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Abstract. In view of the possibility of employing Cassini’s experiments for the diagnosis of
the Saturnian ring system, local N -body simulations of low and moderately high optical depth
regions of Saturn’s main rings are presented. A special emphasis is made on fine-scale spiral
structures (irregular cylindric wave-type structures of the order of 100 m or so) of Saturn’s A,
B, and C rings. It is predicted that Cassini spacecraft high-resolution images of Saturn’s rings
will reveal this kind of small-scale irregular density wave structure.
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1. Introduction
Voyager images of Saturn’s main A, B, and C rings have shown evidence of radial struc-

tures ranging from a few kilometres down to the several hundrends metres resolution of
the spacecraft’s camera (Smith et al. 1982). The best resolution demonstrated structures
at all scales in the rings, down to the limit of resolution ∼ 5 km. Most of the structures
are irregularly spaced and do not correspond to resonances with known satellities. It is
important that the Voyager’s stellar occultation data revealed some indirect evidence for
structuring in the densest central parts of Saturn’s B ring down to 100 m length scale.
One cannot exclude the existence of a fine irregular structure of this kind in other regions
of the Saturnian ring system of mutually gravitating and colliding particles.

Among all mechanisms, the self-excited nonresonant Jeans instability of gravity dis-
turbances (e.g., those produced by a spontaneous perturbation or a satellite system) has
long been suspected to be the key one that determines the ubiquitous irregular struc-
ture of Saturn’s rings, with the appearance of record-grooves (e.g., Esposito 1993, Fig. 5
therein; Cuzzi et al. 2002, Fig. 2b therein). Accordingly, a system of mutually gravitating
particles of Saturn’s rings exhibits collective, gravitationally unstable modes of motions.
A quasi-linear kinetic theory of the almost aperiodic Jeans instability in Saturn’s rings
has been developed by Griv et al. (2000, 2003a, 2003b) and Griv & Gedalin (2003).
The theory predicts that as a direct result of the instability of small-amplitude gravity
disturbances the main parts of A, B, and C rings are divided into numerous irregular
spiral ringlets of the order of 2π times the local thickness h = 5− 30 m. Below I describe
N -body simulations in order to verify the validities of the theory.

2. Local simulations
The dynamical behavior of planetary rings has already studied via simplified N -body

simulations of an orbiting patch of the ring by Salo (1992, 1995), Richardson (1994),
Osterbart & Willerding (1995), Sterzik et al. (1995), Griv (1998), Daisaka & Ida (1999),
and others. See Griv & Gedalin (2003) as a review of the problem. In these N -body
experiments in a local, or Hill’s approximation dynamics of particles in small regions
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of the disk are assumed to be statistically independent of dynamics of the particles in
other regions. The local numerical model thus simulates only a small part of the system
and more distant parts are represented as copies of the simulated region. The system
of Newton’s equations of three-dimensional motion in local approximation for N � 1
identical particles,

d2x

dt2
− 2Ωr0

dΩ
dr

x − 2Ω
dy

dt
= Fx , (2.1)

d2y

dt2
+ 2Ω

dx

dt
= Fy , (2.2)

d2z

dt2
+ Ω2z = Fz , (2.3)

was integrated by the Runge–Kutta method of the fourth order. In Eqs. (2.1)–(2.3),

x = r − r0 , y = r0(ϕ − Ωt) ,

r0 is the reference radius, Ω = Ω(r0), and A0 = −(r0/2)(dΩ/dr)0 ≈ (3/4)Ω is the
first Oort constant of the differential rotation which is a measure of the shear strength.
In general, Fx, Fy, and Fz are the forces due to interactions with other particles. The
gravitational forces are

�Fi = −G
N∑

j �=i

(�ri − �rj)
[(�ri − �rj)2]3/2

, (2.4)

where �ri is the position of the i-th particle and �rj is the position of the j-th particle.
Following Wisdom & Tremaine (1988), Salo (1995), Richardson (1995), Daisaka & Ida
(1999), and Ohtsuki & Emori (2000), I adopted the standard hard-sphere collision model.
A collision changes only impact velocity in normal direction, v′

n = −εvn and v′
t = vt,

where vn, vt and v′
n, v′

t, respectively, are relative velocities of colliding particles in the
normal direction and the tangential direction.

A rotating Cartesian coordinate system with origin at the reference position r0 was
chosen, the x axis pointing radially outward and the y axis pointing in the direction of the
rotation (Wisdom & Tremaine 1988; Salo 1995; Sterzik et al. 1995). The particles were
initially placed on nearly circular orbits with an anisotropic Maxwellian (Schwarzschild)
distribution of small random velocities. The initial distribution of particles was generated
by means of pseudo-random number generator placing particles uniformly in the box in
real space. The box should be thought of as being embedded in Saturn’s ring disk which
has a constant angular velocity gradient in the x direction.

I present simulations which are distinguished primarily by their values of the radial
cr and azimuthal cϕ velocity dispersions. The “cool” model has a value of cr ≡ 2cϕ =
0.5cT, and so I expect the model to be initially violently unstable to both radial and
spiral gravity disturbances. Here, cT = 3.4GΣ0/Ω is the well-known Safronov–Toomre
(Safronov 1960; Toomre 1964) random velocity dispersion to suppress the instability of
axisymmetric (radial) disturbances and Σ0 is the mean (local) surface density of the disk.
The “warm” model has cr ≡ 2cϕ = cT, and so it is expected to be unstable only to spiral
disturbances. In turn, the “hot” model with cr ≡ 2cϕ = 2cT is expected to be at best only
marginally unstable to the growth of spiral waves. See Griv et al. (2000, 2003a, 2003b)
and Griv & Gedalin (2003) for an explanation. In all experiments, initially cz = 0.2cr.

To maintain the system under the shearing stress in a steady state, the cyclic boundary
conditions were used in the form suggested by Wisdom & Tremaine (1988), Toomre
(1990), Salo (1995), and others. The direction of the disk rotation was taken to be
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Figure 1. Time-development of the differentially rotating three-dimensional model of particles
(face-on view) distributed over the Lx × Ly × Lz = 4λJ × 4λJ × λJ unit cell; cr = 0.5cT. The
model is violently unstable against spontaneous trailing gravity perturbations.

clockwise. Time t = 1 corresponds to a single revolution of the disk, and the orbital period
was Torb = 2π/Ω. All the particles moved with the same fixed time step ∆T = 0.001Torb.
In Saturn’s rings, a measure of the fundamental vibration period, or the dynamical time
is of the order of Tdyn ∼ (Gρring)−1/2 ∼ 1 h if we assume the volume density ρring ∼
1 g/cm3. This means that Torb ∼ 10Tdyn, so a choice of the stepsize ∆T = 0.001Torb

gives about 100 steps per particle dynamical time, which should be sufficient to accurately
resolve particle–particle interactions.

In experiments reported below the following physical parameters for a simulated patch
of the ring were chosen: the orbital period Torb ≡ 2π/Ω = 7.027 h which corresponds to
a typical orbital period of the C ring’s particle at the distance r = 85 000 km from the
planet, the surface density Σ0 = 15 g/cm2, and the total number of particles N = 12 000
in all models. The particle radius rp = 4.2 cm in Lx × Ly × Lz = 4λJ × 4λJ × λJ three-
dimensional models. The corresponding Jeans–Toomre wavelength λJ ≈ 6.4 m and the
optical depth τ ≈ πr2

pn ≈ 0.1 in all models (n is the number density per unit area). The
constant coefficient of restitution was ε = 0.8. A very popular model of the particles in
Saturn’s rings is a smooth ice sphere, whose restitution coefficient is quite high, exceeding
0.63, and decreases as the collision velocity increases (Goldreich & Tremaine 1982; Bridges
et al. 1984; Kerr 1985). Saturnian ring system is populated primarily by centimeter- to
a few meter-sized mutually gravitating and physically colliding particles (Zebker et al.
1985). A particle size distribution function exhibits approximately inverse-cubic power-
law behavior. In addition, Saturn has extensive but much more tenuous rings containing
mainly micrometer-sized particles (Lissauer & Cuzzi 1985). Because low-velocity colli-
sions of ice particles will always involve some dissipation of acoustic energy, some source
of energy must be available to keep them from total collapse to a featureless monolayer.

3. Fine-scale structure
In Fig. 1 I show a series of snapshots from a run with the cool model, i.e., the nonuni-

formly rotating model, in which initially particles all move along almost circular orbits
and the radial dispersion of the random velocities is smaller than the critical Safronov–
Toomre one, namely cr = 0.5cT, or Toomre’s Q-value, Q = cr/cT is equal to 0.5, re-
spectively. As has been predicted in the theory, the Jeans instability develops quickly
in the system. Figure 1 clearly shows that in a disk with the Keplerian shear profile
a spiral pattern (more accurately, a chainlike structure or irregular “wakes”) develops
spontaneously in the initially featureless disk on a dynamical time scale < Ω−1. The
wakes are created if self-gravity is included; only collisions do not create the structure.
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Figure 2. Density spectrum |A(kx , ky)| of the particle distribution shown in Fig. 1 for
different azimuthal ky and radial kx mode numbes at the calculation times t = 0.2 − 0.8.

Their pattern speed Ωp is zero, because the system is spatially homogeneous (Griv et al.
2003b). The Lin–Shu type density wave structure (Lin & Shu 1966; Lin et al. 1969; Shu
1970; Lin & Lau 1979; Griv & Gedalin 2003) is time dependent and transient.

Early in the evolution, multiple spirals interfere with each other and produce a compli-
cated set of density concentrations. At most, eight or nine individual high-density wakes
can be seen (Fig. 1, t = 0.4 − 0.6). The structure consists of elongated trailing filaments
with a definite pitch angle ψcrit with respect to the local shear flow. The pitch angle of
spiral wakes ψcrit ≈ 20◦ can be obtained by examining Fig. 1 directly.

Figure 1 gives a feeling for the evolutionary process, but in order to trace and quantify
the growth of instabilities in the disk, it is necessary to compute Fourier decompositions
of the surface density distribution for various mode numbers. Shown in Fig. 2 are the
sequences of density-spectrum evolution in the wavenumber space for the case shown
in Fig. 1 at the calculation times t = 0.2 − 0.8. The power spectrum is constructed
by employing a technique where one regards the particle, labeled by j, as a discrete
δ-function to calculate the density Fourier component, i.e.,

A(kx, ky) =
1
N

N∑

j=1

exp(�k · �rj) . (3.1)

In addition, the azimuthal wavenumber ky assumes discrete values compatible with the
finite boundaries in the streamwise direction, that is, in the y-direction, whereas the radial
wavenumber kx assumes continuous values because of the background flow shear. The
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Figure 3. Time-development of the differentially rotating model; cr = cT. In agreement with
the theory, even though the initial radial velocity dispersion cr is equal to the Safronov–Toomre
one cT, the model is still unstable against nonaxisymmetric perturbations.

pitch angle of a spiral ψ is given by ψ = arctan(ky/kx), and positive kx corresponds to
trailing spirals and negative kx to leading. The wavenumber is normalized to π/Ly. Thus,
the quantity ky gives the number of halfwaves of a spiral mode of collective oscillations
in the y-direction.

No particular set of kx, ky dominates at the beginning of calculations (t = 0.2), which
corresponds to the initial noise. It is evident from Fig. 2 that the cr < cT case produces
rigorous instabilities. One can clearly see that at times t � 0.6 a dominant ky is equal
about to (2Ly/λJ) tan ψ ≈ 4, which is consistent with the linear stability analysis for
the marginally unstable mode ( Griv et al. 2003b; Griv & Gedalin 2003). That is, a
wavelength of the dominant mode in the streamwise direction λy = λcrit/ tan ψ ≈ 2λJ,
where ψ = 20◦ − 25◦. The latter fact convincingly indicates that we have dealt with a
collective-type instability rather than with a random process (as advocated by Toomre
1990 and Toomre & Kalnajs 1991). It is natural to attribute the observed instability to
the Jeans instability so far discussed in the paper. Also, we see that there are a number
of ky = 2, ky = 6, and ky = 8 discrete harmonics present.

In the second set of experiments with the Keplerian disk, I simulated a system which
is stable according to Safronov (1960) and Toomre (1964): the initial radial velocity
dispersion is equal to cr = cT, or Toomre’s parameter Q = 1, respectively. The evolution
of the model is shown in Fig. 3. As is seen, in a Safronov–Toomre stable disk with the
differential rotation a spiral instability develops rapidly on a dynamical time scale � Ω−1.
This fierce instability of the system with cr = cT indicates that in a differentially rotating
system the Jeans instability of nonaxisymmetric (ψ �= 0) gravity perturbations cannot
be suppressed by the ordinary Safronov–Toomre critical velocity spread cT ≈ 3.4GΣ0/Ω,
in line with theoretical expectations (Griv 1996, 1998; Griv & Gedalin 2003).

The initial unstable growth is clear from Figs. 1–3. The simulated wake structure
rapidly at times t � 0.6 reaches nonlinearity, and is thus beyond the scope of our theory
(or any corresponding linear analysis of shearing modes). I then simulated a differentially
rotating disk which is stable in accordance with the modified stability criterion (Griv et al.
2000, 2003a, 2003b; Griv & Gedalin 2003). Figure 4 shows the observed evolution of the
dynamically hot model with cr = 2cT (or Q = 2, respectively). As one can see, in such
a system this relatively high “temperature” cr almost eliminates completely the growth
rate of the gravitational instability. In sharp contrast to the previous simulations, the
model is now almost gravitationally stable. The contrast between Figs. 1–3 and Fig. 4
establishes experimental evidence to support the stability theory developed by Griv and
co-workers. Note that Salo (1995), Richardson (1994), Osterbart & Willerding (1995),
Sterzik et al. (1995), and Daisaka & Ida (1999) have already found that the stability
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Figure 4. Time-development of the differentially rotating model; cr = 2cT. All perturbations
are almost suppressed, including the most unstable nonaxisymmetric (ψ �= 0) ones.

number Q of Toomre in relaxed equilibrium disks does not fall below a critical value,
which lies about Qcrit = 2−2.5. However, no adequate explanation of the latter has been
presented. See also Griv et al. (1999) for a discussion of the problem.

4. Vertical structures
Figures 1–3 show the density distributions of unstable models of Saturn’s rings in the

plane (face-on view). As has been mentioned by Salo (1992, 1995) and others, another
feature of the simulations is the radical changes in vertical structures of unstable systems
that result from the instabilities. Figure 5 shows distributions of particles and isodensity
contours in the (z, η)-plane for the three-dimensional model at the simulation times t = 0
and t = 0.4. (I introduced a new coordinate system (z, η); η is perpendicular to the spiral
wakes, while z gives the normal to the plane position.) The disk surface generally evolves
from a smooth height profile with η to complex structures with peaks and valleys that
result from instabilities. The results presented in Fig. 5 are consistent with the hypothesis
that we have dealt with the even Jeans perturbations, because the perturbed density is an
even function of z. This type of vertical motions does not deform the horizontal disk plane
z = 0, because the vertical velocity vz in a density wave is odd in z: vz(−z) = −vz(z).
Such “sausage-like” perturbations (Bertin & Casertano 1982) can release gravitational
energy and are subject to classical gravitational Jeans-type instability.

5. Summary
The most puzzling features of Saturn’s rings, revealed by Voyager fly-bys, are the

radial density variations seen on all scales down to the resolution limit of few kilometers.
At the present time, their origin is far from being understood (Tremaine 2003). This
paper reports on an investigation of the significance of self-excited (that is, intrinsic),
off-resonant, almost aperiodic Jeans instability in Saturn’s main rings to the formation
of the fine-scale structures. I explored the linear regime of Jeans instabilities in Saturn’s
rings by means of sliding N -body patch model (e.g., Salo 1992, 1995) and compared
those numerical results with the quasi-linear kinetic stability theory by Griv et al. (2000,
2003a, 2003b) and Griv & Gedalin (2003). The aim of the work is to discuss specific
astronomical implications of the study to Saturn’s rings in view of the possibility of
employing Cassini’s experiments. Summarizing, I claim that
1. In order to suppress the instability of arbitrary but not only axisymmetric Jeans-type
perturbations in a differentially rotating disk, including the most unstable nonaxisym-
metric ones, the value of the radial dispersion of random velocities of particles must
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Figure 5. Comparison of vertical structure. Shown are both distributions of particles and
isodensity contours in the (z, η)-plane for the three-dimensional model shown in Fig. 3 at the
calculation times t = 0 and t = 0.4: (a) distribution of particles at t = 0, (b) isodensity contours
at t = 0, (c) distribution of particles at t = 0.4, and (d) isodensity contours at t = 0.4. Figures 5c
and 5d give the end-on edge-on views of the positions and isocontours of the density of the disk
particles at t = 0.4, respectively. The unstable spiral disturbances significantly alter the disk’s
vertical surface.

exceed ccrit ≈ 2cT, or Toomre’s stability parameter Q � 2. It is expected that in the
main rings of Saturn Q ≈ 2 (cf. Lane et al. 1982, p. 543). I again argue that sufficient
velocity dispersion (Q � 2) prevents the Jeans instability from occurring but inelastic
particle collisions reduce the relative particle velocities so that the Jeans instability may
be an effective generating mechanism for the recurrent fine structure of the ring system.
2. In Saturn’s rings, this almost aperiodic gravitational instability manifests itself as trail-
ing cylindric density-wave enhancements, forming ≈ 20◦ angle with respect to tangential
direction.
3. By local simulations of a particle model, we see that at the limit of stability with
respect to all gravity perturbations of a differentially rotating disk the critical radial
wavelength becomes approximately equal to λcrit = 2λJ. Modern observations indicate
that the ring thickness ranges from 1 − 2 m in the C ring to 1 − 5 m in the B ring and
5− 30 m in the A ring (Esposito 2002). Then, in the C ring estimations give the value of
λcrit = 6−20 m, in the B ring λcrit = 6−50 m, and in the A ring λcrit = 30−300 m. Thus,
both the theory and the simulations forecast the existence of the fine-scale ∼ 100 m or
even less radial structures in Saturn’s main rings.
4. Seen edge-on with the fine spirals seen end-on (with the line of sight along the spiral
local major axis), Saturn’s rings will show even with respect to the equatorial plane
“sausage” structures.
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