
ON DIVISION NEAR-RINGS 

STEVE LIGH 

The following results (9, Exercise 26, p. 10; 1, Theorem 9.2; 8, Theorem 
III . 1.11) are known. 

(A) Let R be a ring with more than one element. Then R is a division ring if 
and only if for every a 9^ 0 in R, there exists a unique b in R such that aba = a. 

(B) Let R be a near-ring which contains a right identity e 9^ 0. Then R is a 
division near-ring if and only if it contains no proper R-subgroups. 

(C) Let R be a finite near-ring with identity. Then R is a division near-ring 
if and only if the R-module R+ is simple. 

In this paper we will show that (A) can be generalized to distributively 
generated near-rings. We also will extend (B) and (C) to a larger class of 
near-rings. In particular, the works of Heatherly (5) and Clay and Malone (2) 
on near-rings definable on finite simple groups are extended by showing that 
their results are corollaries of our theorems. 

1. Definitions. A near-ring R is a system with two binary operations, 
addition and multiplication such that: 

(i) The elements of R form a group R+ under addition, 
(ii) The elements of R form a multiplicative semigroup, 

(iii) x(y + z) = xy + xz, for all x, y, z G R, 
(iv) 0 • x = 0, where 0 is the additive identity of R+ and for all x G R. 
In particular, if R contains a multiplicative semigroup 5 whose elements 

generate R+ and satisfy 
(v) (x + y)s = xs + y s for all x, y G R and s G S, 

we say that R is a distributively generated (d.g.) near-ring. 
The most natural example of a near-ring is given by the set R of identity-

preserving mappings of an additive group G (not necessarily abelian) into 
itself. If the mappings are added by adding images and multiplication is 
iteration, then the system (R, + , .) is a near-ring. If 5 is a multiplicative 
semigroup of endomorphisms of G and Rf is the sub-near-ring generated by S, 
then R' is a d.g. near-ring. Other examples of d.g. near-rings may be found in (4). 

A near-ring module M is a system consisting of an additive group M, a 
near-ring R, and a mapping / : (m, r) —> mr of M X R into M such that 

(i) m(r + s) = mr + ms for all m G M and all r, s £ R, 
(ii) m(rs) = (mr)s for all m G M and all r, s G R> 
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Let R be the near-ring of mappings associated with an additive group G. 
Then G can be considered as an i^-module. 

An i^-homomorphism is a mapping / of an i^-module M into an i^-module 
Mr such that (m + h)f = mf + hf and (mf)r = {mr)f, where m and h are in 
M and r £ R. The submodules of an i^-module M are defined to be kernels 
of i^-homomorphisms of M. 

The kernel K of an i?-homomorphsim/ of an i^-module M into an i^-module 
M' is an additive normal subgroup of M. Also for all m Ç M, k £ K, and 
r £ R, we have ((w + &)r — mr)/ = (m/ + kf)r — (mf)r = 0 G M'. 

A subgroup H" of an i^-module M is called an i^-subgroup if 

HR = {Ar: h £ H, r £ R} Q H. 

The .R-subgroups of the i^-module i^+ are called i^-subgroups of the near-ring R. 
A submodule of an jR-module M is an i^-subgroup. However, the converse is 
not true. An example is given in (1, p. 14). A module is simple if it has no 
proper submodules. 

2. Division near-rings. 

(2.1) Definition. A near-ring R that contains more than one element is said 
to be a division near-ring if and only if the set R' of non-zero elements is a 
multiplicative group. 

Division near-rings were first considered by Dickson (3). In 1936, Zassen-
haus (11) showed that the additive group of a finite division near-ring is 
commutative. Four years later, Neumann (10) extended the result to arbitrary 
division near-rings. I t is known that every finite division near-ring is planar. 
Zemmer (12) exhibited an example of an infinite division near-ring which is 
not planar. Beidleman (1) and M axon (8) each presented a characterization 
of division near-rings. In the following we extend those results. First, we state 
the following theorem for easy reference. 

(2.2) THEOREM. The additive group of a division near-ring is abelian. 

It was shown (6) that in a division near-ring the additive inverse of the 
multiplicative identity commutes multiplicatively with all elements. However, 
this is not true in general. 

An element a of a near-ring R is right-distributive if (b + c)a = ba + ca 
for all b, c £ R. An element x of R is anti-right-distributive if (y + z)x = 
zx + yx for all y, z G R. I t now follows at once that an element a is right-
distributive if and only if ( — a) is anti-right-distributive. In particular, any 
element of a d.g. near-ring is a finite sum of right- and anti-right-distributive 
elements. 

The following theorem is of fundamental importance. 

(2.3) THEOREM. Let R be a near-ring which contains a right-distributive 

https://doi.org/10.4153/CJM-1969-151-5 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1969-151-5


1368 STEVE LIGH 

element r 9e 0. Then R is a division near-ring if and only if for each a 9e 0 in R, 
aR = R. 

Proof. Necessity is quite clear. If a 9e 0 and b 9e- 0, then ab 9^ 0. For if not, 
there exist ae and be such that aae = a and bbe = ae. Thus 0 = (ab)be = 
a(bbe) = aae = a. This is a contradiction. Now let r be a non-zero right-
distributive element of R. Then there is an element e in R such that re = r. 
However, r{er — r) = rer — rr = 0. From above, we have er = r. This 
means that e is a two-sided identity for r. Since we know from the first part 
of the proof that the set of non-zero elements is closed under multiplication 
and multiplication is associative, it remains to prove that e is a right identity 
for the non-zero elements of R and every non-zero element of R has a right 
inverse. Let x 9e 0 be an element of R. Then (xe — x)r — xer — xr = 
xr — xr = 0. Since r 9e- 0, we have xe = x. Also xR = R implies that there 
is an x' in R such that xx' = e. Thus we have shown that the near-ring R is a 
division near-ring. 

(2.4) THEOREM. Let Rbe a near-ring with a non-zero right-distributive element 
w and for every x 9^ 0 in R, there exists a y in R, possibly depending on x, such 
that xy 9e- 0. Then R is a division near-ring if and only if R has no proper 
R-subgroups. 

Proof. For each x 9^ 0 in R, xR is an i?-subgroup of R. Since there exists 
a y in R such that xy 9^ 0, and R has no proper i^-subgroups, we conclude that 
xR = R. Thus by (2.3), R is a division near-ring. 

Since any right identity of a near-ring is right-distributive, we have the 
following result. 

(2.5) COROLLARY (Beidleman). Let R be a near-ring that contains a right 
identity e 9e 0. Then R is a division near-ring if and only if R has no proper 
R-subgroups. 

In order to see that (2.4) is indeed a generalization of (2.5), we now exhibit 
a near-ring which has a non-zero right-distributive element and for each 
x 9e- 0, there exists a y such that xy 9e- 0. Furthermore, this near-ring has no 
right identities. Let R = {0, 1, 2, 3} with addition and multiplication as 
defined below. Then it can be verified that this near-ring has the properties 
stated above. 

+ 0 1 2 3 

0 0 1 2 3 
1 1 2 3 0 
2 2 3 0 1 
3 3 0 1 2 

0 1 2 3 

0 0 0 0 0 
1 0 1 2 3 
2 0 2 0 2 
3 0 1 2 3 
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(2.6) T H E O R E M . Let R be a finite near-ring that contains a right-distributive 
element w 9e 0 and for each x 9^ 0 in R, there is ay in R such that xy 9e 0. Then 
R is a division near-ring if and only if the R-module R+ is simple. 

Proof. For each x 9e- 0 in R, define T(x) = {r G R: xr = 0}. I t is easily 
checked t h a t T(x) is a submodule of R+. Since there is a y in R such t h a t 
xy 9^ 0, i t follows t ha t T(x) = 0. This shows t h a t the set of non-zero elements 
of R is closed under multiplication. Consider the m a p / * : R —> xR defined by 
(a)fx = xa for all a £ R. From above, fz is clearly a one-to-one map . Since 
R is finite, we conclude t h a t xR = R. By (2.3), R is a division near-ring. 

(2.7) COROLLARY (Maxon) . Let R be a finite near-ring with identity. Then R 
is a division near-ring if and only if the R-module R+ is simple. 

Clay and Malone (2) have shown t h a t a near-ring with ident i ty on a finite 
simple group is a field. More recently, Heather ly (5) has extended this result 
and we show now t h a t his theorem is a corollary of (2.6). 

(2.8) COROLLARY (Heather ly) . If (R, + ) is a finite simple group and if 
(R, + , .) is a near-ring with a non-zero right-distributive element r, then either 
ab = 0 for each a, b G R or (R, + , .) is afield. 

Proof. Suppose t h a t ab 9e 0 for some a and b. Le t Ta = {x G R: ax = 0}. 
This is a normal subgroup of (R, + ) . Since b 9e- 0, we have Ta = 0. Consider 
rT = {x G R: xr = 0}. Since r is r ight-distr ibutive, it follows t h a t rT is a 
normal subgroup of (R, + ) . T h u s rT = 0. Now suppose t h a t c ^ 0 is any 
element in R. Again consider Tc = {x G R: ex = 0}. Since cr 9^ 0, we have 
Tc = 0. T h u s we have shown tha t if x 9e 0 in R, then xy j* 0 for any y 9e 0 in R. 

If (R, + ) has a proper submodule, then (R, + ) has a proper normal sub
group, contrary to assumption. By (2.6), (R, + , .) is a division near-ring. 
By (2.2), (R, + ) is commutat ive . Le t M = {x G R: (a + b)x = ax + bx, for 
all a, b G R}. I t is easily shown t h a t M is a normal subgroup of (R, + ) . 
Since r 9e 0 is in M, we conclude t h a t M = R. T h u s (i£, + , .) is a finite 
division ring and hence a field. 

3. D i s tr ibut ive ly genera ted near -r ings . In (6) we extended several 
results in ring theory to d.g. near-rings. In the following we generalize another 
result. It is not too difficult to show t h a t a ring R with more than one element 
is a division ring if and only if for every a 9e- 0 in R, there exists a unique b in R 
such t h a t aba = a. 

(3.1) T H E O R E M . Let Rbe a d.g. near-ring with more than one element. Then R 
is a division ring if and only if for each a 9e 0 in R, there exists a unique b in R 
such that aba = a. 

Proof. Suppose t h a t a 9^ 0 and c ^ 0 , then ac 9^ 0. For if not, let 
a = a\ + a2 + . . . + an, where each at is either r ight-distr ibutive or ant i -
r ight-distr ibutive. Then a(b + c)a = (ab + ac)(ai + a2 + . . . + an) = 
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(ab + ac)ai + (ab + ac)a2 + . . . + (ab + ac)an = abdi + aba2 + . . . + 
aban = aba. This contradicts the fact that b is unique. Thus the set of non-zero 
elements of R is closed under multiplication. For each a Ç R, aba = a implies 
aibab — b) = 0. Thus bob = b. Let r ^ 0 be a right-distributive element of R. 
Then there exists a w such that rwr = r. Thus r(wrr — r) = 0 and this 
together with rwr = r imply that wr = e is a two-sided identity for r. Let d be 
any element in R. Then (de — d)r = der — dr = 0 and r(ed — d) = 
red — rd = 0. Thus de = ed = d. By hypothesis, there exists a dr such that 
dd'd = d = de. Thus d(d'd — e) = 0 and this implies that d'd = e. Hence 
d' (dd' — d'd) = 0 and dd' = drd = e. Thus every d ^ 0 in i£ has a right 
inverse and i? is therefore a division near-ring. By (2.2), i?+ is abelian. I t now 
follows (4, p. 93) that R is a division ring. 

Since the additive group of a division near-ring is abelian and a d.g. near-
ring R is a ring if R+ is commutative, the following corollaries of (2.3) are 
generalizations of some well-known theorems in ring theory. 

(3.2) COROLLARY (6, Theorem 3.4). A d.g. near-ring D with more than one 
element is a division ring if and only if for all non-zero a in D, aD = D. 

(3.3) COROLLARY. Let F be a finite d.g. near-ring with the property that 
ab 9^ 0 if a ^ 0 and b ^ 0. Then F is a field. 

(3.4) COROLLARY (6, Corollary 3.5). A d.g. near-ring D with a right identity 
e 9^- 0 is a division ring if and only if it has no proper D-subgroups. 

Remark. If we do not require the near-rings to be distributively generated, 
then any division near-ring satisfies the hypotheses of (3.1) and (3.4). Since 
there exist division near-rings which are not division rings (11), we conclude 
that (3.1) and (3.4) cannot be extended to arbitrary near-rings. Let G be an 
additive group with at least three elements. For each non-zero g G G, define 
gx = x for all x G G and 0 • g = 0 for all g Ç G. Then (G, + , .) is a near-ring 
(7). Thus neither (3.2) nor (3.3) can be extended to arbitrary near-rings. 
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