TWISTED GROUP ALGEBRAS AND THEIR REPRESENTATIONS

S. B. CONLON

(received 4 August 1963)

Introduction

Let \(\mathcal{G} \) be a finite group, \(\mathcal{F} \) a field. A twisted group algebra \(\mathcal{A}(\mathcal{G}) \) on \(\mathcal{G} \) over \(\mathcal{F} \) is an associative algebra whose elements are the formal linear combinations

\[
\sum_{A \in \mathcal{G}} a_A(A) \quad (a_A \in \mathcal{F})
\]

and in which the product \((A)(B) \) is a non-zero multiple of \((AB) \), where \(AB \) is the group product of \(A, B \in \mathcal{G} \):

\[
(A)(B) = f_{A,B}(AB) \quad (f_{A,B} \in \mathcal{F}, f_{A,B} \neq 0).
\]

One gets the ordinary group algebra \(\mathcal{F}(\mathcal{G}) \) by taking each \(f_{A,B} = 1 \).

Twisted group algebras play a central part in Schur's theory of the projective representations of finite groups [17], [18]. They also arise naturally in the theory of ordinary representations. Let \(\mathcal{L} \) be an irreducible \(\mathcal{F} \)-representation of a normal subgroup \(\mathcal{H} \) of \(\mathcal{G} \). Miss Tucker [21] has shown that the analysis of the induced representation \(\mathcal{L}^\mathcal{G} \) of \(\mathcal{G} \) depends on a twisted group algebra \(\mathcal{A}(\mathcal{H}) \) on a certain subgroup \(\mathcal{K} \) of \(\mathcal{G} \). Clifford [5] encountered much the same algebra in the analysis of the restriction to \(\mathcal{K} \) of an irreducible representation of \(\mathcal{G} \).

The aim of the present paper is to develop the theory of twisted group algebras by exploiting their analogy with ordinary group algebras. This approach permits a unified treatment of such problems as Miss Tucker's cited above. It will be seen that the theory of ordinary group algebras carries over in considerable detail.

In § 1, a normalization theorem is proved which brings out the multiplicative similarity between ordinary and twisted group algebras. This theorem is fundamental for the subsequent work. In § 2, a two-fold generalization of Miss Tucker's paper is given. Firstly, the ordinary group algebras of \(\mathcal{G} \) and \(\mathcal{H} \) are replaced by twisted ones. Secondly, the representation \(\mathcal{L} \) is

1 Kleppner [14] has extended the theory to infinite discrete groups.
assumed to be indecomposable rather than irreducible. As in Miss Tucker's theory, the analysis of S_f depends on the decomposition of a certain twisted group algebra into indecomposable left ideals.

A first step towards such a decomposition is to obtain the decomposition into two-sided ideals. This leads to the consideration, in § 3, of the blocks of a twisted group algebra. Here we follow the treatment of Rosenberg [16] rather than the original treatment of Brauer [4]. Finally, in § 4, we develop Higman's theory of relative projectivity [9], [11] and Green's theory of vertices and sources [8] for twisted algebras.

This paper is based on part of a Ph. D. dissertation submitted to the University of Cambridge. I gratefully acknowledge the help of Professors D. Rees and H. Cartan, and Dr. G. E. Wall, during the course of the work.

1. Normalization of twisted group algebras

We take a twisted group algebra S_f as defined in the introduction. For $A \in S_f$, we write $C(A)$ for the centralizer of A in S_f. Let F^* denote the set of non-zero elements of F. Let p be the characteristic of F; we allow $p = 0$. E will be the identity element of S_f.

The elements $k(A)$ of S_f ($k \in F^*$, $A \in S_f$) form a multiplicative subgroup Γ. The elements $k(E)$ form a multiplicative subgroup K such that $\Gamma/K \cong S_f$, and the $\langle A \rangle$ are coset representatives for K in Γ.

An element $A \in S_f$ is called a ν-element if

$$(B)^{-1}(A)(B) = (A),$$

for all $B \in C(A)$. Thus the centralizer of $\langle A \rangle$ in Γ consists of all multiples $k(B)$, where $k \in F^*$, $B \in C(A)$. All conjugates of A are also ν-elements.

The condition of associativity of S_f is equivalent to

$$f_{A,B}f_{AB,C} = f_{A,BC}f_{B,C},$$

for all $A, B, C \in S_f$. Thus the set $\{f_{A,B}\}$ forms a factor system for S_f. If we take a new basis of S_f

$$(A) = d_A(A),$$

where $d_A \in F^*$, $A \in S_f$, then the $f_{A,B}$ are modified to

$$f_{A,B} = \frac{d_A d_B}{d_{AB}} f_{A,B}.$$
Transformations given by (1) correspond to taking a different choice of coset representatives in \(\Gamma/K \).

Theorem. Let \(n \) be the order of \(\mathcal{G} \). Let \(\mathcal{D} \) be the largest normal \(p \)-subgroup of \(\mathcal{G} \) if \(p \neq 0 \), \(\mathcal{D} = \{ E \} \) if \(p = 0 \). After making a finite number of primary radical extensions to the field \(\mathbb{F} \), if necessary, it is possible to choose the coset representatives \((A) \) such that:

(a) \[f_{A,B}^n = 1 \text{ (n odd)} \]
 \[f_{A,B}^n = 1 \text{ (n even)} \]
 (for all \(A, B \in \mathcal{D} \)),

(b) the representatives \((A), (B), \ldots, (A, B, \ldots, \in \mathcal{D}) \) form a normal subgroup of \(\Gamma \),

(c) \[(A)^{-1} = (A^{-1}) \]
 (all \(A \in \mathcal{D} \)),

(d) \[(X)^{-1}(A)(X) = (X^{-1}AX) \]
 whenever \(A \) is a \(u \)-element, \(X \in \mathcal{D} \).

Proof. (i) Since

\[f_{A,B} f_{AB,C} = f_{B,C} f_{A,BC}, \]

we have

\[f_{A,B}^d = h_A h_B h_{AB} \]
 (for \(A, B \in \mathcal{D} \)),

where \(d = \text{order of } \mathcal{D}, \ h_A = \prod_{C \in \mathcal{G}} f_{A,C} \). Replacing \((A) \) by \(h_A^{-1/d}(A) \), we have

\[f_{A,B}^d = 1 \]
 (for \(A, B \in \mathcal{D} \)).

Since \(d \) is a power of \(p, f_{A,B}^d = 1, \text{ all } A, B \in \mathcal{D} \). If \(X \in \mathcal{D}, A \in \mathcal{D} \),

\[(X)^{-1}(A)(X) = l(X^{-1}AX), \]

where \(l \in \mathbb{F}^* \), and so

\[(X)^{-1}(A)^d(X) = l^d(X^{-1}AX)^d. \]

Thus

\[l^d = 1. \]

Hence

\[l = 1, \text{ and (b) holds.} \]

(ii) Similarly,

\[f_{A,B}^n = k_A k_B k_{AB} \]
 (all \(A, B \in \mathcal{G} \)),

where \(k_A = \prod_{C \in \mathcal{G}} f_{A,C} \). For each \(A \in \mathcal{G} \), choose a definite value for \(k_A^{-1/n} \).

Replacing \((A) \) by \(k_A^{-1/n}(A) \), we may assume \(f_{A,B}^n = 1 \) for all \(A, B \in \mathcal{G} \).

(For \(A, B \in \mathcal{D} \),

\[1 = f_{A,B}^n = k_A k_B k_{AB}, \]

whence \(k_A = 1 \); choose \(1^{-1/n} \) in \(\mathbb{F} \) as \(1 \); then (b) still holds.)

(iii) Let \(\mathcal{X} = \{ A_1, \ldots, A_r \} \) be any conjugacy class of \(u \)-elements not in \(\mathcal{D} \).
The \(u \)-condition tells us that \((A_1) \) has \(r \) conjugates in \(\Gamma \). Choosing \((A_1) \) arbitrarily and taking \((A_2), \ldots, (A_r) \) as its other conjugates in \(\Gamma \) we have condition (d) holding, and we still have \(f^n_{A, B} = 1 \).

(iv) Consider the elements in \(\mathcal{S} \) not in \(\mathcal{D} \). For such an element, \((A)(A^{-1}) = l(E)(l \in \mathcal{F}^*) \). For one, say \(A \), out of each pair \(A, A^{-1} \) of non-involutory, non-\(u \)-elements, leave \((A) \) as before and replace \((A')^{-1} \) by \(L^{-1}(A) \). For each non-\(u \) involution \(A \), replace \((A) \) by \(l^{-1}(A) \). As \(l^n = 1 \), \((l^{-1})^n = 1 \), \(n \) odd, \((l^{-1})^2n = 1 \), \(n \) even.

Now consider the \(u \)-class

\[\mathcal{K} = \{A_1, \ldots, A_r\}. \]

We still have the choice of \((A_1) \) at our disposal. If \(\mathcal{K} \neq \mathcal{K}^{-1} = \{A_1^{-1}, \ldots, A_r^{-1}\} \), we choose \((A_1), (A_r^{-1}) \) as above in the case \(A \neq A^{-1} \). If \((X)^{-1}(A_1)(X) = (A_1)^{-1} \), then \((X)^{-1}(A_1)^{-1}(X) = (A_1)^{-1} \), by choice of \((A_1), (A_r^{-1}) \).

Finally, let \(\mathcal{K} \) be self-inverse. Thus

\[A_1^{-1} = T^{-1}A_1T, \]

and

\[(A_1^{-1}) = (T)^{-1}(A_1)(T). \]

Replacing \((A_1) \) by \(l^{-1}(A_1) \), and so all \((A_i) \) by \(l^{-1}(A_i) \), we still have (*) and also \((A_i^{-1}) = (A_i)^{-1} \).

Remarks.

1. \((E) \) is now the identity element of \(\mathcal{A}(\mathcal{S}) \). Further \((A)(A^{-1}) = (A^{-1})(A) = (E) \). If we write \(\mathcal{A}(\mathcal{D}) \) to denote the natural restriction of \(\mathcal{A}(\mathcal{S}) \) to the subspace spanned by the elements \((D) (D \in \mathcal{D}) \), then \(\mathcal{A}(\mathcal{D}) \) is precisely the group algebra \(\mathcal{F}(\mathcal{D}) \).

2. If \(\mathcal{A}(\mathcal{S}) \) satisfies (c) \([(c), (d)] \) and (b) \([(b), (c), (d)] \) then we shall call \(\mathcal{A}(\mathcal{S}) \) normalized \([u-normalized]\) \([[l-u-normalized]]\).

3. If \(A \) is a \(u \)-element, and if \(t \) is prime to the order of \(A \), then \(A^t \) is a \(u \)-element. In particular \(A^{-1} \) is a \(u \)-element.

4. If \(\mathcal{A}(\mathcal{S}) \) is \(u \)-normalized and \(\mathcal{X}_1, \ldots, \mathcal{X}_r \) are the \(u \)-classes, then the \(u \)-class sums \(K_s = \sum G_{\in \mathcal{X}_s} G \) form a basis for the centre \(\mathcal{Z}(\mathcal{S}) \) of \(\mathcal{A}(\mathcal{S}) \), which has dimension \(t^3 \).

5. A twisted group algebra \(\mathcal{A}(\mathcal{S}) \) is actually an (two-sided) ideal direct summand of a group algebra \(\mathcal{S} \): suppose \(\mathcal{A}(\mathcal{S}) \) has been normalized as in

\[(X)^{-1}(Y)^{-1}(A)(Y)(X) = (X^{-1}Y^{-1})(A)(YX), \]

for all \(X, Y \in \mathcal{S} \).

6. If \(\mathcal{A}(\mathcal{S}) \) is \(u \)-normalized and \(\mathcal{K}_1, \ldots, \mathcal{K}_r \) are the \(u \)-classes, then the \(u \)-class sums \(K_s = \sum G_{\in \mathcal{K}_s} G \) form a basis for the centre \(\mathcal{Z}(\mathcal{S}) \) of \(\mathcal{A}(\mathcal{S}) \), which has dimension \(t^3 \).

\[c. f. \text{ Satz 1, p. 83 of [20]. Tazawa's formulation is not so explicit and is confined to the non-modular case.} \]

\[3 \text{ I am indebted to the referee for this remark and its proof.} \]
(ii) above so that all \(f_{A,B} \) satisfy \(f_{A,B}^n = 1 \). If \(\mathcal{F} \) has characteristic \(p \), and \(n = mp^s \), \((m, p) = 1\), then in fact \(f_{A,B}^m = 1 \). Thus the \(f_{A,B} \) all belong to the multiplicative group \(W_m \) of \(m \)-th roots of unity. Let \(f \rightarrow f^* \) be an isomorphism onto some other cyclic group \(G_m \) of order \(m \), generated by \(\mu^* \), and define a central extension \(G^* \) of \(G \) by \(G_m \) in which \(G^* \) is generated by elements \(S_A(A \in G) \) and \(G_m \), with \(S_A S_B = f_{A,B}^* S_{AB} \). Then \(\mathcal{F}(G_m) \), considered as embedded in \(\mathcal{F}(G^*) \), is in the centre of \(\mathcal{F}(G^*) \); let

\[
S_E = E_1 + \cdots + E_m,
\]

where

\[
E_i = \frac{1}{m} \sum_{a=0}^{m-1} \mu^a(i) \mu^a(a),
\]

be a decomposition of the identity \(S_E \) of \(\mathcal{F}(G^*) \) into primitive idempotents of \(\mathcal{F}(G_m) \). It is readily verified that \(\mathcal{A}(G) \approx E_1 \mathcal{F}(G^*) \).

As \(\mathcal{F}(G^*) \) is symmetric \(^6\), it follows that \(\mathcal{A}(G) \) is symmetric. (This can also be seen directly without using \(\mathcal{F}(G^*) \).)

6. If \(p = 0 \), or \(p \nmid n \) (non-modular case) (thus \(p \nmid |G^*| \), \(\mathcal{F}(G^*) \) is semi-simple, and so \(\mathcal{A}(G) \) is semi-simple \(^6\). In this case there are \(t \) different irreducible representations of \(\mathcal{A}(G) \), where \(t = \) number of \(u \)-conjugacy classes.

In the modular case, the number of irreducibles is equal to the number of \(p \)-regular \(u \)-conjugacy classes of \(G \) \(^7\). (An element \(A \in G \) is \(p \)-regular if its order is prime to \(p \).) This can be proved using Brauer's Theorem 3A, p. 410 of [4].

7. From remark 1, any twisted group algebra \(\mathcal{A}(D) \) on a \(p \)-group \(D \) over a field \(\mathcal{F} \) of characteristic \(p \neq 0 \) is the group algebra \(\mathcal{F}(D) \). This is a local algebra whose radical is spanned by the elements \((P) - (E) \), \(P \in D \), \(E \) identity of \(D \). The regular representation of \(\mathcal{F}(D) \) is indecomposable.

8. This last result can be extended a little further. Let \(G \) be a cyclic extension of a normal \(p \)-subgroup \(D \), where \(p \neq 0 \). Then \(\mathcal{A}(G) \) is the group algebra on \(G \).

PROOF. Clearly it can be assumed that \(|G/D| = m \), prime to \(p \). Take \(G \in G \) such that the coset \(G/D \) generates \(G/D \). Write

\[
G^m = K \in D, \quad (G)^m = d(K), \quad (d \in \mathcal{F}^*).
\]

Any element of \(G \) can be written uniquely in the form \(G^k D \), where \(0 \leq k < m \), \(D \in D \).

\(^6\) See definition of symmetric on p. 440 of [6].

\(^7\) See also p. 207 of [2].
By the theorem, \(\mathcal{A}(\mathcal{G}) \) can be supposed to be \(p\mu \)-normalized. If now we replace \((G^kD) \) by \(d^{-k/m}(G)^k(D) \) this ensures that \(\mathcal{A}(\mathcal{G}) \) is the group algebra \(\mathcal{F}(\mathcal{G}) \).

9. If a twisted group algebra \(\mathcal{A}(\mathcal{G}) \) has one representation of degree 1, then it is the group algebra \(\mathcal{F}(\mathcal{G}) \).

2. Induced representations

Let \(\mathcal{A}(\mathcal{G}) \) be a normalized twisted group algebra and let \(\mathcal{A}(\mathcal{H}) \) be the natural restriction of \(\mathcal{A}(\mathcal{G}) \) to a subgroup \(\mathcal{H} \) of \(\mathcal{G} \). Let \(\mathcal{L} \) be a left \(\mathcal{A}(\mathcal{H}) \)-module. (Throughout this paper all modules will be taken as having finite dimension considered as vector spaces over the base field \(\mathcal{F} \).) We define \(\mathcal{L}^\mathcal{G} \) to be the left \(\mathcal{A}(\mathcal{G}) \)-module given by

\[
\mathcal{L}^\mathcal{G} = \mathcal{A}(\mathcal{G}) \otimes \mathcal{A}(\mathcal{H}) \mathcal{L},
\]

where \(\otimes \) is defined as in [6]. If \(\mathcal{M} \) is an \(\mathcal{A}(\mathcal{G}) \)-module, then we shall write \(\mathcal{A}_\mathcal{G} \) for the \(\mathcal{A}(\mathcal{H}) \)-module obtained from \(\mathcal{M} \) by simple restriction of the module multiplication to the ring \(\mathcal{A}(\mathcal{H}) \).

Let \(\mathcal{M}, \mathcal{N} \) be \(\mathcal{A}(\mathcal{H}) \)-modules. Then we write \(\text{Hom}_\mathcal{H}(\mathcal{M}, \mathcal{N}) \) for the set of \(\mathcal{A}(\mathcal{H}) \)-homomorphisms of \(\mathcal{M} \) into \(\mathcal{N} \), \(E_\mathcal{H}(\mathcal{M}) = \text{Hom}_\mathcal{H}(\mathcal{M}, \mathcal{M}) \) for the ring of \(\mathcal{A}(\mathcal{H}) \)-endomorphisms of \(\mathcal{M} \), and \(R_\mathcal{H}(\mathcal{M}) \) for the radical of \(E_\mathcal{H}(\mathcal{M}) \). Throughout this section homomorphisms will be written on the right. We quote the following simple lemma.

Lemma. If \(\mathcal{L} \) is an \(\mathcal{A}(\mathcal{H}) \)-module and \(\mathcal{M} \) an \(\mathcal{A}(\mathcal{G}) \)-module, then

\[
\text{Hom}_\mathcal{H}(\mathcal{L}, \mathcal{M}) \cong \text{Hom}_\mathcal{G}(\mathcal{L}^\mathcal{G}, \mathcal{M}).
\]

This correspondence \(\eta \mapsto \eta^\mathcal{G} \) is given by defining for \(\eta \in \text{Hom}_\mathcal{H}(\mathcal{L}, \mathcal{M}) \), \(\eta^\mathcal{G} \in \text{Hom}_\mathcal{G}(\mathcal{L}^\mathcal{G}, \mathcal{M}) \) by

\[
(A \otimes L)\eta^\mathcal{G} = A(L\eta) \quad (A \in \mathcal{A}(\mathcal{G}), L \in \mathcal{L}).
\]

Henceforth we take \(\mathcal{H} \) to be a normal subgroup of \(\mathcal{G} \), and \(\mathcal{L} \) to be an \(\mathcal{A}(\mathcal{H}) \)-module. The main theorem of this section concerns the structure of \(\mathcal{L}^\mathcal{G} \) and this analysis is to be made through its ring of endomorphisms \(E_\mathcal{G}(\mathcal{L}^\mathcal{G}) \).

Given an element \(G \in \mathcal{G} \), we can consider the \(\mathcal{A}(\mathcal{H}) \)-submodules of \(\mathcal{L}^\mathcal{G} \) of the form

\[
(G) \otimes \mathcal{A}(\mathcal{H}) \mathcal{L},
\]

where \((H)(G) \otimes L = (G) \otimes (G)^{-1}(H)(G)L \) for \(H \in \mathcal{H} \), \(L \in \mathcal{L} \). \((G) \otimes \mathcal{L} \) may or may not be \(\mathcal{A}(\mathcal{H}) \)-isomorphic to \(\mathcal{L} \). The stabilizer \(\mathcal{P} \) of \(\mathcal{L} \) is the set of elements \(S \in \mathcal{G} \) such that \((S) \otimes \mathcal{L} \cong \mathcal{L} \). Then \(\mathcal{P} \) is a subgroup of \(\mathcal{G} \) containing \(\mathcal{H} \).

Take a set \(\{X_s\} \) of elements of \(\mathcal{G} \) such that \(X_1 \mathcal{H}, \ldots, X_s \mathcal{H} (X_1 \mathcal{H}, \ldots, \)
$X \cdot \mathcal{H}$ are the different cosets of \mathcal{H} in \mathcal{S} (of \mathcal{H} in \mathcal{S}) with $X_1 = E$. Then we may write

\[(1) \quad \mathcal{L}^g = \sum_1^g (X_a) \otimes \mathcal{L} = \sum_1^g \mathcal{L}_a,\]

\[(1') \quad \mathcal{L}^y = \sum_1^g \mathcal{L}_a,\]

the \sum meaning vector space sum over \mathcal{F}. We identify \mathcal{L}_1 and \mathcal{L}.

If we restrict to \mathcal{H}, (1) and $(1')$ then become $\mathcal{A}(\mathcal{H})$-direct decompositions of $(\mathcal{L}^g)_\mathcal{H}$ and $(\mathcal{L}^y)_\mathcal{H}$ respectively.

Let

$$\omega_a : \mathcal{L}_a \to (\mathcal{L}^g)_\mathcal{H}, \quad \chi_a : (\mathcal{L}^y)_\mathcal{H} \to \mathcal{L}_a$$

be the inclusion and projection $\mathcal{A}(\mathcal{H})$-homomorphisms according to (1). (We use the same symbols for the decomposition in $(1')$ and regard $(\mathcal{L}^y)_\mathcal{H} \subset (\mathcal{L}^y)_\mathcal{H}^\prime$ naturally.) Thus the identity ι of $E_\mathcal{H}(\mathcal{L}^g)$\(^8\) may be written

$$\iota = \sum_1^g \chi_a \omega_a.$$

If $\eta \in \text{Hom}_\mathcal{H}(\mathcal{L}, \mathcal{L}^y)$, then

$$\eta = \sum_1^g \eta \chi_a \omega_a = \sum_1^g \eta_a \omega_a,$$

where $\eta_a = \eta \chi_a \in \text{Hom}_\mathcal{H}(\mathcal{L}, \mathcal{L}_a)$. Similarly if $\zeta \in E_\mathcal{H}(\mathcal{L}^y)$, we write

$$\zeta = \sum_1^g \sum_1^g \chi_a \omega_a \chi_\beta \omega_\beta = \sum_1^g \chi_a \chi_\beta \omega_\beta,$$

where

$$\chi_\beta = \omega_\beta \chi_\beta \in \text{Hom}_\mathcal{H}(\mathcal{L}_a, \mathcal{L}_\beta).$$

Suppose

$$L \eta_\beta = (X_\beta) \otimes L_\beta, \quad (L \in \mathcal{L}),$$

$$(X_a)(X_\beta) = (X_\gamma)H_{a, \beta}$$

where $X_a X_\beta \in X_\gamma \mathcal{H}$, $H_{a, \beta} \in \mathcal{A}(\mathcal{H})$. Then

$$(X_a) \otimes L) \eta^g = \sum_\beta (X_a)(X_\beta) \otimes L_\beta.$$

Thus $(\eta^g)_\mathcal{H}$ maps $(X_a) \otimes L$ to $(X_\gamma) \otimes H_{a, \beta} L_\beta$, where β is determined by $X_a X_\beta \in X_\gamma \mathcal{H}$.

From this point onwards we shall take \mathcal{L} to be an indecomposable $\mathcal{A}(\mathcal{H})$-module. Hence $E_\mathcal{H}(\mathcal{L})$ is a completely-primary ring.

\(^8\) Here $E_\mathcal{H}(\mathcal{L}^g)$ means $E_\mathcal{H}((\mathcal{L}^g)_\mathcal{H})$. Similarly $\text{Hom}_\mathcal{H}(\mathcal{L}, \mathcal{L}^g)$ means $\text{Hom}_\mathcal{H}(\mathcal{L}, (\mathcal{L}^g)_\mathcal{H})$ etc.
Lemma 1. Let \(\eta \in \text{Hom}_\mathcal{R}(\mathcal{L}, \mathcal{L}^\#) \). Then \(\eta^\# \in R_\mathcal{R}(\mathcal{L}^\#) \) if, and only if, none of \(\eta_1, \cdots, \eta_s \) is an \(\mathcal{H} \)-isomorphism.

Proof. By Jacobson [13], p. 60, \(\eta^\# \in R_\mathcal{R}(\mathcal{L}^\#) \) if, and only if, no \((\eta^\#)_\beta \) is an \(\mathcal{H} \)-isomorphism. By the above, this is the case if, and only if, no \(\eta_\beta (\beta = 1, \cdots, g) \) is an \(\mathcal{H} \)-isomorphism. No \(\eta_\beta (\beta > s) \) is an \(\mathcal{H} \)-isomorphism because, by the definition of \(\mathcal{L}, \mathcal{L} \) is not \(\mathcal{H} \)-isomorphic to \(\mathcal{L} \). This gives the lemma.

There is of course the analogous 1–1 correspondence \(\eta \leftrightarrow \eta^\# \) between the \(\mathcal{H} \)-isomorphisms \(\eta \) of \(\mathcal{L} \) into \(\mathcal{L}^\# \) and \(\mathcal{L} \)-endomorphisms \(\eta^\# \) of \(\mathcal{L}^\# \), where \(\eta^\# \) is defined by

\[
(A \otimes L)\eta^\# = A (L\eta) \quad (A \in \mathcal{A}(\mathcal{S}), L \in \mathcal{L}).
\]

Corollary. Let \(\eta \in \text{Hom}_\mathcal{R}(\mathcal{L}, \mathcal{L}^\#) \). Then \(\eta^\# \in R_\mathcal{R}(\mathcal{L}^\#) \) if, and only if, \(\eta^\# \in R_\mathcal{R}(\mathcal{L}^\#) \). (Here \(\text{Hom}_\mathcal{R}(\mathcal{L}, \mathcal{L}^\#) \) is considered in the natural way as a subset of \(\text{Hom}_\mathcal{R}(\mathcal{L}, \mathcal{L}^\#) \).

If \(\mu \in E_\mathcal{R}(\mathcal{L}^\#) \), the equations

\[
(A \otimes \mathcal{M}(\mathcal{S}))\mu^\# = A \otimes \mathcal{M}(\mathcal{S}) (\mu) \quad (A \in \mathcal{A}(\mathcal{S}), \mathcal{M} \in \mathcal{L}^\#)
\]

define an element \(\mu^\# \) of \(E_\mathcal{R}(\mathcal{L}^\#) \). Moreover, the mapping \(\mu \rightarrow \mu^\# \) of \(E_\mathcal{R}(\mathcal{L}^\#) \) into \(E_\mathcal{R}(\mathcal{L}^\#) \) is a ring monomorphism.

Lemma 2.

\[
E_\mathcal{R}(\mathcal{L}^\#)^* + \hat{R}_\mathcal{R}(\mathcal{L}^\#) = E_\mathcal{R}(\mathcal{L}^\#),
\]

\[
E_\mathcal{R}(\mathcal{L}^\#)^* \cap \hat{R}_\mathcal{R}(\mathcal{L}^\#) = \hat{R}_\mathcal{R}(\mathcal{L}^\#)^*
\]

where

\[
\hat{R}_\mathcal{R}(\mathcal{L}^\#) = E_\mathcal{R}(\mathcal{L}^\#) \cap R_\mathcal{R}(\mathcal{L}^\#),
\]

\[
\hat{R}_\mathcal{R}(\mathcal{L}^\#)^* = E_\mathcal{R}(\mathcal{L}^\#)^* \cap R_\mathcal{R}(\mathcal{L}^\#).
\]

Proof. Let \(\mu \in E_\mathcal{R}(\mathcal{L}^\#) \). Then \(\mu = \eta^\#, \eta \in \text{Hom}_\mathcal{R}(\mathcal{L}, \mathcal{L}^\#) \). Also \(\eta^\# = \mu^\# \).

By lemma 1, corollary, \(\mu \in R_\mathcal{R}(\mathcal{L}^\#) \) if, and only if, \(\mu^\# \in R_\mathcal{R}(\mathcal{L}^\#) \). This gives the second relation.

Now let \(\rho \in E_\mathcal{R}(\mathcal{L}^\#) \). Then \(\rho = \zeta^\#, \zeta \in \text{Hom}_\mathcal{R}(\mathcal{L}, \mathcal{L}^\#) \). Write

\[
\zeta = \zeta' + \zeta''
\]

where \(\zeta' = \sum_{k=1}^l \zeta_k \omega_k \). Since \(\zeta' \in \text{Hom}_\mathcal{R}(\mathcal{L}, \mathcal{L}^\#) \), \(\zeta'^\# = (\zeta')^* \in E_\mathcal{R}(\mathcal{L}^\#)^* \).

Also, by lemma 1, \(\zeta''^\# \in R_\mathcal{R}(\mathcal{L}^\#) \). Hence

\[
\rho = \zeta'^\# + \zeta''^\# \in E_\mathcal{R}(\mathcal{L}^\#)^* + \hat{R}_\mathcal{R}(\mathcal{L}^\#).
\]

This proves the first relation.

Corollary 1. If \(e = \sum \epsilon_\lambda \) is a decomposition of the identity of \(E_\mathcal{R}(\mathcal{L}^\#) \) into indecomposable idempotents in \(E_\mathcal{R}(\mathcal{L}^\#) \), then \(e^\# = \sum \epsilon_\lambda^\# \) is a similar decomposition in \(E_\mathcal{R}(\mathcal{L}^\#) \).
COROLLARY 2. \(E_\varphi(\mathcal{L}^\varphi)/\tilde{R}_\varphi(\mathcal{L}^\varphi) \approx E_\varphi(\mathcal{L}^\varphi) / \tilde{R}_\varphi(\mathcal{L}^\varphi) \).

COROLLARY 3. \(E_\varphi(\mathcal{L}^\varphi)/R_\varphi(\mathcal{L}^\varphi) \approx E_\varphi(\mathcal{L}^\varphi)/\tilde{R}_\varphi(\mathcal{L}^\varphi) \).

(Notice here that \(R_\varphi, \tilde{R}_\varphi \) are nilpotent ideals of \(E_\varphi, \tilde{E}_\varphi \), so that \(\tilde{R}_\varphi \subseteq R_\varphi, \tilde{R}_\varphi \subseteq R_\varphi \).

Now consider \(E_\varphi(\mathcal{L}^\varphi) \). We remark first that \(\eta \to \eta^\varphi \) gives a ring monomorphism of \(E_\varphi(\mathcal{L}) \) into \(E_\varphi(\mathcal{L}^\varphi) \). (Here, and in what follows, we consider \(E_\varphi(\mathcal{L}) = \text{Hom}_\varphi(\mathcal{L}, \mathcal{L}) \) and \(\text{Hom}_\varphi(\mathcal{L}, \mathcal{L}_a) (a \leq s) \) as subsets of \(\text{Hom}_\varphi(\mathcal{L}, \mathcal{L}^\varphi) \). We denote the image of \(E_\varphi(\mathcal{L}) \) in \(E_\varphi(\mathcal{L}^\varphi) \) by \(E_\varphi(\mathcal{L})^\varphi \).

Write \(T_a = X_a \varphi_a \) \((a = 1, \ldots, s)\) for the elements of \(\mathcal{S}|\mathcal{H} \). For each \(T_a \), choose an \(\mathcal{H} \)-isomorphism \(\xi_\mathcal{H}_a : \mathcal{L} \to \mathcal{L}_a \), and form

\[(T_a) = \xi_\mathcal{H}_a. \]

Clearly, if \(T, T' \in \mathcal{S}|\mathcal{H}, (T)(T')(TT')^{-1} \) maps \(\mathcal{L} \) onto \(\mathcal{L} \) and so belongs to \(E_\varphi(\mathcal{L})^\varphi \):

\[(T)(T') = \eta_{T,T'}^\varphi(TT'). \]

Similarly, if \(\eta \in E_\varphi(\mathcal{L}), T \in \mathcal{S}|\mathcal{H}, (T)^{-1} \eta^\varphi(T) \in E_\varphi(\mathcal{L})^\varphi \) and we write

\[(T)^{-1} \eta^\varphi(T) = (\eta(T)^\varphi). \]

Clearly, \(\eta \to \eta(T) \) is an \(\mathcal{F} \)-algebra automorphism of \(E_\varphi(\mathcal{L}) \); and in fact, if \(T = \xi^\varphi \), \(\xi^{-1} \eta \xi = \eta(T) \).

Finally, since an arbitrary element \(\zeta \) of \(\text{Hom}_\varphi(\mathcal{L}, \mathcal{L}^\varphi) \) has the form

\[\zeta = \sum_{a=1}^s \eta_a \omega_a = \sum_{a=1}^s \xi_a \omega_a, \quad \eta_a \in E_\varphi(\mathcal{L}), \]

each element of \(E_\varphi(\mathcal{L}^\varphi) \) can be uniquely expressed in the form

\[\zeta^\varphi = \sum_{T \in \mathcal{S}|\mathcal{H}} \eta_T^\varphi(T), \quad \eta_T \in E_\varphi(\mathcal{L}). \]

Thus \(E_\varphi(\mathcal{L}^\varphi) \) is a kind of twisted group algebra on \(\mathcal{S}|\mathcal{H} \) over \(E_\varphi(\mathcal{L}) \), though the \((T) \) do not commute with the coefficients \(\eta^\varphi \).

By lemma 1, \(\zeta^\varphi \in \tilde{R}_\varphi(\mathcal{L}^\varphi) \) if, and only if, no \(\eta_T \) is an \(\mathcal{H} \)-isomorphism, i.e.

\[\text{if, and only if, all } \eta_T \in R_\varphi(\mathcal{L}). \]

Thus to get \(E_\varphi(\mathcal{L}^\varphi)/\tilde{R}_\varphi(\mathcal{L}^\varphi) \), we simply replace all the \(\eta \)'s in all above by their canonical images \(\eta = \eta + \tilde{R}_\varphi(\mathcal{L}) \) in \(E_\varphi(\mathcal{L})/\tilde{R}_\varphi(\mathcal{L}) \). Thus \(E_\varphi(\mathcal{L}^\varphi)/\tilde{R}_\varphi(\mathcal{L}^\varphi) \) appears as a generalized twisted group algebra over the division algebra \(E_\varphi(\mathcal{L})/\tilde{R}_\varphi(\mathcal{L}) \). The operations \(\eta \to \eta(T) \) are \(\mathcal{F} \)-algebra automorphisms of \(E_\varphi(\mathcal{L})/\tilde{R}_\varphi(\mathcal{L}) \). From now on we assume \(\mathcal{F} \) algebraically closed. Thus \(E_\varphi(\mathcal{L})/\tilde{R}_\varphi(\mathcal{L}) \) is the 1-dimensional \(\mathcal{F} \)-algebra \(\mathcal{F} \) itself, so \(\eta = \eta(T) \), all \(T \). Here \(E_\varphi(\mathcal{L}^\varphi)/\tilde{R}_\varphi(\mathcal{L}^\varphi) \) becomes a genuine twisted group algebra \(\mathcal{A}(\mathcal{S}|\mathcal{H}) \) on \(\mathcal{S}|\mathcal{H} \) over \(\mathcal{F} \).

The following lemma by Fitting [7] provides the link between a module
and its ring of endomorphisms. We use the term “component” to mean “indecomposable direct summand”.

Lemma 3. Let \mathfrak{A} be a finite dimensional algebra (with a 1) over \mathcal{F} and let \mathfrak{M} be an \mathfrak{A}-module (finite dimensional) with \mathcal{S} as its ring of \mathfrak{A}-endomorphisms. Let

$$\mathcal{S} = \mathcal{S}e_{11} \oplus \cdots \oplus \mathcal{S}e_{1n_1} \oplus \cdots \oplus \mathcal{S}e_{mn_m}$$

be a decomposition of \mathcal{S} into left ideal components, where $\mathcal{S}e_{ij} \cong \mathcal{S}e_{i'}$ if, and only if, $i = i'$. Let

$$\mathcal{M} = \mathcal{M}_{11} \oplus \cdots \oplus \mathcal{M}_{1n_1} \oplus \cdots \oplus \mathcal{M}_{mn_m}$$

be a decomposition of \mathcal{M} into components, with $\mathcal{M}_{ij} \cong \mathcal{M}_{i'}$, if and only if, $i = i'$. Then $m = m'$, $n = n'$, and one possible choice of $\mathcal{M}_{ab} = \mathcal{M}_{a'b'}$.

Let

$$\mathcal{L}^a = \mathcal{M}_1 \oplus \cdots \oplus \mathcal{M}_1$$

be a decomposition of \mathcal{L}^a into \mathcal{S}-components. We can further write

$$\mathcal{L}^a = \mathcal{L}^a \oplus \cdots \oplus \mathcal{L}^a, \text{ where each of the } \mathcal{L}^a \cong \mathcal{S}, \text{ by the Krull-Schmidt theorem. Let } \epsilon = \sum_{a=1}^s \epsilon_a$$

be a decomposition of the identity of $E_{\mathcal{S}}(\mathcal{L}^a)$ according to (4). Then each ϵ_a can be further decomposed by (5) in the form

$$\epsilon_a = \sum_{a=1}^{n_a} \epsilon_{a'b'}, \quad \epsilon_{a'b'} \in \text{Hom}_{\mathcal{S}}(\mathcal{L}, \mathcal{L}^a),$$

and any element π of $E_{\mathcal{S}}(\mathcal{L}^a)$ has a unique expression in the form

$$\pi = \sum_{a,b} \pi_{a'b'} \epsilon_{a'b'}, \quad \pi_{a'b'} \in E_{\mathcal{S}}(\mathcal{L}).$$

Clearly $\sum k_a = s$, and the left ideal $E_{\mathcal{S}}(\mathcal{L}^a)$, considered as a module over $E_{\mathcal{S}}(\mathcal{L})$, is the direct sum of k_a copies of $E_{\mathcal{S}}(\mathcal{L})$. Hence the dimension over \mathcal{F} of the corresponding left ideal in $\mathfrak{A}(\mathcal{S}/\mathcal{H}) (= E_{\mathcal{S}}(\mathcal{L}^a)/R_{\mathcal{S}}(\mathcal{L}^a))$ is precisely k_a. Moreover, as $R_{\mathcal{S}}(\mathcal{L}^a)$ is nilpotent, the images of the two left ideal components in the quotient ring are isomorphic if, and only if, the corresponding left ideal components of the original ring $E_{\mathcal{S}}(\mathcal{L}^a)$ are isomorphic. Combining these results we have that the decomposition of \mathcal{L}^a is entirely reflected by the decomposition of $\mathfrak{A}(\mathcal{S}/\mathcal{H})$ into left ideals.

Now $\mathcal{L}^a \cong (\mathcal{L}^a)^a \cong \mathcal{M}_1^a \oplus \cdots \oplus \mathcal{M}_1^a$. Further, by corollary 3 to lemma 2 each \mathcal{M}_a^a must remain indecomposable. Moreover, as $R_{\mathcal{S}}(\mathcal{L}^a)$

* This was noted in § I of Nakayama [15] for the case where the kernel is actually the radical of $E_{\mathcal{S}}(\mathcal{L}^a)$.
is nilpotent, the multiplicities of the different isomorphism types of left ideal components of $E_{\phi}(L^a)$ are the same as in $E_{\phi}(L^a)/R_{\phi}(L^a)$, i.e. as in $E_{\phi}(L^a)/R_{\phi}(L^a)$ (by lemma 2, corollary 3), i.e. as in $E_{\phi}(L^a)$ (since $R_{\phi}(L^a)$ is nilpotent). Hence we have proved the following theorem.

Theorem. Let $A(\mathcal{H})$ be the restriction of a normalized twisted group algebra $A(\mathcal{I})$ over an algebraically closed field F to a normal subgroup \mathcal{H} of \mathcal{G}, and let L be an indecomposable $A(\mathcal{H})$-module with stabilizer \mathcal{H} in \mathcal{G}. Then the decomposition of L^a is entirely determined by the decomposition of a certain twisted group algebra $A(\mathcal{I}/\mathcal{H})$ into left ideals, there being a 1–1 correspondence between left ideal components I_a and components N_a of L^a, such that the left ideals are isomorphic if, and only if, the corresponding summands are. Further

$$\dim_{\phi} N_a = \dim_{\phi}(I_a) \cdot \dim_{\phi}(L) \cdot (\mathcal{I} : \mathcal{I}).$$

A decomposition of L^a is obtained from one of $A(\mathcal{I}/\mathcal{H})$ as follows: The decomposition of $A(\mathcal{I}/\mathcal{H}) \approx E_{\phi}(L^a)/R_{\phi}(L^a)$ is raised to one of $E_{\phi}(L^a)$ by the algorithm used in the proof of theorem 9.3c in [1]. A decomposition of $L^a = \sum M_a$ is obtained as in lemma 3. Finally we may take $N_a = M^a_a$.

If L is irreducible, then $E_{\phi}(L^a)$ is the twisted group algebra $A(\mathcal{I}/\mathcal{H})$, as $E_{\phi}(L) \approx F$.

Corollary 1. If L is not indecomposable, say

$$L = L_1 \oplus \cdots \oplus L_h,$$

then

$$L^a = L^a_1 \oplus \cdots \oplus L^a_h,$$

as tensor product \otimes is distributive over direct sum \oplus. We apply the theorem to each L^a_i to obtain the decomposition of L^a.

The problem of inducing up from a subnormal subgroup is equivalent to the decomposition of a series of twisted group algebras. For, if $\mathcal{H} \leq \mathcal{H}_1 \leq \mathcal{G}$, we have $(L^a)^{\mathcal{H}_1} \approx L^a$.

Corollary 2. If \mathcal{H} is a subnormal subgroup of \mathcal{G} of prime power index p^v in \mathcal{G}, with F of characteristic $p \neq 0$, then L^a is indecomposable if L is.

Proof. Clearly the factor groups are p-groups and so the twisted group algebras involved are on p-groups. Hence by § 1, remark 7, these are indecomposable. (c.f. Theorem 8 of Green [8]).

In decomposing a twisted group algebra $A(\mathcal{I})$ into left ideals, we may make use of a composition series of \mathcal{I} and consider $A(\mathcal{I}) = (\mathcal{F}_{\{E\}})^a$, where $\mathcal{F}_{\{E\}}$ is the trivial representation of the group $\{E\}$. This leaves only
the problem of the decomposition of twisted group algebras on simple groups.

A detailed analysis will now be given of the decomposition of \(L^\varphi \). Let \(H \to \lambda(H) \) be the linear representation afforded by the module \(L \). All such linear mappings will be written on the left. In particular an element of \(E_\varphi(L) \) will be represented by a linear mapping \(\theta \) written on the left.

Corresponding to each \(\alpha = 1, \cdots, s \) we have a non-singular linear transformation \(D_\alpha \) such that the \(\mathcal{A}(\mathcal{H}) \)-isomorphism \(\xi_\alpha \) of equation (2) is given by

\[
(6) \quad \xi_\alpha : L \to \langle X_\alpha \rangle \otimes D_\alpha L \quad (L \in L).
\]

If we make a second choice of isomorphisms, say \(\xi'_\alpha : L \to L_\alpha \), and if \(D'_\alpha \) are the corresponding linear mappings, then

\[
D_\alpha = \theta D'_\alpha,
\]

where \(\theta \) is a linear mapping representing an automorphism in \(E_\varphi(L) \).

We choose \(D_1 = I \), the identity map. If \(X_\alpha X_\beta = X_\gamma H \), then corresponding to equation (3) we have

\[
(7) \quad D_\alpha D_\beta = \frac{1}{X_\alpha H} \theta_{\alpha,\beta} D_\gamma \lambda(H),
\]

where \(\theta_{\alpha,\beta} \) represents an automorphism in \(E_\varphi(L) \), and where this equation may be taken as defining \(\theta_{\alpha,\beta} \). As \(D_1 = I \), it follows that \(\theta_{\alpha,1} = \theta_{1,\alpha} = I \) also.

We now define \(D_S \) for \(S = X_\alpha H \in \mathcal{S} \):

\[
(8) \quad D_S = \frac{1}{X_\alpha H} D_\alpha \lambda(H),
\]

and so \(D_{X_\alpha} = D_\alpha \), \(D_H = D_1 = I \). Then from these definitions it follows that if \(S \in X_\alpha \mathcal{H} \), \(S' \in X_\alpha \mathcal{H} \),

\[
(9) \quad D_SD_{S'} = \frac{1}{S, S'} \theta_{S, S'} D_{SS'}.
\]

Thus the correspondence \(S \to D_S \) gives rise to an extension of \(L \) to \(\mathcal{A}(\mathcal{S}) \) if, and only if, \(\theta_{\alpha,\beta} = 1 \), all \(\alpha, \beta \).

For the case of \(\mathcal{L} \) irreducible the analysis of Clifford in the proof of his theorem 3 in [5] (although not starting from the same point of view) can be adopted to get an explicit view of \(\mathcal{L}^\varphi \).

Proposition 1. Let \(\mathcal{L} \) be an irreducible \(\mathcal{A}(\mathcal{H}) \)-module. Then any direct summand \(\mathcal{M} \) of \(\mathcal{L}^\varphi \) affords a linear representation \(S \to \varphi(S) \) of \(\mathcal{A}(\mathcal{S}) \), which is the product of a fixed projective linear representation \(S \to D_S \) of \(\mathcal{A}(\mathcal{S}) \) (independent of \(\mathcal{M} \)) together with a certain direct summand \(\pi(S, \mathcal{H}) \) of the linear representation afforded by considering \(\mathcal{A}(\mathcal{S}|\mathcal{H}) \) as a left module over itself ("regular representation" of \(\mathcal{A}(\mathcal{S}|\mathcal{H}) \), i.e.,
Thus \mathcal{M} must decompose just as π does. For $\mathcal{M} = \mathcal{L}^\circ$, the decomposition of \mathcal{L}° is related directly to that of $A(\mathcal{I}/\mathcal{H})$ into left ideals.

Again following Clifford's line of argument, we have:

Proposition 2. In the situation of proposition 1, if π is an irreducible linear representation of $A(\mathcal{I}/\mathcal{H})$, then the linear representation of $A(\mathcal{I})$ given by (10) is irreducible.

The analysis in the proof of Clifford's theorem 2 in [5] provides an explicit relation between the decomposition of \mathcal{L}° and that of \mathcal{L}°.

Finally we consider certain problems on extensions of \mathcal{L}.

Proposition 3. Let \mathcal{I}/\mathcal{H} be cyclic of order m and suppose that either $p = 0$, or $(m, p) = 1$. Let \mathcal{L} (indecomposable) have stabilizer the whole of \mathcal{I}. Then there exist exactly m extensions of \mathcal{L} to be an $A(\mathcal{I})$-module to within $A(\mathcal{I})$-isomorphism.

Proof. By the theorem \mathcal{L}° decomposes just as $A(\mathcal{I}/\mathcal{H})$ does. By § 1, remark 8, this must be the group algebra $A(\mathcal{I}/\mathcal{H})$ and so decomposes into m non-isomorphic one-dimensional left ideals. Hence \mathcal{L}° consists of the direct sum of m non-isomorphic extensions of \mathcal{L}.

Furthermore these are the only possible extensions of \mathcal{L}. For, say

$$G \rightarrow D_G,$$

where

$$D_H = \lambda(H) \quad (H \in \mathcal{H}),$$

is the linear representation afforded by any other extension of \mathcal{L} as an $A(\mathcal{I})$-module. $D_a = D_{xa}$, is then a possible choice of D's in (6); it follows that $\theta_a, b = I$, from (9). If $G_1(\mathcal{I}) \subseteq \mathcal{I}$ generates \mathcal{I}/\mathcal{H}, then all $D_G(G \in \mathcal{I})$ are determined in terms of D_{G_1}, by equations (7), (8) and (11). A calculation shows that the m extensions of \mathcal{L} contained in \mathcal{L}° have the linear representations determined by

$$G_1 \rightarrow \omega^t D_{G_1},$$

where ω is a primitive m-th root of unity in \mathcal{F}.

Proposition 4. Let \mathcal{I}/\mathcal{H} be a cyclic extension of a p-subgroup, where \mathcal{F} has characteristic $p \neq 0$. Let $|\mathcal{I}/\mathcal{H}| = mp^3$, $(m, p) = 1$ and let \mathcal{L} be an irreducible $A(\mathcal{H})$-module, which has stabilizer the whole of \mathcal{I}. Then there exist exactly m extensions of \mathcal{L} to be an $A(\mathcal{I})$-module to within $A(\mathcal{I})$-isomorphism.

\[10\] Here \times denotes the Kronecker or tensor product.

\[11\] Propositions 3 and 4 are generalizations of lemmas 1 and 2 of Srinivasan [19].
Twisted group algebras and their representations

PROOF. As \(\mathcal{L} \) is irreducible, \(\mathcal{F} \) algebraically closed, \(E_\mathcal{g}(\mathcal{L}^*) = \mathcal{A}(\mathcal{H}/\mathcal{H}) \), and \(E_\mathcal{g}(\mathcal{L}) \cong \mathcal{F} \). The \(D_\alpha \) of (6) are then determined to within a factor in \(\mathcal{F}^* \), and the \(\theta_{\alpha, \beta} \) are elements of \(\mathcal{F}^* \). A different choice of \(D_\alpha \)'s gives a basis transformation of type \(\S1 \), (1) on \(\mathcal{A}(\mathcal{H}/\mathcal{H}) \). By \(\S1 \), remark 9, \(\mathcal{A}(\mathcal{H}/\mathcal{H}) \) is the group algebra on \(\mathcal{H}/\mathcal{H} \) and so the \(\theta_{\alpha, \beta} \) may be considered equal to 1. Then \(G \to D_\alpha \) is a linear representation of an extension of \(\mathcal{L} \) to \(\mathcal{A}(\mathcal{F}) \) by (9).

Write \(\mathcal{P} \) for the subgroup of \(\mathcal{L} \), such that \(\mathcal{P}/\mathcal{H} \) is the Sylow \(p \)-group of \(\mathcal{L}/\mathcal{H} \). Restricting our attention to \(\mathcal{A}(\mathcal{P}) \) and \(\mathcal{A}(\mathcal{P}/\mathcal{H}) \), we see that if \(\theta_{\alpha, \beta} = 1 \), then the choice of \(D_P \ (P \in \mathcal{P}) \) is uniquely determined, for the only basis transformation of type \(\S1 \) (1) on the group algebra of a \(p \)-group, keeping the multiplication constants all 1, is the identity transformation. Let \(\mathcal{M} \) be this unique extension of \(\mathcal{L} \) to \(\mathcal{A}(\mathcal{P}) \).

By proposition 3, \(\mathcal{M} \) has exactly \(m \) different extensions to \(\mathcal{A}(\mathcal{F}) \) to within isomorphism.

3. Blocks and centres of twisted group algebras

The decomposition of a finite dimensional algebra \(\mathcal{A} \) into the direct sum of two sided ideals is determined by the corresponding decomposition of the centre \(\mathcal{Z} \). This in turn is determined by the decomposition of the identity element \((E) \) as the sum of primitive central idempotents:

\[
E = I_1 + \cdots + I_n.
\]

The term block will be used to describe either an \(I_\alpha \) or the corresponding two sided ideal of \(\mathcal{Z} \) or \(\mathcal{A} \).

Rosenberg's analysis [16] of blocks of group algebras can be adapted to the twisted case by using the normalization theorem of \(\S1 \).

If \(\mathcal{A}(\mathcal{F}) \) is \(u \)-normalized, then a basis for its centre \(\mathcal{Z}(\mathcal{F}) \) is provided by the \(u \)-class sums \(K_\alpha \), as in \(\S1 \), remark 4. Then any block can be expressed as:

\[
I = \sum \alpha K_\alpha.
\]

Let us assume that the field characteristic \(p \neq 0 \). Consider the centralizers \(\mathcal{C}(A) \) in \(\mathcal{F} \) of elements \(A \) of \(\mathcal{I} \) which have non-zero coefficients in (2). The largest among the Sylow \(p \)-subgroups of these \(\mathcal{C}(A) \) is well defined up to conjugacy in \(\mathcal{I} \) and is the defect group \(\mathcal{D} \) of \(I \). If \(|\mathcal{D}| = p^d \), \(d \) is called the defect of \(I \).

If \(\mathcal{D} \) is any subgroup of \(\mathcal{I} \), write \(\mathcal{N}(\mathcal{D}) \) for the normalizer of \(\mathcal{D} \) in \(\mathcal{I} \) and \(\mathcal{C}(\mathcal{D}) \) for the centralizer of \(\mathcal{D} \) in \(\mathcal{I} \).

Take \(\mathcal{D} \) to be a \(p \)-group and write \(\mathcal{H} = \mathcal{N}(\mathcal{D}) \). Let \(\mathcal{I}(\mathcal{H}) \) be the centre of \(\mathcal{A}(\mathcal{H}) \). Consider a \(u \)-class \(\mathcal{K} \) of elements of \(\mathcal{I} \) with \(u \)-class sum \(K \) and write

\[
\sigma(K) = \text{sum of elements } (A),
\]
where $A \in \mathcal{X} \cap \mathcal{C}(\mathcal{D})$, if such elements exist, 0 otherwise. σ can be extended to the whole of $\mathcal{L}(\mathcal{D})$ by linearity and is verified to be an \mathcal{F}-algebra homomorphism,

$$\sigma : \mathcal{L}(\mathcal{D}) \to \mathcal{L}(\mathcal{H}).$$

In the case of group algebras, Brauer's first theorem on blocks may be stated as follows:

σ gives a $1-1$ correspondence between the blocks of $\mathcal{L}(\mathcal{D})$ with \mathcal{D} as one of their defect groups and the blocks of $\mathcal{L}(\mathcal{H})$ of defect d. The latter have \mathcal{D} as their unique defect group.

However, in the twisted case a complication arises as an element $H(e) \in \mathcal{H}$ may be a u-element in $\mathcal{A}(\mathcal{H})$ but not in $\mathcal{A}(\mathcal{D})$. To overcome this difficulty we define $\mathcal{U}(\mathcal{D})$ to be the subspace of $\mathcal{L}(\mathcal{H})$ spanned by those u-class sums of $\mathcal{A}(\mathcal{H})$ which have defect group \mathcal{D} and whose elements are u-elements in $\mathcal{A}(\mathcal{D})$. Then $\mathcal{U}(\mathcal{D})$ is a subalgebra of $\mathcal{L}(\mathcal{H})$. The theorem for blocks in the twisted case can now be stated as follows:

σ gives a $1-1$ correspondence between the blocks of $\mathcal{L}(\mathcal{D})$ with \mathcal{D} as one of their defect groups and primitive idempotents of $\mathcal{U}(\mathcal{D})$. Each such idempotent is the sum of primitive idempotents of $\mathcal{L}(\mathcal{H})$ with \mathcal{D} as their unique defect group.

Since this last theorem has reduced (to a certain extent) the problem to the case of blocks I with a normal defect group \mathcal{D} (which must then be unique), this special case warrants more attention. As \mathcal{D} is normal in \mathcal{D}, it is certainly contained in the maximal normal p-subgroup $\overline{\mathcal{D}}$ of \mathcal{D}. Let us suppose then that $\mathcal{A}(\mathcal{D})$ has been p-u-normalized. Then the natural homomorphism $\mathcal{D} \rightarrow \mathcal{D}/\mathcal{D}$ gives rise to an algebra homomorphism

$$\tau : \mathcal{A}(\mathcal{D}) \rightarrow \mathcal{A}(\mathcal{D}/\mathcal{D}),$$

where $\mathcal{A}(\mathcal{D}/\mathcal{D})$ is a twisted group algebra on \mathcal{D}/\mathcal{D}. Ker τ is spanned by the elements $(A)((D)-(E))$, $A \in \mathcal{D}$, $D \in \mathcal{D}$, and is a nilpotent ideal of $\mathcal{A}(\mathcal{D})$. Further if K is a u-class sum of $\mathcal{A}(\mathcal{D})$, such that $\mathcal{X} \cap \mathcal{C}(\mathcal{D}) = 0$, then $\tau(K) = 0$, and so K is nilpotent. As ker τ is nilpotent, τ provides a $1-1$ correspondence between idempotents of $\mathcal{L}(\mathcal{D})$ and those of $\mathcal{L}(\mathcal{D}/\mathcal{D})$; thus the problem of blocks is further reduced to the case of defect $d = 0$.

Finally we have the following theorem for blocks of maximum defect, which we prove in full as the u-property needs careful attention.

Theorem. Let \mathcal{D} have order $p^a m$, $(m, p) = 1$. Let $\mathcal{A}(\mathcal{D})$ be a twisted group algebra over an algebraically closed field \mathcal{F} of characteristic $p \neq 0$. Then the number of blocks of defect a equals the number of p-regular u-classes of defect $12 a$.

12 The defect group of a conjugacy class is any one of the Sylow p-subgroups of the centralizers in \mathcal{D} of its elements.
Twisted group algebras and their representations

PROOF. A block of \(\mathcal{A}(\mathcal{D}) \) of defect \(a \) has the Sylow \(p \)-subgroups as its defect groups. Let \(\mathcal{D} \) be any such and write \(\mathcal{H} = \mathcal{N}(\mathcal{D}) \). Then the above theorem tells us that the number of blocks of defect \(a \) is the same as the number of primitive idempotents of \(\mathcal{U}(\mathcal{D}) \).

The homomorphism \(\tau \),

\[
\tau : \mathcal{A}(\mathcal{H}) \to \mathcal{A}(\mathcal{H}/\mathcal{D}),
\]

is defined as above. \(\mathcal{U}(\mathcal{D}) \) contains the identity element of \(\mathcal{A}(\mathcal{H}) \) and so, as \(\text{ker} \tau \) is nilpotent, the restriction of \(\tau \) to \(\mathcal{U}(\mathcal{D}) \) gives a 1—1 correspondence between idempotents of \(\mathcal{U}(\mathcal{D}) \) and those of \(\tau(\mathcal{U}(\mathcal{D})) \). \(\mathcal{A}(\mathcal{H}/\mathcal{D}) \) is semi-simple by § 1, remark 6, and so its centre \(\mathcal{Z}(\mathcal{H}/\mathcal{D}) \) is the direct sum of copies of \(\mathcal{F} \). As \(\tau(\mathcal{U}(\mathcal{D})) \) is a subalgebra of \(\mathcal{Z}(\mathcal{H}/\mathcal{D}) \), it is also semi-simple and hence the number of blocks of defect \(a \) in \(\mathcal{A}(\mathcal{D}) \) is equal to the dimension of \(\tau(\mathcal{U}(\mathcal{D})) \).

We may assume that \(\mathcal{A}(\mathcal{D}), \mathcal{A}(\mathcal{H}) \) and \(\mathcal{A}(\mathcal{H}/\mathcal{D}) \) are (separately) \(p \)-un-normalized. Write \((G), [H] \) for the basis elements of \(\mathcal{A}(\mathcal{D}), \mathcal{A}(\mathcal{H}) \) respectively, where \(G \in \mathcal{G}, H \in \mathcal{H} \) and \(\{H\} \) for the basis element of \(\mathcal{A}(\mathcal{H}/\mathcal{D}) \) corresponding to the coset \(HD \) of \(\mathcal{H}/\mathcal{D} \). Thus \(\{H\} = \{HD\} \), for all \(D \in \mathcal{D} \).

Let \(G \) be a \(u \)-element of \(\mathcal{A}(\mathcal{D}) \) such that \(\mathcal{D} \) is a Sylow \(p \)-subgroup of \(\mathcal{U}(G) \). Write \(G = PR \), where \(P, R \) are powers of \(G \), \(P \) has order a power of \(p \), \(R \) is \(p \)-regular. Then \(\mathcal{D} \) is a Sylow \(p \)-subgroup of \(\mathcal{U}(R) \). Let \(\mathcal{H} \) be the \(u \)-class containing \(G \), and write \(\mathcal{L} = \mathcal{H} \cap \mathcal{U}(\mathcal{D}) \); then \(\mathcal{L} \) is a complete \(13 \) conjugacy class in \(\mathcal{H} \). Thus

\[
\sigma(K) = dL,
\]

where \(K, L \) are the \(u \)-class sums of \(\mathcal{H}, \mathcal{L} \). (The factor \(d (\in \mathcal{F}^*) \) has to be introduced because of the possibly different normalizations of \(\mathcal{A}(\mathcal{D}), \mathcal{A}(\mathcal{H}). \)) Then

\[
\tau(\sigma(K)) = d\tau(L) \in \mathcal{A}(\mathcal{H}/\mathcal{D}).
\]

If \(\tau(\sigma(K)) \neq 0 \), it will now be proved that \(R \) is also a \(u \)-element in \(\mathcal{A}(\mathcal{D}) \).

If \(H \in \mathcal{H} \), write \(\mathcal{C}(H) = \text{centralizer of } H \text{ in } \mathcal{H}, \)

\[
\mathcal{C}(H) \cap \mathcal{H}.
\]

\(\mathcal{D} \) is the Sylow \(p \)-subgroup of \(\mathcal{U}(G) \). Further \(P \in \mathcal{C}(R) \) and so \(P \in \mathcal{D} \). Thus \(\{G\} = \{R\} \). As \(\tau(\sigma(K)) \neq 0 \), and \(\tau(\sigma(K)) \in \mathcal{A}(\mathcal{H}/\mathcal{D}), GD = RD \) must be a \(u \)-element in \(\mathcal{A}(\mathcal{H}/\mathcal{D}) \) (see § 1, remark 4). Take \(N \in \mathcal{C}(R) \) and write

\[
[N][R][N^{-1}] = b[R],
\]

\[
\tau([R]) = c[R],
\]

This is proved in Rosenberg's paper [16].
where \(b, c \in \mathfrak{F}^* \). Then
\[
\tau([N][R][N^{-1}]) = b\tau([R]) = bc\{R\}.
\]
On the other hand this is equal to
\[
\tau([N])\tau([R])\tau([N^{-1}]),
\]
\[
= \{N\}c\{R\}\{N^{-1} \} \quad \text{as both } \mathcal{A}(\mathcal{H}), \mathcal{A}(\mathcal{H}/\mathcal{D}) \text{ are normalized},
\]
\[
= c\{R\} \quad \text{as } R\mathcal{D} \text{ is a } \nu \text{-element in } \mathcal{A}(\mathcal{H}/\mathcal{D}),
\]
and so \(b = 1 \), i.e., \(R \) is a \(\nu \)-element in \(\mathcal{A}(\mathcal{H}) \). Hence we have
\[
(N)(R)(N^{-1}) = (R)
\]
in \(\mathcal{A}(\mathcal{D}) \), for all \(N \in \mathcal{C}(R) \cap \mathcal{N}(\mathcal{D}) \), as both \(\mathcal{A}(\mathcal{D}), \mathcal{A}(\mathcal{H}) \) are normalized.

Let \(\mathcal{D}' \) be any other Sylow \(p \)-subgroup of \(\mathcal{C}(R) \); then there exists \(T \in \mathcal{C}(R) \) such that \(\mathcal{D}' = T\mathcal{D}T^{-1} \). Thus
\[
T(\mathcal{C}(R) \cap \mathcal{N}(\mathcal{D}))T^{-1} = \mathcal{C}(R) \cap \mathcal{N}(\mathcal{D}'),
\]
\[
TGT^{-1} = R(TPT^{-1}).
\]
Take \(TNT^{-1} \in \mathcal{C}(R) \cap \mathcal{N}(\mathcal{D}') \), where \(N \in \mathcal{C}(R) \cap \mathcal{N}(\mathcal{D}) \). From (3) we get
\[
((T)(N)(T^{-1}))((T)(R)(T^{-1}))((T)(N^{-1})(T^{-1})) = (T)(R)(T^{-1}),
\]
i.e.
\[
((T)(N)(T^{-1}))(R)((T)(N^{-1})(T^{-1})) = (R).
\]
Using § 1, remark 3, we get
\[
(TNT^{-1})(R)(TN^{-1}T^{-1}) = (R),
\]
and so
\[
(M)(R)(M^{-1}) = (R),
\]
for all \(M \in \mathcal{C}(R) \cap \mathcal{N}(\mathcal{D}') \).

Let \(\mathcal{D}_1 = \mathcal{D}, \mathcal{D}_2, \ldots, \mathcal{D}_\alpha \) be all the Sylow \(p \)-subgroups of \(\mathcal{C}(R) \) and let \(\mathcal{D} \) be the group union of the subgroups \(\mathcal{C}(R) \cap \mathcal{N}(\mathcal{D}_\alpha) \). Then \(\mathcal{C}(R) = \mathcal{D} \), \(\mathcal{D} \) is normal in \(\mathcal{C}(R) \) and \(\mathcal{D} \) contains the normalizer of a Sylow \(p \)-subgroup of \(\mathcal{C}(R) \). Any element of \(\mathcal{C}(R) \) has the form \(C = A_1A_2 \cdots A_m \), where \(A_\alpha \in \) some \(\mathcal{C}(R) \cap \mathcal{N}(\mathcal{D}_\alpha) \). Thus if \(\tau(\sigma(K)) \neq 0 \), then
\[
(C)(R)(C^{-1}) = (A_1 \cdots A_m)(R)(A_m^{-1} \cdots A_1^{-1}),
\]
\[
= (A_1) \cdots (A_m)(R)(A_m^{-1}) \cdots (A_1^{-1}) \quad \text{by } \text{§ 1, remark 3},
\]
\[
= (R) \quad \text{by repeated use of } (4),
\]
and so \(R \) is a \(\nu \)-element of \(\mathcal{A}(\mathcal{D}) \).

Let \(\mathcal{K}_\alpha (\alpha = 1, \ldots, r) \) be the \(p \)-regular \(\nu \)-classes of defect \(\alpha \) in \(\mathcal{A}(\mathcal{D}) \) with corresponding \(\nu \)-class sums \(K_\alpha \). The \(\mathcal{L}_\alpha = \mathcal{K}_\alpha \cap \mathcal{C}(\mathcal{D}) \) consist of single
conjugacy classes in \mathcal{H}, and so the $\sigma(K_a)$ are multiples of the class sums L_a. Write $\mathcal{P} = \bigcup_a L_a$ (set union). Then the \{H\} ($H \in \mathcal{P}$) are all distinct in $\mathcal{A}(\mathcal{H} \otimes \mathcal{D})$. For say \{H\} = \{H'\}. Then $H = H'D$, for some $D \in \mathcal{D}$. But each L_a has defect group \mathcal{D} and so $D \in \mathcal{D} \subset \mathcal{C}(H')$. Further, the orders of H, H' are prime to p and so $D = E$, or $H = H'$. Hence the $\tau(L_a)$ are all non-zero and linearly independent. But $\tau(L_a) \in \tau(\mathcal{U}(\mathcal{D}))$ and so dim $\tau(\mathcal{U}(\mathcal{D})) \geq r$. It remains to show that the $\tau(L_a)$ actually span $\tau(\mathcal{U}(\mathcal{D}))$.

It is clear that the L_a exhaust all the p-regular conjugacy classes of \mathcal{H} of defect group \mathcal{D} which consist of u-elements in $\mathcal{A}(\mathcal{P})$. Let then \mathcal{P} be any p-singular class of \mathcal{H} of defect group \mathcal{D} and consisting of u-elements in $\mathcal{A}(\mathcal{D})$, i.e. L is a p-singular u-class sum in $\mathcal{U}(\mathcal{D})$. Take $G \in \mathcal{L}$, and write $G = PR$ as before. Then if $\tau(L) \neq 0$, R is a u-element of $\mathcal{A}(\mathcal{P})$ and $\tau(L)$ is equal to a multiple of $\tau(M)$, where M is the class sum of the conjugacy class \mathcal{M} of R in $\mathcal{A}(\mathcal{H})$. But \mathcal{M} must be one of the classes \mathcal{L}_a and so the $\tau(L_a)$ do in fact span $\tau(\mathcal{U}(\mathcal{D}))$.

Thus the number of blocks of $\mathcal{A}(\mathcal{P})$ of highest defect = dim $\tau(\mathcal{U}(\mathcal{D})) = r$, the number of p-regular u-classes of highest defect a.

4. Vertices and sources

The results of Higman [9] [10] and Green [8] can also be carried over to the twisted case. Here the generalization is even more direct than in § 3 and for most of the results we need only insist that the algebras be normalized. As before all modules will be assumed to have finite dimension over \mathcal{F}.

Let \mathcal{H} be a subgroup of \mathcal{J}. An $\mathcal{A}(\mathcal{J})$-module \mathcal{M} is said to be \mathcal{H}-projective if there exists an $\mathcal{A}(\mathcal{H})$-module \mathcal{R} such that \mathcal{M} is isomorphic to an $\mathcal{A}(\mathcal{J})$-direct summand of $\mathcal{R}^\mathcal{H}$. This definition is equivalent to \mathcal{M} being $(\mathcal{A}(\mathcal{F}), \mathcal{A}(\mathcal{H}))$-projective or $(\mathcal{A}(\mathcal{J}), \mathcal{A}(\mathcal{H}))$-injective in the sense of Hochschild [12] or Higman [11].

When \mathcal{F} has characteristic $p = 0$, or $p \nmid |\mathcal{G}|$, by § 1, remark 6, $\mathcal{A}(\mathcal{J})$ is semi-simple. Hence all $\mathcal{A}(\mathcal{J})$-indecomposables occur in the regular representation. Thus all $\mathcal{A}(\mathcal{J})$-modules are $\{E\}$-projective and the theory is trivial. From now on we assume $p \neq 0$.

Higman’s criterion14 for \mathcal{M} to be \mathcal{H}-projective can be written down immediately. Further, taking $\mathcal{H} = \mathcal{P}$, a Sylow p-subgroup of \mathcal{J}, we find that every indecomposable $\mathcal{A}(\mathcal{J})$-module \mathcal{M} is a component of a module induced from some $\mathcal{A}(\mathcal{P})$-module. But by § 1, remark 7, if \mathcal{F} is large enough, $\mathcal{A}(\mathcal{P})$ is the group algebra $\mathcal{F}(\mathcal{P})$ and so all indecomposable $\mathcal{A}(\mathcal{J})$-modules can be obtained by inducing from ordinary group representations of p-groups. $\mathcal{A}(\mathcal{J})$ has a finite number of different indecomposable $\mathcal{A}(\mathcal{J})$-modules if,

14 c.f. theorem 1, p. 371 of [9].
and only if, \(\mathcal{D} \) is cyclic, and as in [10] a rough upper bound for the number of indecomposables is
\[
\frac{1}{2} p^a (m(p^a + 1) - p^a + 1),
\]
where \(|\mathcal{G}| = mp^a, (m, p) = 1 \).

If \(\mathcal{D}, \mathcal{L} \) are subgroups of \(\mathcal{G} \) we shall write \(\mathcal{D} \subseteq \mathcal{L} \) if there exists a \(T \in \mathcal{G} \) such that \(\mathcal{D} \subseteq T \mathcal{L} T^{-1} \), and \(\mathcal{D} = \mathcal{L} \), if \(\mathcal{D} = T \mathcal{L} T^{-1} \). If \(\mathcal{M} \) is an indecomposable \(\mathfrak{A}(\mathcal{G}) \)-module, then a subgroup \(\mathcal{V} \) of \(\mathcal{G} \) is a called a vertex of \(\mathcal{M} \) if
(a) \(\mathcal{M} \) is \(\mathcal{V} \)-projective, and
(b) if \(\mathcal{M} \) is \(\mathcal{H} \)-projective, then \(\mathcal{V} \subseteq \mathcal{H} \). \(\mathcal{V} \) is then determined up to conjugacy in \(\mathcal{G} \) and is a \(p \)-subgroup. When \(p \nmid |\mathcal{G}| \) (or \(p = 0 \)), all vertices coincide with \(\{E\} \).

We may also look at the various \(\mathfrak{A}(\mathcal{G}) \)-modules \(\mathcal{I} \) such that \(\mathcal{I}^w \) contains \(\mathcal{M} \) as a component. As the process of inducing (i.e. \(\otimes \)) is distributive over direct sum and \(\mathcal{M} \) is indecomposable, it is sufficient to consider \(\mathcal{I} \) indecomposable. If \(\mathcal{I}' \) is a second such indecomposable \(\mathfrak{A}(\mathcal{G}) \)-module, then there exists an element \(X \in \mathfrak{N}(\mathcal{G}) \) such that
\[
\mathcal{I}' \cong (X) \otimes_{\mathfrak{A}(\mathcal{G})} \mathcal{I},
\]
considered as \(\mathfrak{A}(\mathcal{G}) \)-modules. Thus \(\mathcal{I}' \) is called a source of \(\mathcal{M} \).

As in the corollary to theorem 6 of [8], the problem of determining the vertex and source of a given indecomposable \(\mathfrak{A}(\mathcal{G}) \)-module \(\mathcal{M} \) can be reduced to the same problem for \(\mathfrak{A}(\mathcal{D}) \), where \(\mathcal{D} \) is a Sylow \(p \)-subgroup of \(\mathcal{G} \), i.e. to the same problem for \(p \)-group representations. Hence Green's discussion of induced modules in \(p \)-groups (§ 4 of [8]) is relevant.

The existence of the vertex and source of a given indecomposable \(\mathcal{M} \) can also be inferred from the non-twisted case by means of the group algebra \(\mathfrak{I}(\mathcal{G}^*) \) defined in § 1, remark 5.

The notion of blocks of § 3 can be extended further to embrace indecomposable \(\mathfrak{A}(\mathcal{G}) \)-modules \(\mathcal{M} \). If \((E) \) is decomposed as in § 3 (1), then
\[
\mathcal{M} = (E) \mathcal{M} \cong I_1 \mathcal{M} \oplus \cdots \oplus I_s \mathcal{M},
\]
this being an \(\mathfrak{A}(\mathcal{G}) \)-direct sum decomposition. But \(\mathcal{M} \) is indecomposable and so there is one and only one \(I_i \) such that \(I_i \mathcal{M} = \mathcal{M} \). We say that \(\mathcal{M} \) is in the block \(I_i \).

Let then \(\mathcal{M} \) be an indecomposable \(\mathfrak{A}(\mathcal{G}) \)-module of vertex \(\mathcal{V} \), and in the block \(I \) of defect group \(\mathcal{D} \). Then \(\mathcal{V} \subseteq \mathcal{D} \). On the other hand we shall prove the existence of an \(\mathfrak{A}(\mathcal{G}) \)-module in the block \(I \) with vertex \(\mathcal{V} \) and so the defect group \(\mathcal{D} \) of a block \(I \) may be characterised as being the "supremum" of the vertices of indecomposable modules in the block.

The following proposition helps in the construction of the above indecomposable.
PROPOSITION. Let I be a block of $A(D)$ of defect group D. Let σ be defined with respect to D and write

$$\sigma(I) = J_1 + \cdots + J_r,$$

where J_i are primitive idempotents (blocks) of $A(H)$ ($H = N(D)$). Let R be an indecomposable $A(H)$-module belonging to one of the above blocks, J_1 say. Then there is a component M of R^σ belonging to the block I such that R is isomorphic to a component of M.

PROOF. Let $X_r H$ be the cosets of H in $\mathcal{G}(X_r \in \mathcal{G})$, with $X_1 = E$. Then

$$(R^\sigma)_r \approx ((E) \otimes a(H) R) \oplus \left(\sum_{\alpha > 1} (X_\alpha) \otimes a(H) R \right)$$

is an $A(H)$-direct decomposition. We write $R = \sum_{\alpha > 1} (X_\alpha) \otimes R$ and we identify $(E) \otimes R$ with R. Let π denote the $A(H)$-projection:

$$\pi : (R^\sigma)_r \rightarrow (E) \otimes R = R.$$

We write

$$I = \sigma(I) + T_1 + T_2,$$

where T_1 is the sum of terms in $A(H)$ but not in $A(C(D))$, and T_2 is the sum of the remaining terms not in $A(H)$. For each w-class sum L in T_1, $L \cap C(D) = \emptyset$ and so $\tau(L) = 0$ (τ is defined in § 3). Hence $\tau(T_1) = 0$, and T_1 is nilpotent.

For $A \in A(H)$, we write $\rho(A)$ for the linear transformation representing A in the representation afforded by $(E) \otimes R = R$. Clearly $\sigma(I)$ acts identically on R, and so $\rho(\sigma(I) + T_1)$, being the sum of the identity transformation and a nilpotent one, is non-singular. Hence the map

$$R \rightarrow IR = \rho(\sigma(I) + T_1) R \oplus (T_2 \otimes R) \quad (R \in \mathcal{G})$$

is an $A(H)$-homomorphism, the decomposition on the right hand side being that of (1). On the other hand

$$\pi(IR) = \rho(\sigma(I) + T_1) R$$

and so πI is an $A(H)$-automorphism of $(E) \otimes R = R$. Hence $R \cong I(R)$ and $I(R)$ is an $A(H)$-component of $(I(R^\sigma))_r$. By the Krull-Schmidt theorem there is a component M of $I(R^\sigma) (\subseteq R^\sigma)$ such that M_σ has a component isomorphic to R. M must also be in the block I.

The construction of the required indecomposable in block I of vertex \mathcal{G} is now simple. Suppose first of all that D is normal in \mathcal{G}. As ker τ is nilpotent, $\tau(I)$ must be a non-zero idempotent of $\mathcal{G}(\mathcal{G}/D)$. Write

$\text{This follows from the lemma: If } U, V \text{ are modules and there exist homomorphisms } \alpha : U \rightarrow V, \beta : V \rightarrow U \text{ such that } \beta \alpha (\alpha \text{ followed by } \beta) \text{ is an automorphism, then } V = \text{Im} \alpha \oplus \ker \beta.$
as a decomposition into blocks of $B(D)$. Let A be any principal component of $A(D)$ in block J_1, say. J_1 has defect group $\{e\}$ in D and A has vertex $\{e\}$ in D. By means of the homomorphism τ, A can be considered as an $A(D)$-module, and as such it will be in the block I and will have vertex D.

For the case where D is not necessarily normal we first write
$$\sigma(I) = J'_1 + \cdots + J'_r,$$
where the J'_r are primitive idempotents in $B(H)$, each having defect group D by the main theorem on blocks. By the previous paragraph there is an indecomposable $A(H)$-module A in block J'_1, say, with vertex D. By the proposition there is a component M of \mathfrak{M} in block I with a component of \mathfrak{M}_x isomorphic to A. As the defect group of I is D and as M is in the block I, the vertex V of M satisfies
$$V \subseteq D.$$
On the other hand as M is V-projective each of the components of \mathfrak{M}_x has vertex $\{e\} \subseteq V$. In particular the vertex D of the component isomorphic to A satisfies
$$D \subseteq V.$$
Hence $D = V$, and so M is in block I with vertex D.

References

This follows as in theorem 6 of [8]
Twisted group algebras and their representations

15 Nakayama, T., Some studies on regular representations, induced representations and modular representations, Ann. of Math. (2) 39 (2) (1938), 361—369.

University of Sydney.