) -module given by 

se* = of {9) ® r f ( J P , se, 
where ® is defined as in [6]. If Jl is an si (9)-module, then we shall write 

jf for the ĵ (̂ ")-module obained from Jl by simple restriction of the 
module multiplication to the ring s/(3V). 

Let Jl, Jf be j/(^)-modules. Then we write Hom^ (Jl, Jf) for the set of 
)-homomorphisms of Jl into Jf, Ex(Jl) = Hom^^, Jl) for the 

ring of s4(3V)-endomorphisms of Jl, and R^Jl) for the radical of Ex(Jl). 
Throughout this section homomorphisms will be written on the right. We 
quote the following simple lemma. 

LEMMA. / / JS? is an s/(Jf)-module and Jl an si (9)-module, then 
Hom (̂&, Jf*) = Homf(^*, Jl). This correspondence tj -*• if is given 
by defining for q e Horn,(.5?, Jlx), rf e Hom,(i?', Jl) by 

(A <g) L)if = A (Lrj) (A esi(9), L eUC). 
Henceforth we take to be a normal subgroup of 9, and J? to be an 

s/(Jtf)-module. The main theorem of this section concerns the structure of 
J2f* and this analysis is to be made through its ring of endomorphisms 

Given an element G e 9, we can consider the j/(Jf)-submodules of J2" 
of the form 

(G) ®M{x)£e, 
where (H)((G) ®L) = (G) ® (G)~l(H)(G)L ior HeJf, Le&. (G)(8>^may 
or may not be si(jf)-isomorphic to JSf. The stabilizer £f of £t° is the set of 
elements S e9 such that (S) ®-S? £ Then £f is a subgroup of 9 con­
taining 3f. 

Take a set { Z a } of elements of 9 such that XxJf, XsJf(X1Jf, 
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158 S. B. Conlon [7] 
X,je) are the different cosets of J? in £T (of in ^) with XX = E . Then we 
may write 

(i) ^* = i (x a )®^ = î fa( 

i i 

(l') J2" = i^.. 
i 

the 2 meaning vector space sum over 3P. We identify & x and if. If we 
restrict to 3^, (1) and (1') then become S/(3^)-direct decompositions of 
(&*)* and (if*")* respectively. 

Let 
<oa:<£^ (&*)„, j, a: (if*)*^* 

be the inclusion and projection jj/(̂ )-homomorphisms according to (1). 
(We use the same symbols for the decomposition in (1') and regard (3?*)* C 
(if*).*, naturally.) Thus the identity I of ̂ (if*)8 may be written 

9 

LIRJE Horn,,, (if, if*), then 

n = 2i3;a = 2f«<B«-i 
where va = e Horn*, (if, if J. Similarly if f e £„, (if*), we write 

A G 

? = 2 2 X*«>*£X/><»/I = 22 i i i t 
where 

= < » « & / » 6 Horn.,, (if., if,). 
Suppose 

LNI)=(XE)®LFI (LEX), 

(X.)(X,) = (Xy)ff.,, 
where XAXFIEXYJe, HXIFIES^{JF). Then 

( (X. )® 2 W W ® ^ • 
>» 

Thus (»?*)„,, maps (.XJ0Z. to (XY) ® HITFILF, where jS is determined by 
XAXJJ 6 XY3FF. 

From this point onwards we shall take if to be an indecomposable j/(<>f )-
module. Hence E^^SC) is a completely-primary ring. 

_» Here EJRI&y) means £>((i?»)jr). Similarly Horn,.(SF, means Homjet̂f, (if»)̂ r) etc. 
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[8] Twisted group algebras and their representations 159 
LEMMA 1. Let j /eHom^^,^ 9 ) . Then rf e R^9) if, and only if, 

none of TJ1, • • - ,7], is an -isomorphism. 
PROOF. By Jacobson [13], p. 60, rf eR„(<£9) if, and only if, no 

(rf)xp is an -̂isomorphism. By the above, this is the case if, and only if, 
no 7]t (/3 = 1, • • •, g) is an -̂isomorphism. No rjfi (/? > s) is an ^-iso­
morphism because, by the definition of Sf, if is not .̂ -isomorphic to JSf. 
This gives the lemma. 

There is of course the analogous 1 — 1 correspondence r]<-* rf between 
the 3^-isomorphisms r\ of if into ify and i"-endomorphisms rf of if5', 
where rf is defined by 

(A ® L)rf = A(LTJ) (A ss4(Sf), L eif). 

COROLLARY. Let r\ e Hom^i", ify). Then rf e Rx(&*) if, and only if, 
rf e RJt(££!f). (Here Horn^if, £Cy) is considered in the natural way as a 
subset of Hom^(if, £"*).) 

If u e Ey(SCy), the equations 
(A M)u* = A ® ̂  (Mu) (A ejf(9), M e 

define an element n* of I?9(if9). Moreover, the mapping u n* of £s,(if's') 
into E9(£'9) is a ring monomorphism. 

LEMMA 2. 

+ #,(if 9 ) = E9(SC9), 
E,{&*)* n R9(J?*) = 

where 
^ 9 ( i f») = £^(if9) n 7?^(if9), 
i?^) = 2^ (if") n (•$•"). 

PROOF. Let e £y(if"). Then u^rf^eHom^(if, if5'). Also J?9 = u*. 
By lemma 1, corollary, u e (if") if, and only if, u* e tf^if9). This gives 
the second relation. 

Now let P e E9(^C9). Then P = ?, f s Hom#(if, i f 9 ) . Write 
f = r+r, 

where r = 2Li £.«»«• Since f e Horn,,,(if, if"), £'* = e ^ ( ^ ) * -
Also, by lemma 1, £"9 e ^ ( i f 9 ) . Hence 

p = f» = f e £^(if")* +j?9(if*). 
This proves the first relation. 

COROLLARY 1. If e = ~£ex is a decomposition of the identity of £^(if") 
into indecomposable idempotents in Ey(^fy), then e* = 2 e* *s * similar 
decomposition in E9(£f9). 
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160 S. B. Conlon [9] 

COROLLARY 2. E9(Se*)\R9(&*) « E,{Se*)lR,{&*). 

COROLLARY 3. E9(£e*)\R9(£e*) w E,[Sr")IR,{&9). 

(Notice here that R9, Ry are nilpotent ideals of E9, Ey, so that R9Q R9, 

Now consider Ey(SCy). We remark first that r¡ ->rf gives a ring mono-
morphism of 2?̂  (if) into Esf(^Cy). (Here, and in what follows, we regard 
E^SS) = Honv (if, if) and Hom^(if, if J (a ̂  s) as subsets of Hom^ 
(if, if").) We denote the image of E^if) in Ei,(if4') by Ejr{áf)y. 

Write Ta = (a = 1, • • •, s) for the elements of sr/sr. For each T9, 
choose an -isomorphism f „ : if -> if a , and form 

(2) (r.) = ff. 
Clearly, if r, 7" e ^/Jf, (T) (T') (TT')-1

 maps if onto if and so belongs to 
E 
(3) (T)(r) = nlATT) { V T t F 6 ^ ( i * ) ) . 

Similarly, if rjeE^), Te^¡Je, (T)-lrf (T) e E a n d we write 

( W ( r ) = (i ,T- VT) e £*(-§?)• 
Clearly, »;->J;, : Г' , is an "̂-algebra automorphism of ^ ( i f ) ; and in fact, if 
(T) = ay, f-»,í = 

Finally, since an arbitrary element f of Hom^ (if, i f h a s the form 
• » 

a = l a = l 

each element of Es,(^Cy) can be uniquely expressed in the form 

2 t$(T), r¡T eE„(Sn-

Thus Ey(SCy) is a kind of twisted group algebra on &\3tf over E„,(if), 
though the (T) do not commute with the coefficients r¡y. 

By lemma 1, C" e Ry(SCy) if, and only if, no r¡T is an -̂isomorphism, i.e. 
if, and only if, all r¡T e Rx{&). Thus to get Ey(T

y)\Ry{Sey), we simply 
replace all the r¡'s in all above by their canonical images rj — r¡-\-Rie{SP) m 

EjrWIR^S?). Thus Ey(&y)/Ry{&y) appears as a generalized twisted 
group algebra over the division algebra £jr(if)/7?jr(if). The operations 
r] -> J?(T» are Ĵ -algebra automorphisms of (if )/./?„. (if). From now on we 
assume & algebraically closed. Thus E^^jR^SC) is the 1-dimensional 
Ĵ -algebra & itself, so fj = rj<r) (= ^m), all T. Here £,« (if")//?,, (if") 
becomes a genuine twisted group algebra .5/(¿"pf) on S^¡Jíf over J5". 

The followinp Ipmrna by Filling [7] provides the link between a module 
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[10] Twisted group algebras and their representations 161 

and its ring of endomorphisms. We use the term "component" to mean 
"indecomposable direct summand". 

LEMMA 3. Let si be a finite dimensional algebra (with a 1) over and let Jt 
be an si-module (finite dimensional) with & as its ring of si-endomorphisms. 
Let 

g = *eu ® • • • ® «f£ l B i © • • • © «fsm„m 

be a decomposition of & into left ideal components, where Seu ss Se^y if, 
and only if, i = i'. Let 

Jf — Jf n © * • • © J/irt/ © * * • © Jtm>n>^, 
be a decomposition of Jl into components, with Jti} a* J?t,r if and only if, 
i = i'. Then m = m', n — n', and one possible choice of Jfafl is given by 
Jfa0 = Jt £ag • 

Let 
jŜ *̂ — i * * i 

be a decomposition of into -̂components. We can further write 
(5) (J/a)j, = J/a\ © * * * © afca» 
where each of the J(af on £f, by the Krull-Schmidt theorem. Let e = 
be a decomposition of the identity of Ey(£Py) according to (4). Then each ea 

can be further decomposed by (5) in the form 

and any element n of E <,(£?*) has a unique expression in the form 

<*,/» 

Clearly = s, and the left ideal Ey(J?*)ea, considered as a module over 
E^ (HP), is the direct sum of ka copies of Ex (Se°). Hence the dimension over IF 
of the corresponding left ideal in si(^\3f) (= Ey (&y) ]R<, (SPy)) is precisely 
ka. Moreover, as R^y*) is nilpotent, the images of the two left ideal com­
ponents in the quotient ring are isomorphic if, and only if, the corresponding 
left ideal components of the original ring E^S?*) are isomorphic9. Com­
bining these results we have that the decomposition of is entirely 
reflected by the decomposition of si^l^t) into left ideals. 

Now [Se^y Jt\ © • • • © Jl\. Further, by corollary 3 to 
lemma 2 each JK% must remain indecomposable. Moreover, as i?9(JSf9) 

9 This was noted in § 1 of Nakayama [15] for the case where the kernel is actually the radical 
of Ey{&y). 
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162 S. B. Conlon [11] 
is nilpotent, the multiplicities of the different isomorphism types of left 
ideal components of E9(ST*) are the same as in E9(ST*)JR9{ST*), i.e. as in 
EYI&^IRFIX*) (bylemma2,coroUary3),i.e.asin£s,(J2'i') (since 
is nilpotent). Hence we have proved the following theorem. 

THEOREM. LET SF(3f) BE THE RESTRICTION OF A NORMALIZED TWISTED GROUP 

ALGEBRA SI (9) OVER AN ALGEBRAICALLY CLOSED FIELD SF TO A NORMAL SUBGROUP 

OF 9 , AND LET ST BE AN INDECOMPOSABLE SI(Jf)-MODULE WITH STABILIZER ST IN 9 . 

THEN THE DECOMPOSITION OF ST* IS ENTIRELY DETERMINED BY THE DECOMPOSITION OF A 

CERTAIN TWISTED GROUP ALGEBRA SI(SF\3tt) INTO LEFT IDEALS, THERE BEING A 1 — 1 
CORRESPONDENCE BETWEEN LEFT IDEAL COMPONENTS J A AND COMPONENTS JF\ OF ST*, 

SUCH THAT THE LEFT IDEALS ARE ISOMORPHIC IF, AND ONLY IF, THE CORRESPONDING SUM-

MANDS ARE. FURTHER 

DIM^V. = 6hn,{SA) • dmv(.S?) • (9 : ST). 

A decomposition of ST* is obtained from one of SF(ST\3tt) as follows: 
The decomposition of SI(Stj3f) t*A EY{STY)JRY(STY) is raised to one of 
E^(STY) by the algorithm used in the proof of theorem 9.3c in [1]. A de­
composition of ST* = 2 JL* is obtained as in lemma 3. Finally we may take 
^ = ufZ. 

If ST is irreducible, then E^(STY) is the twisted group algebra SI(STJJT), 

as E^ST) 

COROLLARY \. IF ST IS NOT INDECOMPOSABLE, SAY 

ST — ST X . . . ^ ^ 

THEN 

AS TENSOR PRODUCT ® IS DISTRIBUTIVE OVER DIRECT SUM ©. WE APPLY THE THEOREM 

TO EACH ST* TO OBTAIN THE DECOMPOSITION OF ST9. 

The problem of inducing up from a subnormal subgroup is equivalent to 
the decomposition of a series of twisted group algebras. For, if 3? ^ 3fx 9, 
we have (ST^)* ~ ST9. 

COROLLARY 2. / / Jf IS A SUBNORMAL SUBGROUP OF 9 OF PRIME POWER INDEX 

P" IN 9 , WITH ST OF CHARACTERISTIC P ^ 0, THEN ST* IS INDECOMPOSABLE IF ST IS. 

PROOF. Clearly the factor groups are /"-groups and so the twisted group 
algebras involved are on />-groups. Hence by § 1, remark 7, these are in­
decomposable, (c.f. Theorem 8 of Green [8]). 

In decomposing a twisted group algebra S / ( 9 ) into left ideals, we may 
make use of a composition series of 2? and consider S/(9) = (F <XE\)0 < 

where is the trivial representation of the group {E}. This leaves only 

https://doi.org/10.1017/S1446788700023363 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700023363


[12] Twisted group algebras and their representations 163 

the problem of the decomposition of twisted group algebras on simple 
groups. 

A detailed analysis will now be given of the decomposition of if". Let 
H -> K(H) be the linear representation afforded by the module if. All such 
linear mappings will be written on the left. In particular an element of 
EjfiSP) will be represented by a linear mapping 0 written on the left. 

Corresponding to each a = 1, • • •, s we have a non-singular linear trans­
formation Da such that the ̂ (^-isomorphism £a of equation (2) is given by 

(6) Sa:L-+(Xa)®D.L (LeJZ>). 
If we make a second choice of isomorphisms, say £'a :if ->-S?0,, and if 
D'a are the corresponding linear mappings, then 

Da = BD'a, 
where 0 is a linear mapping representing an automorphism in EX(£P). 
We choose Dx = I, the identity map. If XaXfi = XyH, then corresponding 
to equation (3) we have 

(7) D.D, = ex¡0Dyk(H), 

where Ba<fi represents an automorphism in E#(3?), and where this equation 
may be taken as defining 0a As Dt = I, it follows that 0 a l = 0 l a = I 
also. 

We now define Ds for S = XaH e ST: 

(8) ds = rx\,HDami 
and so Z) r > = Dx, DB = Dx = /. Then from these definitions it follows that 
if S eXxJ4f, S' cX,i^f, 

(9) D s D s , = / a i S .eB > e ,Ds s . . 

Thus the correspondence S -> Ds gives rise to an extension of if to (SP) if, 
and only if, 6xj= 1, all a, |S. 

For the case of if irreducible the analysis of Clifford in the proof of his 
theorem 3 in [5] (although not starting from the same point of view) can be 
adopted to get an explicit view of if". 

PROPOSITION 1. Let if be an irreducible s/(Jif)-module. Then any direct 
summand J( of if" affords a linear representation S^-xp(S) of 
which is the product of a fixed projective linear representation S -> Ds of 
s4(Sf) (independent of J() together with a certain direct summand 7i(SJf) 
of the linear representation afforded by considering si (S^/Jf) as a left module 
over itself ("regular representation" of ¿/(¿?¡JF)), i.e., 
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(10) y>(S) =DSX n(SJt). 1 0 

Thus must decompose just as n does. For Jl = Sty, the decomposition 
of Sty is related directly to that ois4(St\3tt) into left ideals. 

Again following Clifford's line of argument, we have: 
PROPOSITION 2. In the situation of proposition \,ifn is an irreducible linear 

representation of si(Stj3f), then the linear representation of si (St) given 
by (10) is irreducible. 

The analysis in the proof of Clifford's theorem 2 in [5] provides an explicit 
relation between the decomposition of Sty and that of St9. 

Finally we consider certain problems on extensions of St. 
PROPOSITION 3. Let 9\3f be cyclic of order m and suppose that either p = 0, 

or (m, p) = I. Let St (indecomposable) have stabilizer the whole of 9. Then 
there exist exactly m extensions of St to be an si(9)-module to within s/(@)-
isomorphism. 

PROOF. By the theorem St9 decomposes just as si(9/Jf) does. By § 1, 
remark 8, this must be the group algebra ^(^/Jf) and so decomposes into 
m non-isomorphic one-dimensional left ideals. Hence JSf* consists of the 
direct sum of m non-isomorphic extensions of St. 

Furthermore these are the only possible extensions of St. For, say 

where 
(11) DH = l(H) (HeJT), 

is the linear representation afforded by any other extension of JSP as an 
a (̂̂ )-module. Da = Dx^ is then a possible choice of D's in (6); it follows 
that 6ap = J, from (9). If G1Jf(G1 e 9) generates <3\3?', then all DG(G e 9) 
are determined in terms of Da , by equations (7), (8) and (11). A calculation 
shows that the m extensions of St contained in St9 have the linear represen­
tations determined by 
(12) G1^co>DGi 

where co is a primitive w-th root of unity in IF. 
PROPOSITION 4 u . Let <8\3tf' be a cyclic extension of a p-subgroup, where 

& has characteristic p ^ 0. Let \9\3tt\ = mp", (m,p) = 1 and let St be an 
irreducible si(Jf)-module, which has stabilizer the whole of 9. Then there 
exist exactly m extensions of St to be an si(9)-module to within si(9)-iso-
morphism. 

1 0 Here x denotes the Kronecker or tensor product. 
1 1 Propositions 3 and 4 are generalizations of lemmas 1 and 2 of Srinivasan [19]. 
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PROOF. AS S? is irreducible, & algebraically closed, E9(£F*) = SI(9JM'), 

and E M (SF) «a The D A of (6) are then determined to within a factor in 
and the 0a 0 are elements of ! F * . A different choice of DA'S gives a basis 

transformation of type § 1, (1) on SI(9\3V). By § 1, remark 9, SI(9\3F) 

is the group algebra on 9\3F and so the 0A FI may be considered equal to 1. 
Then G -*• D G is a linear representation of an extension of £€ to SI (9) by (9). 

Write 0* for the subgroup of 9 , such that 0>\3F is the Sylow />-group of 
<$\3V. Restricting our attention to SI(0>) and SI(0>L3IF), we see that if 
0A 0 = 1, then the choice of D P (P e 0>) is uniquely determined, for the only 
basis transformation of type § 1 (1) on the group algebra of a P-GROUP, 

keeping the multiplication constants all 1, is the identity transformation. 
Let Jl be this unique extension of S£ to S I ^ ) . 

By proposition 3, J/ has exactly M different extensions TO SI (9) to within 
isomorphism. 

3. Blocks and centres of twisted group algebras 

The decomposition of a finite dimensional algebra SI into the direct sum 
of two sided ideals is determined by the corresponding decomposition of the 
centre 2£. This in turn is determined by the decomposition of the identity 
element (E) as the sum of primitive central idempotents: 

(1) (E) = I , + • • •+1,. 

The term BLOCK will be used to describe either an 7A or the corresponding two 
sided ideal of & or SI. 

Rosenberg's analysis [16] of blocks of group algebras can be adapted to the 
twisted case by using the normalization theorem of § 1. 

If SI(S?) is M-normalized, then a basis for its centre 2 ^ ( 9 ) is provided by 
the w-class sums K A , as in § 1, remark 4. Then any block can be expressed as: 

(2) i = ZLKa. 
Let us assume that the field characteristic P ^ 0. Consider the centralizers 
^ ( A ) in 9 of elements A of 9 which have non-zero coefficients in (2). The 
largest among the Sylow />-subgroups of these ^ ( A ) is well defined up to 
conjugacy in 9 and is the DEFECT GROUP 2 of I . If \9\ = P*, D is called the 
DEFECT of J. 

If 2 is any subgroup of 9 , write J/~(2) for the normalizer of 2 in 9 and 
V ( 2 ) for the centralizer of 2 in 9. 

Take 9 to be a />-group and write 3? = JV(2). Let &(3V) be the centre 
of SI (JF). Consider a w-class X~ of elements of 9 with M-class sum K and write 

O(K) = sum of elements (A), 
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where A e n '£(2), if such elements exist, 0 otherwise, a can be extended 
to the whole of 3?(9) by linearity and is verified to be an jF-algebra homo-
morphism, 

a : 2£\<S) - > Z(3¥). 

In the case of group algebras, Brauer's first theorem on blocks may be 
stated as follows: 

a gives a 1 — 1 correspondence between the blocks of Z{{8) with 2 as one of 
their defect groups and the blocks of ) of defect d. The latter have 2 as 
their unique defect group. 

However, in the twisted case a complication arises as an element H (e 3f) 
may b e a M-element i n ^ ( ^ ) but not msi(9). To overcome this difficulty 
we define °U(3!) to be the subspace of ¿Xffi) spanned by those M-class sums 
of si ( J f ) which have defect group 2 and whose elements are w-elements in 
si(9). Then <%(2) is a subalgebra of &(3f). The theorem for blocks in the 
twisted case can now be stated as follows: 

o gives a 1 — 1 correspondence between the blocks of with 2 as one 
of their defect groups and primitive idempotents of $1(2). Each such idempotent 
is the sum of primitive idempotents of 3C(^C) with 2 as their unique defect 
group. 

Since this last theorem has reduced (to a certain extent) the problem to 
the case of blocks / with a normal defect group 2 (which must then be 
unique), this special case warrants more attention. As 2 is normal in it is 
certainly contained in the maximal normal />-subgroup 2 of 9. Let us sup­
pose then that si(9) has been £-íí-normalized. Then the natural homo-
morphism 9 -> &¡2 gives rise to an algebra homomorphism 

t :si(&) -+si{9¡2), 

where si (<&¡2) is a twisted group algebra on <S\2. Ker t is spanned by the 
elements (A)((D)—(E)), Ae&,De2, and is a nilpotent ideal of si(9). 
Further if K is a M-class sum of si(9), such that jf n c€(2) = 0 , then 
t(A") = 0, and so K is nilpotent. As ker r is nilpotent, r provides a 1 — 1 
correspondence between idempotents of &(9) and those of 3^(9¡2); 
thus the problem of blocks is further reduced to the case of defect d = 0. 

Finally we have the following theorem for blocks of maximum defect, 
which we prove in full as the -̂property needs careful attention. 

THEOREM. Let 9 have order pam, (m, p) = 1. Letsi(<&) be a twisted group 
algebra over an algebraically closed field of characteristic p ^ 0. Then the 
number of blocks of defect a equals the number of p-regular u-classes of defect12 a. 

The defect group of a conjugacy class is any one of the Sj'low ^-subgroups of the central­
izes m <S of its elements. 
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PROOF. A block of s4(&) of defect a has the Sylow ̂ -subgroups as its 
defect groups. Let 2 be any such and write = JV(2). Then the above 
theorem tells us that the number of blocks of defect a is the same as the 
number of primitive idempotents of <%(2). 

The homomorphism x, 

x :s*(J4?) -^s/{jfj2), 

is defined as above. %(2) contains the identity element of ) and so, 
as ker T is nilpotent, the restriction of x to %(2) gives a 1 — 1 correspond­
ence between idempotents of <%(2) and those of x('%(2)). ¿#(¿#"¡2) is 
semi-simple by § 1, remark 6, and so its centre 2£(JF /2) is the direct sum of 
copies of 3F. As x(<%{2)) is a subalgebra of 3?(3#'I2), it is also semi-simple 
and hence the number of blocks of defect a in £/(&) is equal to the dimension 
of x(<%{2)). 

We may assume that s/(&), s/(^) and ^(S^\2) are (separately) p-u-
normalized. Write (G), [H] for the basis elements of s/(^), ¿/(¿4?) respec­
tively, where Ge&, HeJf and {H} for the basis element of ̂ (3^C\2) cor­
responding to the coset H2 of ^¡2. Thus {H} = {HD}, for all D e 2. 

Let G be a M-element of such that 2 is a Sylow -̂subgroup of 
#(G). Write G = PR, where P, R are powers of G, P has order a power of p, 
R is ̂ -regular. Then 2 is a Sylow -̂subgroup of ̂ (i?). Let Jf be the w-class 
of ^ containing G, and write if = n # (^); then if is a complete13 

conjugacy class in 3tif. Thus 
ff(if) = dL, 

where K, L are the w-class sums of , if. (The factor <2 (e^-*) has to be 
introduced because of the possibly different normalizations of si^S), 
j*{Sf).) Then 

x(a{K)) = dx{L) e Z(^\2). 

If r(a(K)) # 0, it will now be proved that R is also a M-element in s/(@). 
If 

H eJff, write <£(H) = centralizer of H in , 
- <g(H) n JiT. 

2 is the Sylow -̂subgroup of #(G). Further Petf(R) and so P e l 
Thus {G} = {£}. As x(a(K)) ^ 0, and T(cr(if)) e ^(^\2), G2 = R2 must 
be a M-element in s/(3fj2) (see § 1, remark 4). Take N e^(R) and write 

[N][R][N-i] = b[R], 
r([R]) = c{R}, 

This is proved in Rosenberg's paper [16]. 
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where b, ce&*. Then 

r([tf][tf][iV-i]) = JT([2?]) = bc{R}. 
On the other hand this is equal to 

r([N])r([R])r([N-^), 
= {N}c{R}{N-*} (as both sf{X), st{3t\2) are normalized), 
= c{R} (as R2 is a «-element in sf(3fj2)), 

and so b = 1, i.e., 2? is a M-element in si(3f). Hence we have 
(3) (N)(R)(N-i) = (R) 
in s/(&), for all TV e «"(7?) c\Jf{2), as both j/(«?). ja/pf) are normalized. 

Let 2' be any other Sylow />-subgroup of£(R); then there exists lef (R) 
such that 0 ' = T2T~*. Thus 

r(<«?(2?) n ^ ^ j r - 1 = V(R) r,jr(2'), 
TGT-1 = RiTPT-1). 

Take TNT-ieViR) nJf(2'), where N e<g{R) njV(2). From (3) we get 
((T)(N)(T-i))((T)(R)(T-i))((T)(N-i){T-i)) = (r)(2?)(J-i), 

i.e. 

((r)(iV)(r-i))(2?)((r)(iV-i)(r-i)) = (2?). 
Using § 1, remark 3, we get 

(TiVr-1)(2?)(riV-ir-1) = (R), 
and so 
(4) (M)(2?)(M-i) = (2?), 
for all Me#(2?) n^T(^'). 

Let ̂  = 2, 2^, • • •, 2a be all the Sylow ̂ -subgroups of ̂ (R) and let J 
be the_ group union of the subgroups <&{R) n^T(^). Then <T(2?) = J, 
for 2. is normal in ̂ (2?) and 2, contains the normalizer of a Sylow -̂sub­
group of 1f(R). Any element of &(R) has the form C = AXA2 • • • Am, 
where Aa e some #(2?) n ^ ( ^ ) . Thus if r(a(K}) 0, then 

(C)(2?)(C-») = (At • • • AJ(R){A? • • • ^r1). 
= (A,) • • • (Am) (R)(A*1) • • • (A?) (by § 1, remark 3), 
= (R) (by repeated use of (4)), 

and so R is a ̂ -element of s/(&). 
Let 3Ta (a = 1, • • •, r) be the -̂regular w-classes of defect a in si{9) 

with corresponding w-class sums Ka. The Sfa — Jfm n ̂ (2) consist of single 
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conjugacy classes in ', and so the a(Ka) are multiples of the class sums Lx. 
Write 0> = (Ja-̂ a (set union). Then the {H} {H e 0} are all distinct in 
jf(JP\2). For say {H} = {H'}. Then H = H'D, for some D e 2. But each 
£PX has defect group 2 and so D e 2 C <g(H'). Further, the orders of H, H' 
are prime to p and so D = £, or if = i/'. Hence the T(L„) are all non-zero 
and linearly independent. But r{L„) er(^{2)) and so dim (2)) ^ r. 
It remains to show that the r(La) actually span T(QI(2)). 

It is clear that the £Pa exhaust all the /(-regular conjugacy classes of 3tP 
of defect group 2 which consist of w-elements in Let then £P be any 
/(-singular class of Jtf of defect group 2 and consisting of w-elements in 
j / ( ^ ) , i.e. L is a /(-singular «-class sum in <&(2). Take G eJP, and write 
G = Pi? as before. Then if t(Z.) 0, R is a w-element of s/(9) and t (L) is 
equal to a multiple of r(M), where M is the class sum of the conjugacy 
class J( of R in j / ( ^ T ) . But ̂  must be one of the classes SPa and so the 
r(La) do in fact span r(<W(2)). 

Thus the number of blocks of s/(@) of highest defect = dim i('%(2)) = r, 
the number of /(-regular «-classes of highest defect a. 

4. Vertices and sources 

The results of Higman [9] [10] and Green [8] can also be carried over to 
the twisted case. Here the generalization is even more direct than in § 3 and 
for most of the results we need only insist that the algebras be normalized. 
As before all modules will be assumed to have finite dimension over J*". 

Let 3? be a subgroup of <&. An ̂ /(^)-module Jt is said to be 3rif-projective 
if there esists an st(#P)-module M such that JC is isomorphic to an s&(<g)-
direct summand of 8%*. This definition is equivalent to J( being (s/(^), 
•afpf))-projective or stfffi))-injective in the sense of Hochschild 
[12] or Higman [11]. 

When & has characteristic p = 0, or p \ \G\, by § 1, remark 6, j / ( ^ ) is 
semi-simple. Hence all j/(̂ )-indecomposables occur in the regular represen­
tation. Thus all ,s/(̂ )-modules are {£}-projective and the theory is trivial. 
From now on we assume p 0. 

Higman's criterion14 for Jl to be -̂projective can be written down imme­
diately. Further, taking 3tf = 0>, a Sylow /(-subgroup of IS, we find that every 
indecomposable jj/(^)-module J( is a component of a module induced from 
some ̂ '(^,)-module. But by § 1, remark 7, if & is large enough, s/(&) is the 
group algebra ^(S0) and so all indecomposable .s/(̂ )-modules can be 
obtained by inducing from ordinary group representations of /(-groups, 

has a finite number of different indecomposable (5?)-modules if, 

1 4 c.f. theorem 1, p. 371 of [9]. 
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and only if, S1 is cyclic, and as in [10] a rough upper bound for the number 
of indécomposables is 

$PA(M{PA+L)-P'+L), 

where = MP", (M, P) = 1. 
If 0>, J> are subgroups of ^ we shall write & Q 9 J if there exists a T e ̂  

such that 0> Q T £ T ~ \ and 0> = , J, if 3» = J jr - 1 . If is an indecompo­
sable j/(^)-module, then a subgroup "P~ of 0 is called a VERTEX of JL if 

(a) ^ is -̂projective, and 
(b) if JL is .sf-projective, then -V Q 9 3P. "T is then determined up to 

conjugacy in ^ and is a ̂ -subgroup. When P \ \<&\ (or P = 0), all vertices 
coincide with {E}. 

We may also look at the various ĵ (̂ ")-modules SP such that SP* con­
tains ^ as a component. As the process of inducing (i.e. ® ) is distributive 
over direct sum and JL is indecomposable, it is sufficient to consider SP 
indecomposable. If SP' is a second such indecomposable j</(" -̂module, then 
there exists an element I e / ( f ) such that 

SP' « (X) ® , { R ) SP, 

considered as SJ("T)-modules. Thus SP is called a SOURCE of JL. 

As in the corollary to theorem 6 of [8], the problem of determining the 
vertex and source of a given indecomposable j/(^)-module JL can be reduced 
to the same problem for where SP is a Sylow ̂ -subgroup of &, i.e. to 
the same problem for ̂ -group representations. Hence Green's discussion of 
induced modules in -̂groups (§ 4 of [8]) is relevant. 

The existence of the vertex and source of a given indecomposable JL can 
also be inferred from the non-twisted case by means of the group algebra 
&(0*) defined in § 1, remark 5. 

The notion of blocks of § 3 can be extended further to embrace inde­
composable /̂(̂ )-modules JT'. If (E) is decomposed as in § 3 (1), then 

JL = (E)JL IXJ( © • • • e I.JT, 

this being an ^(^)-direct sum decomposition. But JL is indecomposable 
and so there is one and only one I( such that I(JL = JL. We say that 
J( IS IN THE BLOCK 1 ( . 

Let then JL be an indecomposable ja/(̂ )-module of vertex "V, and in the 
block i" of defect group Q . Then IP Ç9 On the other hand we shall prove 
the existence of an &/(&) -module in the block / with vertex 2 and so the 
defect group 2 of a block I may be characterised as being the "supremum" 
of the vertices of indecomposable modules in the block. 

The following proposition helps in the construction of the above inde­
composable. 
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PROPOSITION. LET I BE A BLOCK OF S/(&) OF DEFECT GROUP 3). LET A BE DEFINED 

WITH RESPECT TO 3 AND WRITE 

0(1) = / ! + • • • + / ( , 

WHERE JA ARE PRIMITIVE IDEMPOTENTS (BLOCKS) OF 3f(JF) (JF = JV(3>)). LET ¿% BE 

AN INDECOMPOSABLE SI (JF)-MODULE BELONGING TO ONE OF THE ABOVE BLOCKS, JX SAY. 

THEN THERE IS A COMPONENT JT OF 00* BELONGING TO THE BLOCK I SUCH THAT 8I IS 

ISOMORPHIC TO A COMPONENT OF J Í X . 

PROOF. Let XAJF be the cosets of ¿F in &(XX E 9), with XX = E. Then 

(1) (31°)* * ((E) ® ^ » ) ® (2 (XA) ® SX) 
a>l 

is an SÉ'(.^-direct decomposition. We write & = X*>i(-̂ a) ® ^ a n d w e 

identify (E) ® 3I with 31. Let N denote the .a/(.̂ -projection: 

N : (0P)„ -> (E) ® 0T = 3T. 

We write 
/ = «r(/) + r1+ri, 

where 2\ is the sum of terms in SÍ (2?) but not in SI(F€ (3>)), and T2 is the sum 
of the remaining terms not in S/(3f). For each w-class sum L in 7\, JSf n 
ff^) = 0 and so X(L) = 0 (T is defined in § 3). Hence X(TT) = 0, and 2\ 
is nilpotent. 

For A ESI(JF), we write P(A) for the linear transformation representing 
A in the representation afforded by (E) ® ̂  = ^. Clearly <r(7) acts identi­
cally oná?, and so P{O(I) + T1), being the sum of the identity transformation 
and a nilpotent one, is non-singular. Hence the map 

R ^ I R = p(o(I) + T1)R® (r2<g> R) (RE3I) 

is an.fi/pf )-homomorphism, the decomposition on the right hand side being 
that of (1). On the other hand 

N(IR)= P(A(I) + T1)R 

and so NL is an SI(je)-automorphism of (E)®3$=3T. Hence 31 ~ 1(31) 

and 1(31) is an ,i/pf )-component of (1(31*)),
 1 6 . By the Krull-Schmidt 

theorem there is a component JI of 1(3!!*) (Q3T*) such that ~#* has a 
component isomorphic to 3T. JC must also be in the block I . 

The construction of the required indecomposable in block I of vertex "T 
is now simple. Suppose first of all that 3) is normal in 9. As ker X is nil-
potent, X(I) must be a non-zero idempotent of 2£[<&\3i). Write 

1 5 This follows from the lemma: If U, V AXE modules and there exist homomorphisms 
<x • V -*• V, F) : V -+ U such that FIX (<x followed by FT) is an automorphism, then V = 
I m i $ kerF}. 
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= / 1 + • • • -\-Jt 
as a decomposition into blocks of 2? (9 ¡2). Let 01 be any principal compo­
nent of si'¡2) in block Jx, say. Jx has defect group {E} in 9 ¡2 and 31 
has vertex {E} in 3?/^. By means of the homomorphism T, 31 can be consid­
ered as an sf(9)-module, and as such it will be in the block I and will have 
vertex 2. 

For the case where 2 is not necessarily normal we first write 

*(/)=7i +•••+/.. 
where the J'a are primitive idempotents in 3?(3P), each having defect 
group 2 by the main theorem on blocks. By the previous paragraph there 
is an indecomposable ^(^)-module M in block J'x, say, with vertex 2. 
By the proposition there is a component J( of 31* in block I with a compo­
nent of Jt# isomorphic to 0t. As the defect group of I is 2 and as Jt is in 
the block J, the vertex "V of Ji satisfies 

-TQ2. 

On the other hand as J/ is y-projective each of the components of Jtx has 
vertex18 Q9 f . In particular the vertex 2 of the component isomorphic to 
3? satisfies 

2QV. 

Hence 2 =9 V, and so Jt is in block / with vertex 2. 
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