BEZOUT DOMAINS AND RINGS WITH A DISTRIBUTIVE LATTICE OF RIGHT IDEALS

H. H. BRUNGS

0. It is the purpose of this paper to discuss a construction of right arithmetical (or right D-domains in [5]) domains, i.e., integral domains R for which the lattice of right ideals is distributive (see also [3]). Whereas the commutative rings in this class are precisely the Prüfer domains, not even right and left principal ideal domains are necessarily arithmetical. Among other things we show that a Bezout domain is right arithmetical if and only if all maximal right ideals are two-sided.

Any right ideal of a right noetherian, right arithmetical domain is two-sided. This fact makes it possible to describe the semigroup of right ideals in such a ring in a satisfactory way; [3], [5].

However, very little is known about the corresponding question in the non-noetherian case.

We will construct right arithmetical rings in which the maximal right ideals and their intersections, R and (0) are the only two-sided ideals and where it is still possible to describe the lattice of right ideals in various cases. The construction begins with a left Ore right Bezout domain R and a monomorphism σ of R. We show that R can be localized at those maximal right ideals N_{i}, i in an index set Λ, of R which are two-sided and for which $\sigma\left(N_{i}\right)$ is contained in N_{i}.

The intersection

$$
R_{0}=\cap_{i \in \Lambda} R_{N_{i}},
$$

the localization of R at N_{i}, is a right Bezout, left Ore and right arithmetical ring to which σ can be extended. The quotient ring R_{1} of the Ore polynomial ring $R_{0}[x, \sigma]$ with respect to the Ore set S consisting of all polynomials which have content equal to R_{0} can be formed. The right ideals of this ring can be studied via the right ideals of

$$
\bar{R}_{0}=U x^{-n} R_{0} x^{n},
$$

the smallest extension of R_{0} which has an automorphism as an extension of σ (see [8]). The ring R_{1} is a right Bezout, left Ore domain and a right arithmetical ring R_{2} can be obtained from it in the same fashion as R_{0} was constructed from R. The ring R_{2} is neither right noetherian nor are all its

[^0]right ideals two-sided as long as Λ is not empty and there exists an element r in R_{0} with $\sigma(r) R_{0} \subsetneq r R_{0}$.

1. We consider right Bezout domains. These are integral domains in which all finitely generated right ideals are principal.

Lemma 1. Let R be a right Bezout domain, N a maximal right ideal of R. Then N is a two-sided ideal of R if and only if $S=R \backslash N$ is a right Ore-system.
Proof. If $S=R \backslash N$ is a right Ore-system then

$$
R_{N}=R S^{-1}=\left\{a s^{-1} ; a \text { in } R, s \text { in } S\right\}
$$

exists and is a local ring with $N R_{N}$ as the only maximal right ideal in R_{N}. This right ideal is therefore a two-sided ideal in R_{N} and $N=R \cap R_{N}$ is a two-sided ideal in R.

If conversely N is a two-sided ideal in R and s_{1}, s_{2} are in S then

$$
s_{1} x_{1}+n_{1}=1, \quad s_{2} x_{2}+n_{2}=1
$$

for some x_{i} in R and n_{i} in N. We obtain

$$
s_{1} s_{2} x_{2} x_{1}+s_{1} n_{2} x_{1}+n_{1}=1
$$

which shows that $s_{1} s_{2}$ is again in S. If s is in S and r is in R we have

$$
r R+s R=d R
$$

for some d in R and $s=d s_{1}, r=d r_{1}$ with

$$
s_{1} R+d_{1} R=R \quad \text { and } s_{1} \text { in } S .
$$

Therefore

$$
\begin{aligned}
& s_{1} x+r_{1} y=1 \text { for some } x, y \text { in } R \text { and } \\
& s_{1}\left(x s_{1}-1\right)=-r_{1} y s_{1}, \quad r_{1}\left(y r_{1}-1\right)=-s_{1} x r_{1}
\end{aligned}
$$

are elements in $s_{1} R \cap r_{1} R$. Either y is in N and $y r_{1}-1$ in S or y is in S and hence $y s_{1}$ is in S. This shows that S is a right Ore system after multiplying the appropriate equation from the left by d.

Remark. The ring R_{N} is a right chain ring if it exists.
Proof. The ring R_{N} is a local right Bezout domain. If a, b are elements in R_{N}, then

$$
a R_{N}+b R_{N}=d R_{N}
$$

for some d in R_{N} and

$$
a=d a_{1}, \quad b=d b_{1}, \quad a_{1} x+b_{1} y=1
$$

for some a_{1}, b_{1}, x, y in R. It follows that at least one of a_{1} or b_{1} is a unit in R_{N} and either

$$
a R_{N}=d R_{N} \supseteq b R_{N} \quad \text { or } \quad b R_{N}=d R_{N} \supseteq a R_{N} .
$$

Corollary. A right Bezout domain R is a right arithmetical ring if and only if all maximal right ideals of R are two-sided.

This follows from Lemma 1 and [3].
A right semifir is a ring in which all right ideals are free as right R-modules with unique rank. This notion is left-right symmetric ([6], p. 43), which implies that a right Bezout domain which is also left Ore is also a left Bezout domain.

Theorem 1. Let R be a right Bezout, left Ore domain. Let $\left\{N_{i}\right\}$, in Λ, be a set of maximal right ideals of R that are two-sided ideals. Then $D=\cap R_{N_{i}}$, in Λ, is a right Bezout, right arithmetical left Ore domain.

Proof. We know that the rings $R_{N_{i}}, i$ in Λ, exist and that the ring D is a ring between R and its field of quotients $K=Q(R)$. We just observed that R is a right and left Bezout domain and this implies that the overring D of R is of the form $D=R M^{-1}$ for a right Ore set M of $R([\mathbf{1}])$. We can see this directly in the following way: An element in D has the form $b a^{-1}$ with a, b in R. We can assume that $R a+R b=R$, since otherwise $a=a_{1} d, b=b_{1} d, b a^{-1}=b_{1} a_{1}^{-1}$ and $R a_{1}+R b_{1}=R$ if $R a+R b=R d$.

Elements x, y exist therefore in R with

$$
x a+y b=1
$$

and $x+y b a^{-1}=a^{-1}$ in D follows.
Let M be the set of units in D that are elements in R, i.e., $M=$ $U(D) \cap R$ with $U(D)$ the group of units of D. Let a be an element in M. Then

$$
a D=D \quad \text { and } \quad a R_{N_{i}}=R_{N_{i}}
$$

and a is in $R \backslash\left(\cup N_{i}\right), i$ in Λ. Conversely, if a is in $R \backslash\left(\cup N_{i}\right), i$ in Λ, then

$$
a R_{N_{i}}=R_{N_{i}} \quad \text { and } \quad a D=D,
$$

a is in M.
We conclude that

$$
D=R M^{-1}=\left\{b m^{-1} ; b \text { in } R, m \text { in } M\right\}
$$

and M is a right Ore system using the familiar argument: If m is in M, r in R, then $m^{-1} r=r_{1} m_{1}^{-1}$ for r_{1} in R, m_{2} in M and $r m_{1}=m r_{1}$. The ring $D=R M^{-1}$ is a right Bezout domain that is left Ore with $N_{i} D, i$ in Λ, as its maximal right ideals. These right ideals are two-sided, since

$$
N_{i} D=D \cap N_{i} R_{N_{i}}
$$

We need one more result concerning the symmetry of our basic conditions.

Lemma 2. If R is a right Bezout, left Ore domain whose maximal right ideals are two-sided then the following hold:
i) $\sum R a_{i}=R$ if and only if $\sum a_{i} R=R$ for elements a_{1}, \ldots, a_{n} in R.
ii) All maximal left ideals of R are two-sided and equal maximal right ideals.
iii) R is left arithmetical.

Proof. If

$$
L=\sum R a_{i}=R
$$

it is impossible that

$$
\sum a_{i} R=K \neq R,
$$

since K is contained in a maximal right ideal N in this case and $L=$ $R \subseteq N$ would follow.

Conversely, if

$$
\sum a_{i} R=R \quad \text { and } \quad \sum R a_{i}=L \neq R
$$

we obtain $L=R d$ with d not a unit in R and therefore $0 \neq d$ is contained in a maximal right ideal N of R. This implies $a_{i}=a_{i}^{\prime} d$ for elements a_{i}^{\prime} in R, $i=1, \ldots, n$, and

$$
\sum a_{i} R=\sum a_{i}^{\prime} d R \subseteq N,
$$

a contradiction. To prove ii) let L be a maximal left ideal of R.
Then either $L R \neq R$ and $L R$ is contained in some maximal right ideal N or $L R=R$. We have $L \subseteq L R \subseteq N$ for the left ideals L and N in the first case and $L=N$ by the maximality of L.

If $L R=R$ then $\sum a_{i} r_{i}=1$ for a_{i} in L, r_{i} in $R, i=1, \ldots, n$. But then

$$
R=\sum R a_{i} \subseteq L,
$$

using i), a contradiction.
iii) follows from ii) and the corollary to Lemma 1.
2. The construction which we will now consider in detail corresponds to the construction of the Kronecker function ring, [7] Section 32 in the commutative case, see also [4], [9] and [10].

Let R_{0} be a right Bezout, left Ore domain with a monomorphism σ from R_{0} to R_{0}.

Let $\left\{N_{i}\right\}, i$ in Λ, be the set of those maximal right ideals of R_{0} which are two-sided and satisfy $\sigma\left(N_{i}\right) \subseteq N_{i}$. Let

$$
S=R_{0} \backslash\left(\cup N_{i}\right) \quad i \text { in } \Lambda .
$$

Using Theorem 1 we can form the ring $R_{0} S^{-1}$ which is a right Bezout, right arithmetical left Ore domain. The monomorphism σ can be extended from R_{0} to $R_{0} S^{-1}$, since s in $S=R_{0} \backslash\left(\cup N_{i}\right), i$ in Λ, implies $\sigma(s)$ in S. To see this, we observe that $s R_{0}+N_{i}=R$ for every i in Λ, and hence

$$
s r_{i}+n_{i}=1 \quad \text { for some } r_{i} \text { in } R, n_{i} \text { in } N_{i} .
$$

Applying σ to this equation shows that $\sigma(s)$ is not contained in N_{i} and therefore $\sigma(s)$ is an element of S.

Replacing R_{0} by $R_{0} S^{-1}$ we can therefore assume that R_{0} is a right Bezout, right arithmetical left Ore domain with a monomorphism σ such that $\sigma(N) \subseteq N$ for all maximal right ideals N of R_{0}.

Next, consider the Ore polynomial ring

$$
R=R_{0}[x, \sigma]=\left\{\sum a_{i} x^{i} ; a_{i} \text { in } R_{0}\right\}
$$

with $x a=\sigma(a) x$ defining the multiplication.
Since R_{0} is left Ore, it follows from Proposition 8.4 in [6] that R is left Ore; i.e., for elements $0 \neq f, g$ in R there exist elements $0 \neq f_{1}, g_{1}$ in R with $f_{1} g=g_{1} f$.

We denote with S the set

$$
\left\{\sum a_{i} x^{i} \text { in } R ; \sum a_{i} R_{0}=R_{0}\right\}
$$

of all those polynomials f in R which have right content R_{0}. Here, the right content of an element f in R is the right ideal $c(f)$ of R_{0} generated by the coefficients of f.

We want to show that S is a left Ore system of R. To show that S is multiplicatively closed let

$$
s_{1}=\sum a_{i} x^{i} \text { and } s_{2}=\sum b_{j} x^{j}
$$

be elements in S with $s_{1} s_{2}=p(x)$ as their product.
For any maximal right ideal N of R_{0} there exists an index i_{0} minimal with the property that $a_{i_{0}}$ is not in N. Similarly, a lowest coefficient $b_{j_{0}}$ exists with $b_{j_{0}}$ not in N. Using the fact that $\sigma(r)$ is in N if and only if r is in N for r in R_{0} and that N is two-sided it follows that the coefficient of $x^{i_{0}+j_{0}}$ in $p(x)$ is not contained in N. Hence, $p(x)$ is in S.

Let $s(x)$ be in S and $f(x)$ in R. It was observed earlier that elements $h(x)$ and $0 \neq g(x)$ exist in R with

$$
h(x) s(x)=g(x) f(x)
$$

If $h(x)$ is factored as $c \cdot h_{1}(x)$ with c in $R_{0}, h_{1}(x)$ in S and similarly $g(x)=$ $d \cdot g_{1}(x)$ with d in $R_{0}, g_{1}(x)$ in S we conclude that $h_{1}(x) s(x)$ is again in S and $c=d r$ for some r in R_{0}. Therefore,

$$
r h_{1}(x) s(x)=g_{1}(x) f(x) \quad \text { with } g_{1}(x) \text { in } S .
$$

This shows that S is a left Ore system in R and the ring of quotients

$$
R_{1}=S^{-1} R=\left\{s(x)^{-1} f(x) ; f(x) \text { in } R, s(x) \text { in } S\right\}
$$

exists.
We have proved the first part of the following theorem.
Theorem 2. Let R_{0} be a right Bezout, left Ore domain such that all maximal right ideals N_{i}, i in Λ, are two-sided. Let σ be a monomorphism of R_{0} such that $\sigma\left(N_{i}\right)$ is contained in N_{i} for every maximal right ideal. Then $R_{1}=S^{-1} R$ exists and is a right Bezout left Ore domain, where $R=R_{0}[x, \sigma]$ is the Ore polynomial ring and S is the set of polynomials with R_{0} as their right content.

Proof. It remains to prove that R_{1} is a right Bezout left Ore domain. One can write two arbitrary elements in R_{1} with a common denominator in S and it is sufficient to show that

$$
f^{-1}(x) g(x) R_{1}+f^{-1}(x) h(x) R_{1}=I
$$

is a principal right ideal.
However, $g(x) R_{1}=a R_{1}$ and $h(x) R_{1}=b R_{1}$ for certain elments a, b in R_{0} and $I=f^{-1}(x) d R_{1}$ if $a R_{0}+b R_{0}=d R_{0}$ for some d in R_{0}.

The fact that R_{1} is left Ore follows from the earlier observation that R is left Ore.

We would like to obtain more information about one-sided and two-sided ideals in R_{1}. It is useful to introduce the subring

$$
\bar{R}_{0}={ }_{n \geqq 0} R_{0}^{(n)}
$$

of R_{1} where

$$
R_{0}^{(n)}=x^{-n} R_{0} x^{n} .
$$

Since

$$
R_{0}^{(n+1)}=x^{-(n+1)} R_{0} x^{n+1} \supseteq x^{-(n+1)} \sigma\left(R_{0}\right) x^{n+1}=x^{-n} R_{0} x^{n}=R_{0}^{(n)}
$$

it follows that \bar{R}_{0} is indeed a subring of R_{1} and again a right Bezout left Ore domain containing R_{0}.

By defining

$$
\overline{\boldsymbol{\sigma}}\left(x^{-n} a x^{n}\right)=x^{-n} \boldsymbol{\sigma}(a) x^{n}
$$

we see that $\bar{\sigma}$ is an extension of σ and is the restriction to \bar{R}_{0} of the inner automorphism of R_{1} that sends f in R_{1} to $x f x^{-1}$. Both this inner automorphism and its inverse map \bar{R}_{0} to \bar{R}_{0} and $\bar{\sigma}$ is therefore an automorphism of \bar{R}_{0}. The ring \bar{R}_{0} and the element x, which remains algebraically independent over \bar{R}_{0}, are both contained in R_{1}. Therefore,

$$
\bar{R}=\bar{R}_{0}[x, \bar{\sigma}]=\left\{\sum \bar{a}_{i} x^{i} ; \bar{a}_{i} \text { in } \bar{R}_{0}\right\}
$$

the Ore polynomial ring in x over \bar{R}_{0} with the automorphism $\bar{\sigma}$, is contained in R_{1}.

We consider the set

$$
\bar{S}=\left\{\sum \bar{a}_{i} x^{i} \text { in } \bar{R} ; \sum \bar{a}_{i} \bar{R}_{0}=\bar{R}_{0}\right\}
$$

and want to prove that \bar{S} is a right and left Ore system in \bar{R} with

$$
\bar{S}^{-1} \bar{R}=\bar{R} \bar{S}^{-1}=R_{1}
$$

We begin with showing that \bar{S} is multiplicatively closed. If

$$
f(x)=\sum \bar{a}_{i} x^{i} \quad \text { and } \quad g(x)=\sum \bar{b}_{i} x^{i}
$$

are elements in \bar{S} then their coefficients are also contained in $R_{0}^{(n)}$ for a sufficiently large n which can be chosen such that

$$
\sum \bar{a}_{i} R_{0}^{(n)}=R_{0}^{(n)} \quad \text { and } \quad \sum \bar{b}_{i} R_{0}^{(n)}=R_{0}^{(n)} .
$$

This implies (observe that $\bar{\sigma}\left(R_{0}^{(n)}\right)$ is contained in $R_{0}^{(n)}$) that $f(x) g(x)$ has coefficients in $R_{0}^{(n)}$ that generate $R_{0}^{(n)}$ as a right ideal; using the fact that $R_{0}^{(n)}$ is a right Bezout, left Ore domain whose maximal right ideals are two-sided. We know that \bar{R}_{0} is a right and left Ore domain and that $\bar{\sigma}$ is an automorphism of \bar{R}_{0}. It follows as in Section 2 that $\bar{R}_{0}[x, \bar{\sigma}]=\bar{R}$ is a right and left Ore domain. We use this fact to show that \bar{S} is a left Ore system.

Given $f(x)$ in $\bar{S}, g(x)$ in \bar{R} then there exist $f_{1}(x), g_{1}(x)$ in \bar{R} with

$$
f_{1}(x) g(x)=g_{1}(x) f(x) .
$$

We can write

$$
f_{1}(x)=c_{1} f_{2}(x), \quad g_{1}(x)=d_{1} g_{2}(x)
$$

with c_{1}, d_{1} in \bar{R}_{0} and $f_{2}(x), g_{2}(x)$ in \bar{S}.
As in the above argument, there exists an n such that the coefficients of $f(x), g(x), f_{2}(x), g_{2}(x)$ and c_{1}, d_{1} are elements of $R_{0}^{(n)}$.

The product $g_{2}(x) f(x)$ is in \bar{S} and it follows that $d_{1}=c_{1} d_{2}$ for an element d_{2} in $R_{0}^{(n)}$. Therefore,

$$
f_{2}(x) g(x)=d_{2} g_{2}(x) f(x)
$$

with $f_{2}(x)$ in \bar{S} shows that \bar{S} is a left Ore system.
We need Lemma 2 to prove that \bar{S} is also a right Ore system. From the fact that $\bar{\sigma}$ is an automorphism we conclude that

$$
f(x)=\sum_{i=0}^{k} \bar{a}_{i} x^{i}
$$

in \bar{S} can also be written as

$$
f(x)=\sum x^{i} \bar{\sigma}^{-i}\left(\bar{a}_{i}\right)
$$

and the elements $\left\{\sigma^{-i}\left(\bar{a}_{i}\right), i=0, \ldots, k\right\}$ will still generate \bar{R}_{0} as a right ideal. This follows by working again in a ring $R_{0}^{(n)}$ that contains all the \bar{a}_{i} and $\bar{\sigma}^{-i}\left(\bar{a}_{i}\right)$ and observing the fact that the maximal right ideals of $R_{0}^{(n)}$ are exactly the right ideals $x^{-n} N x^{n}$ where N is a maximal right ideal of R_{0}. For every such right ideal there exists an i with \bar{a}_{i} not in $x^{-n} N x^{n}$. This implies that $\bar{\sigma}^{-i}\left(\bar{a}_{i}\right)$ is not in $x^{-n} N x^{n}$, since $\sigma(r)$ is in N if and only if r is in N for r in R_{0}. We get

$$
\begin{aligned}
\bar{S} & =\left\{\sum \bar{a}_{i} x^{i} ; \sum \bar{a}_{i} R_{0}=\bar{R}_{0}\right\} \\
& =\left\{\sum x^{i} \bar{a}_{i} ; \sum \bar{a}_{i} \bar{R}_{0}=\bar{R}_{0}\right\} \\
& =\left\{\sum x^{i} \bar{a}_{i} ; \sum \bar{R}_{0} \bar{a}_{i}=\bar{R}_{0}\right\}
\end{aligned}
$$

by Lemma 2 and it follows that \bar{S} is a right Ore system because of the symmetry of our assumption and the fact that $\bar{\sigma}$ is an automorphism.

We saw above that \bar{R} is contained in R_{1} and for every element $f(x)$ in \bar{S} there exist an n such that $x^{n} f(x) x^{-n}$ is in R and hence in S. This implies that the inverses of the elements in \bar{S} are in R_{1} and

$$
R_{1} \subseteq \bar{S}^{-1} \bar{R}=\bar{R} \bar{S}^{-1} \subseteq R_{1}
$$

shows the equality of these rings.
We use this to describe the right ideals in R_{1}.
Lemma 3. The right ideals of R_{1} are in one-to-one correspondence with the right ideals of \bar{R}_{0}. If I is a right ideal of R_{1} then $\left(I \cap \bar{R}_{0}\right) R_{1}=I$ and if \bar{I}_{0} is a right ideal of \bar{R}_{0} then $\bar{I}_{0} R_{1} \cap \bar{R}_{0}=\bar{I}_{0}$.

Proof. A principal right ideal in R_{1} has the form

$$
f^{-1}(x) g(x) R_{1}=T
$$

with $f(x)$ in S and $g(x)$ in R. However,

$$
f^{-1}(x) g(x)=\bar{h}(x) \bar{s}^{-1}(x)
$$

with $\bar{h}(x)$ in \bar{R} and $\bar{s}(x)$ in \bar{S}. Further,

$$
\bar{h}(x)=\bar{a} \bar{t}(x) \text { for } \bar{a} \text { in } \bar{R}_{0} \text { and } \bar{t}(x) \text { in } \bar{S} .
$$

This implies $T=\bar{a} R_{1}$. If $\bar{a} R_{1}=\bar{b} R_{1}$ for elements \bar{a}, \bar{b} in \bar{R}_{0} then

$$
\bar{a} \bar{s}_{1}(x)=\bar{b} \bar{s}_{2}(x) \text { for elements } \bar{s}_{1}(x), \bar{s}_{2}(x) \text { in } \bar{S}
$$

Since both the principal right ideals $\bar{a} \bar{R}_{0}$ and $\bar{b} \bar{R}_{0}$ are the content of the element $\bar{a} \bar{s}_{1}(x)$ in \bar{R}, they are equal and it follows that $\bar{a} R_{1}=\bar{b} R_{1}$ if and only if $\bar{a} \bar{R}_{0}=\bar{b} \bar{R}_{0}$.

With a similar argument, using the content again, one shows that $\bar{a} R_{1} \subseteq \bar{b} R_{1}$ if and only if $\bar{a} \bar{R}_{0} \subseteq \bar{b} \bar{R}_{0}$.

The proof of the lemma follows easily from what has been said, but we consider the proof of the containment

$$
\bar{I}_{0} R_{1} \cap \bar{R}_{0} \subseteq \bar{I}_{0} .
$$

Let \bar{a} be in \bar{I}_{0} and $\bar{c}=\bar{a} \bar{f}(x) \bar{s}(x)^{-1}$ be in \bar{R}_{0} with $\bar{f}(x) \bar{s}(x)^{-1}$ in R_{1}. Then $\bar{c} \bar{s}(x)=\bar{a} \bar{f}(x)$ and a content argument shows that $\bar{c}=\bar{a} \bar{b}$ for some \bar{b} in \bar{R}_{0}, since $\bar{s}(x)$ is in S.

We can describe the principal right ideals in R_{1} even further, see also Theorem 2 in [4].

Lemma 4. A principal right ideal in R_{1} has the form $x^{-n} a R_{1}$ for some non-negative integer n and a in R_{0}. Two such right ideals $x^{-n} a R_{1}$ and $x^{-m} b R_{1}$ are equal if and only if

$$
\sigma^{m}(a) R_{0}=\sigma^{n}(b) R_{0} .
$$

The first part of the lemma follows from Lemma 3 and the fact that every element \bar{a} in \bar{R}_{0} has the form $x^{-n} a x^{n}$ for a suitable n and an a in R_{0}. The second part follows if we prove that

$$
U\left(\bar{R}_{0}\right) \cap Q\left(R_{0}\right)=U\left(R_{0}\right)
$$

where $Q\left(R_{0}\right)$ is the field of quotients of R_{0} and $U\left(R_{0}\right), U\left(\bar{R}_{0}\right)$ are the groups of units of R_{0} and \bar{R}_{0} respectively. To see this we use an argument similar to one used in the proof of Theorem 1. The overring $\mathcal{O}=\bar{R}_{0} \cap$ $Q\left(R_{0}\right)$ of R_{0} is of the form $\mathcal{O}=R_{0} T^{-1}$ for some Ore system T of R_{0}.

Let a, b be elements in R_{0} with $a R_{0}+b R_{0}=R_{0}$ and $a^{-1} b$ in $U\left(\bar{R}_{0}\right) \cap$ $Q\left(R_{0}\right)$. It follows that a^{-1} is in \mathcal{O} and hence in $U\left(\bar{R}_{0}\right) \cap Q\left(R_{0}\right)$, and a^{-1} is therefore a unit in $R_{0}^{(n)}$ for a suitable n.

However, the maximal right ideals of $R_{0}^{(n)}$ are of the form $x^{-n} N x^{n}, N$ a maximal right ideal of R_{0} and unless a is a unit in R_{0} and not contained in any maximal right ideal N it is not possible that a is not contained in any $x^{-n} N x^{n}$. This implies

$$
U\left(\bar{R}_{0}\right) \cap Q\left(R_{0}\right)=U\left(R_{0}\right) .
$$

If we now assume that $a \bar{R}_{0}=b \bar{R}_{0}$ for a, b in R_{0} then $a \bar{u}=b$ for a unit \bar{u} in \bar{R}_{0}. But $\bar{u}=a^{-1} b$ is an element in

$$
U\left(\bar{R}_{0}\right) \cap Q\left(R_{0}\right)=U\left(R_{0}\right)
$$

and $a R_{0}=b R_{0}$.
The lemma follows if we observe that

$$
x^{-n} a R_{1}=x^{-m} b R_{1}
$$

if and only if

$$
x^{m} a R_{1}=\sigma^{m}(a) R_{1}=x^{n} b R_{1}=\sigma^{n}(b) R_{1} .
$$

We saw in Lemma 3 that a right ideal I of R_{1} is determined by the right ideal $\bar{I}=I \cap \bar{R}_{0}$ of \bar{R}_{0}. Such a right ideal is uniquely determined by the
sequence $\left\{I_{(n)}\right\}$ of right ideals

$$
I \cap R_{0}^{(n)}=\bar{I} \cap R_{0}^{(n)}=I_{(n)}
$$

of $R_{0}^{(n)}$. This is obvious since $\bar{I}=\bar{J}$ implies $I_{(n)}=J_{(n)}$ and $I_{(n)}=J_{(n)}$ implies

$$
\bar{I}=\cup I_{(n)}=\cup J_{(n)}=\bar{J}
$$

4. We discuss maximal right ideals and two-sided ideals of R_{1} in this section.

Let I be a two-sided ideal in R_{1}. We begin with the observation that the two-sided ideal $\bar{I}=I \cap \bar{R}_{0}$ of \bar{R}_{0}, satisfies $\bar{\sigma}(\bar{I})=\bar{I}$, since

$$
x \bar{I} x^{-1} \subseteq \bar{I} \quad \text { and } \quad x^{-1} \bar{I} x \subseteq \bar{I}
$$

It follows that

$$
I_{0}=I_{(0)}=I \cap R_{0}
$$

is a two-sided ideal of R_{0} with the property that $\sigma(r)$ is in $I_{(0)}$ if and only if r is in I_{0} for r in R_{0}.

Lemma 5. The two-sided ideals I in R_{1} are of the form $I=\bar{I} R_{1}$ with

$$
\bar{I}=U x^{-n} I_{0} x^{n},
$$

n a non-negative integer, where I_{0} is a two-sided ideal in R_{0} such that $\sigma(r)$ is in I_{0} if and only if r is in I_{0}. Two such ideals I and J are equal in R_{1} if and only if $I_{0}=I \cap R_{0}$ is equal to $J_{0}=J \cap R_{0}$ in R_{0}.

Proof. Let I be a two-sided ideal in R_{1}. We know that I is uniquely determined by $\bar{I}=I \cap \bar{R}_{0}$ and that $I_{0}=I \cap R_{0}$ is a two-sided ideal of R_{0} such that $\sigma(r)$ is in I_{0} if and only if r is in I_{0} for r in R_{0}.

Consider $I_{(n)}=\bar{I} \cap R^{(n)}$ and we want to show that

$$
I_{(n)}=x^{-n} I_{0} x^{n} .
$$

Since I_{0} is in \bar{I}, we see that $x^{-n} I_{0} x^{n}$ is contained in $I_{(n)}$. Conversely, since $I_{(n)}$ is contained in $R^{(n)}$ it follows that $x^{n} I_{(n)} x^{-n}$ is contained in $R_{0} \cap \bar{I}=I_{0}$. This shows that

$$
I=\left(\cup x^{-n} I_{0} x^{n}\right) R_{1} \quad \text { for } I_{0}=I \cap R_{0} .
$$

To finish the proof we now consider any two-sided ideal I_{0} in R_{0} with the property that $\sigma(r)$ is contained in I_{0} if and only if r is in I_{0} for r in R_{0}.

We form $I=\bar{I} R_{1}$ with

$$
\bar{I}=U x^{-n} I_{0} x^{n},
$$

n runs through the negative integers, and must show that I is a two-sided ideal in R_{1} with $I \cap R_{0}=I_{0}$.

We observe that \bar{I} is a two-sided ideal of \bar{R}_{0} with the property $\bar{\sigma}(\bar{I})=\bar{I}$. To see this, let $x^{-n} a x^{n}, a$ in I_{0}, be an element in \bar{I}. Then

$$
\overline{\boldsymbol{\sigma}}\left(x^{-n} a x^{n}\right)=x^{-n} \boldsymbol{\sigma}(a) x^{n}
$$

is in \bar{I} and

$$
x^{-n} a x^{n}=x^{-(n+1)} \boldsymbol{\sigma}(a) x^{n+1}
$$

is in $\overline{\boldsymbol{\sigma}}(\bar{I})$.
We want to show now that I is a two-sided ideal. Let α be an element in \bar{I} and

$$
f(x)=\sum \alpha_{i} x^{i}
$$

be in R. Then

$$
f(x) \alpha=\sum \alpha_{i} \sigma^{i}(\alpha) x^{i}=\sum \alpha_{i}^{\prime} x^{i}
$$

with α_{i}^{\prime} in \bar{I}, and $f(x) \alpha$ in I follows.
If $s(x)$ is an element in S, α in \bar{I}, then

$$
s(x)^{-1} \alpha=\beta s_{2}(x) s_{3}^{-1}(x)
$$

for β in $\bar{R}_{0}, s_{2}(x), s_{3}(x)$ in \bar{S}.
We obtain

$$
\alpha s_{3}(x)=s(x) \beta s_{2}(x) .
$$

It follows from this equation that

$$
\gamma_{i} \sigma^{i}(\beta)=\alpha \omega_{i} \quad \text { for } i=0, \ldots, n
$$

if

$$
s(x)=\sum_{i=0}^{n} \gamma_{i} x^{i}
$$

for certain ω_{i} in \bar{R}_{0}, since $\alpha \bar{R}_{0}$ is the content of $\alpha s_{3}(x)$ as well as of $s(x) \beta$.

From this we conclude that $\bar{\sigma}^{-i}\left(\gamma_{i}\right) \beta$ is in \bar{I} for all i and the elements

$$
\left\{\sigma^{-1}\left(\gamma_{i}\right) ; i=0, \ldots, n\right\}
$$

generate \bar{R}_{0} as a right as well as a left ideal. We use $R_{0}^{(n)}$ for a suitable n, Lemma 2 and the fact that $s(x)$ is in S for these arguments. Hence, there exist elements u_{i} in \bar{R}_{0} with

$$
\begin{aligned}
& \sum u_{i} \bar{\sigma}^{-i}\left(\gamma_{i}\right)=1 \quad \text { and } \\
& \beta=\sum u_{i} \bar{\sigma}^{-i}\left(\gamma_{i}\right) \beta \text { is in } \bar{I} .
\end{aligned}
$$

This proves that I as defined above is a two-sided ideal in R_{1}.
It remains to prove that $I \cap R_{0}=I_{0}$. We pick an element r in $I \cap R_{0}$ and write

$$
r=\sum \alpha_{i} f_{i}(x) s^{-1}(x)
$$

where the α_{i}^{\prime} are elements in \bar{I}, the $f_{i}(x)$ are in \bar{R} and $s(x)$ is in \bar{S}.
Hence,

$$
r s(x)=\sum \alpha_{i}^{\prime} x^{i}
$$

for certain elements α_{i}^{\prime} in \bar{I}. For

$$
s(x)=\sum \gamma_{i} x^{i}
$$

we obtain $r \gamma_{i}=\alpha_{i}^{\prime}$ in \bar{I} and elements u_{i} exist in \bar{R}_{0} with

$$
\sum \gamma_{i} u_{i}=1
$$

and $r=\sum \alpha_{i}^{\prime} u_{i}$ in \bar{I} follows.
Theorem 3. Let R_{0}, σ and R_{1} be as in Theorem 2 and write $M_{i}=\bar{N}_{i} R_{1}$, i in Λ, with

$$
\bar{N}_{i}=\cup x^{-n} N_{i} x^{n}
$$

where the N_{i} are the maximal right ideals in R_{0}. The M_{i}, i in Λ, are maximal right ideals in R_{1}, they are two-sided ideals in R_{1} and every maximal right ideal M of R_{1}, with $\bar{\sigma}\left(M \cap \bar{R}_{0}\right) \subseteq M$ is a member of the $\operatorname{set}\left\{M_{i} ; i\right.$ in $\left.\Lambda\right\}$.

Proof. The first two statements follow from Lemma 3 and Lemma 5 and the comment made at the end of Section 3.

To prove the last statement we write

$$
\bar{M}=M \cap \bar{R}_{0} \quad \text { and } \quad M_{(n)}=M \cap R_{0}^{(n)} .
$$

Claim:

$$
M_{(n)}=x^{-n} N_{i_{n}} x^{n}=N_{i_{n}}^{(n)}
$$

for a suitable $N_{i_{n}}$.
If this is not true we have

$$
M_{(n)} \subsetneq x^{-n} N x^{n}=N^{(n)}
$$

for a suitable maximal right ideal N of R_{0}.
An element γ exists in $N^{(n)} \backslash M_{(n)}$ with

$$
\gamma R_{0}^{(n)}+M_{(n)} \subseteq N^{(n)},
$$

but

$$
\gamma \bar{R}_{0}+\bar{M}=\bar{R}_{0} .
$$

It follows from the last equation that there exists an index t and elements α in $R_{0}^{(t)}, \mu$ in $M_{(t)}$ with $\gamma \alpha+\mu=1$.

We can assume that $t=n+1$ and obtain

$$
1=\bar{\sigma}(1)=\bar{\sigma}(\gamma) \bar{\sigma}(\alpha)+\bar{\sigma}(\mu) \subseteq N^{(n)}+M_{(n)} \subseteq N^{(n)},
$$

a contradiction. This proves our first claim:

$$
M_{(n)}=N_{i_{n}}^{(n)}
$$

It remains to show that $i_{n}=i_{m}$ for all n, m. We assume

$$
M_{(n)}=N_{1}^{(n)} \quad \text { and } \quad M_{(n+1)}=N_{2}^{(n+1)}
$$

However,

$$
\bar{\sigma}\left(M_{(n+1)}\right)=\bar{\sigma} N_{2}^{(n+1)}=N_{2}^{(n)} \subseteq N_{1}^{(n)}
$$

which is impossible because $N_{1} \neq N_{2}$ in R_{0}. Hence,

$$
\bar{M}=\cup N^{(n)}=\cup x^{-n} N x^{n}
$$

for a certain maximal right ideal N of R_{0}.
Corollary 1. All maximal right ideals M of R_{1} that are two-sided are of the form $M=\left(\cup N^{(n)}\right) R_{1}, N$ a maximal right ideal in R_{0}.

We only need to observe that $x M x^{-1}$ is contained in M if M is two-sided. This implies $\bar{\sigma}(\bar{M}) \subseteq M$.

Corollary 2. Let R_{0} have the additional property that $\sigma\left(a R_{0}\right) \subseteq a R_{0}$ for every a in R_{0}. Then every maximal right ideal in R_{1} is two-sided.

Proof. We must show that $\bar{\sigma}\left(M \cap \bar{R}_{0}\right) \subseteq M$ for every maximal right ideal M of R_{1}. Let $x^{-n} m x^{n}$ be an element in $M \cap \bar{R}_{0}$ with m in R_{0}. We have

$$
\overline{\boldsymbol{\sigma}}\left(x^{-n} m x^{n}\right)=x^{-n} \boldsymbol{\sigma}(m) x^{n}=x^{-n} m x^{n} x^{-n} r x^{n}
$$

if $\sigma(m)=m r$ for r in R_{0}.
Corollary 3. Let R_{0} be a principal right and left ideal domain whose maximal right ideals are two-sided. Then every maximal right ideal in R_{1} is two-sided.

This follows immediately from Corollary 2 if we observe that every element $a \neq 0$, not a unit, can be written as $a=p_{1} \ldots p_{n}$ with $p_{i} R_{0}$ maximal right ideals with $R_{0} p_{i} \subseteq p_{i} R_{0}$.

Lemma 6. Let the notation and assumptions be as in Theorem 3. We assume further that the index set Λ is finite, i.e., R_{0} has only finitely many maximal right ideals. Then the M_{i}, i in Λ, are exactly the maximal right ideals of R_{1}.

Proof. Let M be any maximal right ideal in R_{1} and $\bar{M}=\bar{R} \cap M$. We must show that $\bar{M}=\bar{N}_{i}$ for a suitable i in Λ. If

$$
M_{(n)}=M \cap R_{0}^{(n)}=N_{i}^{(n)}=x^{-n} N_{i} x^{n}
$$

for a certain i and n, then

$$
M_{(m)}=N_{i}^{(m)} \quad \text { for } m \geqq n,
$$

otherwise

$$
N_{i}^{(n)} \subseteq M_{(m)} \subseteq N_{j}^{(m)}
$$

a contradiction for $i \neq j$. Hence, we must show that $M_{(n)}=N_{i}^{(n)}$ for a certain i and n.

Let $M_{(n)} \subsetneq N_{i}^{(n)}$ for a certain n. Then there exists c in $N_{i}^{(n)}$, not in $M_{(n)}$ and c is not in \bar{M}. Hence, there exists an index $m>n$ with

$$
c \alpha_{m}+\mu_{m}=1
$$

with α_{m} in $R_{0}^{(m)}$ and μ_{m} in $M_{(m)}$. It follows that for all $s \geqq m$ the inequality

$$
M_{(s)} \subseteq N_{i}^{(s)}
$$

is impossible since otherwise

$$
1=c \alpha_{m}+\mu_{m} \in N_{i}^{(n)}+M_{(s)} \subseteq N_{i}^{(s)}
$$

We repeat the above argument for indices $s>m$ and obtain after a finite number of steps the equality $M_{(t)}=N_{j}^{(t)}$ for a certain j in Λ and a certain positive integer t.
5. We illustrate the results of the earlier sections with some examples. Consider the field $F_{p}=\mathbf{Z} / p \mathbf{Z}$ with p elements, p a prime, and the polynomial ring $R_{0}=F_{p}[t]$ in one indeterminate t over F_{p}. This ring has a monomorphism σ defined by

$$
\sigma(f(t))=f(t)^{p}
$$

The ring R_{0} together with σ satisfies the condition of Theorem 2. The ring R_{1} exists and its only two-sided ideals $\neq R_{1},(0)$ are the ideals

$$
\left(\cup x^{-n} p_{1}(t) \ldots p_{s}(t) R_{0} x^{n}\right) R_{1}
$$

where $\left\{p_{1}(t), \ldots, p_{s}(t)\right\}$ is any finite set of distinct irreducible elements in R_{0}, using Lemma 5. The maximal right ideals of R_{1} are exactly the ideals

$$
\left(\cup x^{-n} p(t) R_{0} x^{n}\right) R_{1}
$$

where $p(t)$ is irreducible in R_{0}, illustrating Theorem 3 and corollary. These maximal right ideals are two-sided ideals and they are not finitely generated as right ideals of R_{1}.

We will now consider the case $p=2$ in order to compute the set W of all principal right ideals of R_{1}, and

$$
\widetilde{H}\left(R_{1}\right)=\left\{\widetilde{r} ; 0 \neq r \text { in } R_{1}, \widetilde{r}\left(a R_{1}\right)=r a R_{1} \text { for } a R \text { in } W\right\}
$$

the generalized semigroup of divisibility of R_{1}. The elements of $\widetilde{H}\left(R_{1}\right)$
are the mappings \widetilde{r} from W to W with $\widetilde{r}\left(a R_{1}\right)=r a R_{1}$ for $r \neq 0 \neq a$ in R_{1}. The operation in $\widetilde{H}\left(R_{1}\right)$ is defined by $\widetilde{r} \widetilde{r}^{\prime}=\widetilde{r r^{\prime}}$.

It follows immediately from Lemma 4 that

$$
W=\left\{x^{-n} a x^{n} R_{1} \text { for } 0 \neq a \text { in } R_{0}=F_{2}[t]\right\}
$$

with the equality

$$
x^{-n} a x^{n} R_{1}=x^{-m} b x^{m} R_{1}
$$

holding if and only if

$$
\sigma^{m}(a) R_{0}=\sigma^{n}(b) R_{0} .
$$

We order the set $\left\{p_{i}(t) ; i\right.$ in $\left.\Lambda\right\}$, of irreducible polynomials of R_{0} and write $p_{1}(t)=t, p_{2}(t)=t^{2}+t+1, p_{3}(t), \ldots, p_{i}(t), \ldots$, etc. With each principal right ideal

$$
x^{-n} p_{1}(t)^{m_{1}} \ldots p_{s}(t)^{m_{s}} x^{n} R_{1}
$$

we associate the element

$$
\left(\frac{m_{1}}{2^{n}}, \frac{m_{2}}{2^{n}}, \ldots \frac{m_{s}}{2^{n}}, 0,0, \ldots\right)
$$

in the direct sum $W^{\prime}=\sum L_{i}, i=1,2,3, \ldots$ where

$$
L=L_{i}=\left\{\frac{m}{2^{n}} ; m, n \text { non-negative integers }\right\} \text { for all } i
$$

It follows from the condition for equality that every principal right ideal of R_{1} is uniquely determined by its associated element in W^{\prime}. We point out that the set W of principal right ideals of R_{1} can not be made into a semigroup by using multiplication of right ideals as operation; as it is possible in the commutative and right invariant case.

We must now study the mapping \widetilde{r} for an element r on W. We will interpret such a mapping as a mapping \hat{r} from W^{\prime} to W^{\prime}. The elements r in R_{1} have the form

$$
r=\left(\sum a_{i}(t) x^{i}\right)^{-1}\left(\sum b_{j}(t) x^{i}\right)
$$

with $a_{i}(t), b_{j}(t)$ in R_{0}. It appears to be the easiest to explain this by an example. Let

$$
r=t\left(t^{2}+t+1\right) x^{2}+t^{4}\left(t^{2}+t+1\right)^{2} x+t^{6}\left(t^{2}+t+1\right)^{5}
$$

If we compute

$$
r p_{1}^{z_{1}} \ldots p_{s}^{z_{s}}
$$

with

$$
z_{i}=\frac{m_{i}}{2^{n_{i}}} \text { in } L \quad \text { and } \quad p_{i}^{z_{i}}=x^{-n_{i}} p_{i}^{m_{i}} x^{n_{i}},
$$

we obtain

$$
\begin{aligned}
& p_{1}^{1+4 z_{1}} p_{2}^{1+4 z_{2}} p_{3}^{4 z_{3}} \ldots p_{5}^{4 z_{s}} x^{2} \\
& +p_{1}^{4+2 z_{1}} p_{2}^{2+2 z_{2}} p_{3}^{2 z_{3}} \ldots p_{s}^{2 z_{3}} x \\
& +p_{1}^{6+z_{1}} p_{2}^{5+z_{2}} p_{3}^{z_{3}} \ldots p_{s}^{z_{s}} .
\end{aligned}
$$

This element will generate the principal right ideal in R_{1} that corresponds to the following element in W^{\prime} :

$$
\begin{aligned}
& \hat{r}\left(z_{1}, \ldots, z_{s}, 0, \ldots\right)=\left(\min \left\{1+4 z_{1}, 4+2 z_{1}, 6+z_{1}\right\},\right. \\
& \left.\min \left\{1+4 z_{2}, 2+2 z_{2}, 5+z_{2}\right\}, z_{3}, z_{4}, z_{5}, \ldots, z_{s}, 0, \ldots\right) \\
& =\left(\phi_{1}\left(z_{1}\right), \phi_{2}\left(z_{2}\right), \phi_{3}\left(z_{3}\right), \ldots\right)
\end{aligned}
$$

The first component $\phi_{1}\left(z_{1}\right)$ is therefore equal to the following:

$$
\phi_{1}\left(z_{1}\right)=\left\{\begin{array}{l}
1+4 z_{1} \text { for } 0 \leqq z_{1} \leqq \frac{3}{2} \\
4+2 z_{1} \text { for } \frac{3}{2} \leqq z_{1} \leqq 2 \\
6+z_{1} \text { for } 2 \leqq z_{1}
\end{array}\right.
$$

Similarly, one obtains the function ϕ_{2} defined on L_{2} through

$$
\phi_{2}\left(z_{2}\right)=\left\{\begin{array}{l}
1+4 z_{2} \text { for } 0 \leqq z_{2} \leqq \frac{1}{2} \\
2+2 z_{2} \text { for } \frac{1}{2} \leqq z_{2} \leqq 3 \\
5+z_{2} \text { for } 3 \leqq z_{2} .
\end{array}\right.
$$

Finally we have $\phi_{i}\left(z_{i}\right)=z_{i}$ for all $i>2$. The element \hat{r} is completely described by the element ($\phi_{1}, \phi_{2}, \phi_{3}, \ldots, \phi_{i}, \ldots$) operating on W^{\prime} and we write

$$
\hat{r}=\left(\phi_{1}, \phi_{2}, \ldots\right) .
$$

The elements ϕ_{i} can be represented by graphs consisting of finitely many linear pieces described by equations of the form $g(z)=b+2^{m} z$ for z in L_{i}, b in $\pm L_{i}$. An operation on this set of elements $\left(\phi_{1}, \phi_{2}, \ldots\right)$ is defined through the operation $\widetilde{r}_{1} \widetilde{r}_{2}={\widetilde{r_{1}}}_{2}$ as the component wise composition of mappings, i.e.,

$$
\left(\phi_{1}, \phi_{2}, \ldots\right)^{*}\left(\phi_{1}^{\prime}, \phi_{2}^{\prime}, \ldots\right)=\left(\phi_{1} \circ \phi_{1}^{\prime}, \phi_{2} \circ \phi_{2}^{\prime}, \ldots\right)
$$

where $\phi_{i} \circ \phi_{i}^{\prime}$ is the composition of mappings on L_{i}.

An element $\hat{r}=\left(\phi_{1}, \phi_{2}, \ldots\right)$ has an inverse if $\phi_{i}(0)=0$ for every i, i.e., if the graph of every ϕ_{i} goes through the origin.

The inverse of such an element is equal to

$$
\hat{r}^{-1}=\left(\phi_{1}^{-1}, \sigma_{2}^{-1}, \ldots\right)
$$

and the graph of ϕ_{i}^{-1} is the reflection of the graph of ϕ_{i} on the graph of $f\left(z_{i}\right)=z_{i}$. If $\phi_{i}(z)=a+2^{m} z$ for $c_{1} \leqq z \leqq c_{2}$ then

$$
\phi_{i}^{-1}(z)=-a 2^{-m}+2^{-m} z \quad \text { for } \phi_{i}\left(c_{1}\right) \leqq z \leqq \phi_{1}\left(c_{2}\right) .
$$

In this final example let $F=\mathbf{Q}[t]$, the polynomial ring in one indeterminate over the field \mathbf{Q} of rational numbers, and let σ be defined by

$$
\sigma\left(\sum q_{i} i^{i}\right)=\sum q_{i} t^{2 i}
$$

We can not use the pair F, σ as a pair for R_{0}, σ in Theorem 2. The image $\sigma((t+1) F)$ of the maximal right ideal $(t+1) F$ is not contained in $(t+1) F$. It is obvious that the maximal right ideal $N_{0}=t F$ satisfies the condition $\sigma\left(N_{0}\right) \subseteq N_{0}$ and it follows from [2] that the maximal right ideals $p_{n}(t) F=N_{n}$ also satisfy $\sigma\left(N_{n}\right) \subseteq N_{n}$ where $p_{n}(t) F$ is the $n^{t h}$ cyclotomic polynomial and n is odd. We form $R_{0}=F M^{-1}$ with $M=F \backslash\left(\cup N_{i}\right)$ where $i=0$ or odd. The monomorphism σ can be extended to R_{0} and we can now apply Theorem 2 to obtain a ring R_{1}. It follows as in the previous examples that the ideals
$\left(\cup \bar{x}^{n} N_{i} x^{n}\right) R_{1}$ for $i=0$ or odd positive are the maximal right ideals of R_{1}.

The set of principal right ideals of R_{1} corresponds to the set

$$
W^{\prime}=\left\{\left(z_{0}, z_{1}, z_{3}, z_{5}, \ldots\right)\right\}
$$

where z_{0} is in the set

$$
\left\{\frac{n}{2^{m}}, n, m \text { non-negative integers }\right\}
$$

but where the remaining z_{i} 's are just non-negative integers, almost all $z_{i}=0$. To see this we point out that

$$
x^{-1} p_{n}(t) x=p_{n}(t) x^{-1} p_{n}(-t)^{-1} x c_{n}, c_{n} \neq 0 \text { in } Q,
$$

where $x^{-1} p_{n}(-t) x$ is a unit in R_{1}, since $p_{n}(-t)$ is a unit in R_{0}; its roots are the negatives of the primitive $n^{\text {th }}$ roots of unity.

The elements in the semi group $\widetilde{H}\left(R_{1}\right)$ correspond to elements of the form ($\phi_{0}, \phi_{1}, \phi_{3}, \phi_{5}, \ldots$) where the graph of ϕ_{0} is again piecewise linear with the pieces defined by equations of the form

$$
\phi_{0}\left(z_{0}\right)=a+2^{m} z .
$$

The functions ϕ_{i}, i positive odd, are all equal to the identity except for finitely many which are of the form

$$
\phi_{i}\left(z_{i}\right)=a_{i}+z_{i}
$$

for some integer a_{i}.

References

1. R. A. Beauregard, Overrings of Bezout domains, Can. Math. Bull. 16 (1973), 475-477.
2. G. Bergman, A ring primitive on the right but not on the left, Proc. AMS 15 (1964), 473-475.
3. H. H. Brungs, Rings with a distributive lattice of right ideals, J. Alg. 40 (1976), 392-400.
4. H. H. Brungs and G. Toerner, Extensions of chain rings, Math. Z. 185 (1984), 93-104.
5. V. P. Camillo, Distributive modules, J. Alg. 36 (1975), 16-25.
6. P. M. Cohn, Free rings and their relations (Academic Press, London/New York, 1971).
7. R. Gilmer, Multiplicative ideal theory (Marcel Dekker, New York, 1972).
8. D. A. Jordan, Bijective extensions of injective ring endomorphisms, J. London Math. Soc. (2) 25 (1982), 435-448.
9. K. Mathiak, Zur Bewertungstheorie nicht kommutativer Körper, J. Alg. 73 (1981), 586-600.
10. V. Rohlfing, Wertegruppen nicht invarianter Bewertungen, Thesis, Braunschweig (1981).
11. W. Stephenson, Modules whose lattice of submodules is distributive, Proc. London Math. Soc. 28 (1974), 291-310.

University of Alberta,
Edmonton, Alberta

[^0]: Received November 22, 1983 and in revised form May 21, 1985. The author gratefully acknowledges the support of the Natural Sciences and Engineering Council of Canada.

