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Abstract

We consider a risk model with threshold strategy, where the insurance company pays off
a certain percentage of the income as dividend whenever the current surplus is larger than
a given threshold. We investigate the ruin time, ruin probability, and the total dividend,
using methods and results from queueing theory.
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1. Introduction

In this paper we consider a risk model with threshold strategy, where the insurance company
pays off a certain percentage of the income as dividends whenever the current surplus is larger
than a given threshold b. Such a risk model has been studied by several authors; see in particular
[7] and the references therein. Suppose that (Tk)k≥1 denotes the arrival times of the claims. We
assume that the interarrival times are independent and identically distributed (i.i.d.) and have
an exponential distribution with mean 1/µ. The surplus process (R(t))t≥0 increases linearly
with slope 1 if R(t) < b and with slope 1 − γ if R(t) ≥ b (the so-called constant barrier case
γ = 1 was studied by Lin et al. [8] and Li and Garrido [6]).

The claim sizes are assumed to be i.i.d. with common distribution function G(·), having
mean 1/λ.

Let
τ = inf{t : R(t) < 0 | R(0) = x}

denote the ruin time, and let

ψ(x) = P(τ < ∞ | R(0) = x)

be the ruin probability. We write ψ̄(x) = 1 − ψ(x) for the survival probability, and letρ = µ/λ.
We distinguish three cases (ignoring the more delicate boundary cases).

Case 1: ρ > 1. In this case R(t) → −∞ as t → ∞ and ψ(x) = 1.

Case 2: 1 − γ < ρ < 1. In this case ψ(x) = 1.

Case 3: ρ < 1 − γ . In this case R(t) → ∞ as t → ∞ and ψ(x) < 1.

The paper is organised as follows. The ruin time distribution is studied in Section 2, and the
survival probability (for case 3) in Section 3. In Section 4 we consider the distribution of the
total dividend until ruin, when ruin is certain (so for cases 1 and 2).
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30 O. J. BOXMA ET AL.

Remark 1. It should be noted that the computation of the total dividend paid until ruin under
cases 1 and 3 is of special interest from an operations research point of view. For example,
consider a simple objective function

Q(x, b, γ ) = γ E

[ ∫ τ

0
1(R(t) > b) dt

]
+ π E[R(τ)], (1)

where the initial capital R(0) = x, and the rate γ and the switchover level b are the control
parameters of the problem. The first term on the right-hand side of (1) is the income from
dividends until ruin and the second term is the penalty on the deficit at ruin, where π is the
penalty on one unit of deficit (clearly, R(τ) < 0). The trade-off between the profit functional
E[∫ τ0 1(R(t) > b) dt] and the cost functional E[R(τ)] is very intuitive.

Remark 2. The main contribution of our paper is methodological. In studying an important risk
model, we repeatedly establish a link to queueing models. For example, the surplus process in
the risk model is interpreted as the attained waiting time process in a G/M/1 queue; various links
with the M/G/1 queue are also established. This allows us to use queueing-theoretic methods
and concepts, such as level crossing and busy period arguments, to study the key performance
measures of the risk model. Not all our results are new. In particular, the key quantities of
Sections 2 and 3 have been studied in [7] (see Corollary 7.1 therein for the Laplace transform
of the ruin time, and Corollary 6.1 therein for the probability of ruin). However, the methods in
[7] are very different from our methods, and the results are also presented in a different form.

2. The ruin time

We consider the Laplace–Stieltjes transform (LST) ϕα(x) = E[e−ατ 1(τ < ∞) | R(0) = x]
of the ruin time (note that ϕ0(x) = ψ(x)), which is a special case of the so-called Gerber–Shiu
function. It has been shown in [5] that

(1 − γ 1(x ≥ b))ϕ′
α(x) = (µ+ α)ϕα(x)− µḠ(x)− µ

∫ x

0
ϕα(x − y) dG(y), (2)

where we write Ḡ(x) := 1 −G(x). See also the discussion of this equation in [7].
We note the following duality with the workload process (V (t))t≥0 of an M/G/1 queue with

arrival rate µ, service time distribution G(·), and state-dependent service rate 1 − γ 1(x ≥ b).
According to [2] we have

P(V (t) > x | V (0) = 0) = P(τ ≤ t | R(0) = x).

Writing F(t, x) = P(V (t) ≤ x | V (0) = 0) for the distribution function of the workload at
time t , we have

ϕα(x) =
∫ ∞

0
e−αt dP(τ ≤ t | R(0) = x)

=
∫ ∞

0
αe−αt P(τ ≤ t | R(0) = x) dt

= 1 −
∫ ∞

0
αe−αtF (t, x) dt

= 1 − E[F(Tα, x)],
where Tα denotes an independent exponential random variable with mean 1/α. It was shown
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in [4] that

(1 − γ 1(x ≥ b))
∂

∂x
F (t, x) = ∂

∂t
F (t, x)+ µF(t, x)− µ

∫ x

0
G(x − y) F (t, dy).

Multiplying by αe−αt on both sides and integrating over (0,∞) yields (2).
To solve (2), suppose that ϕ−

α (x) is a function that satisfies the equation

d

dx
ϕ−
α (x) = (µ+ α)ϕ−

α (x)− µḠ(x)− µ

∫ x

0
ϕ−
α (x − y) dG(y),

not only for x < b, but for all x ≥ 0. Let


−
α (s) =

∫ ∞

0
e−sxϕ−

α (x) dx

denote its Laplace transform, and let G∗(s) be the LST of G(·). Then

s
−
α (s)− ϕ−

α (0) = (µ+ α)
−
α (s)− µ

1 −G∗(s)
s

− µ
−
α (s)G

∗(s),

and, hence,


−
α (s) = ϕ−

α (0)− µ(1 −G∗(s))/s
s − µ(1 −G∗(s))− α

. (3)

Inversion of (3) yields ϕ−
α (x) for x ≤ b, which is equal to ϕα(x) there. Explicit inversion is

possible, e.g. if G∗(s) is a rational LST in which the denominator is of degree n. It is then
easily seen that 
−

α (s) is a rational LST in which the denominator is of degree n+ 1.
Next we turn to x ≥ b. Define the partial transform


+
α (s) =

∫ ∞

b

e−sxϕα(x) dx.

Multiplying both sides of (2) by e−sx and integrating from b to ∞ yields

(1 − γ )s
+
α (s)− (1 − γ )ϕα(b)

= (µ+ α)
+
α (s)− µ

∫ ∞

b

Ḡ(x)e−sx dx − µG∗(s)
+
α (s)− J (s, x),

where

J (s, x) = µG∗(s)
∫ b

0
ϕα(x)e

−sx dx − µ

∫ b

0

∫ x

0
ϕα(x − u) dG(u)e−sx dx

can be evaluated from (3). Hence,


+
α (s) = (1 − γ )ϕα(b)− µ

∫ ∞
b
Ḡ(x)e−sx dx − J (s, x)

s(1 − γ − α − µ(1 −G∗(s)))
,

where all terms on the right-hand side are, at least formally, known.
In what follows we present an alternative approach to obtain the LST of the ruin time in the

case of a threshold strategy. Let x < b, and let U1 denote the time of the first upcrossing of
level b by the process R. Define

B1 = inf{t > U1 : R(t) < b} − U1,

with inf ∅ = ∞, and let I1 denote the underflow at the moment of first downcrossing of level b.
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If τ ≥ U1 then the ruin time consists ofU1 plus, independently,B1 +τ(b−I1), where τ(b−I1)

denotes the ruin time starting from level b − I1. Hence,

E[e−ατ | R(0) = x] = φ∗(x, α)+ φ∗(x, α)E[e−α(B1+τ(b−I1))], (4)

where

φ∗(x, α) = E[1(τ < U1)e
−ατ | R(0) = x]

and

φ∗(x, α) = E[1(τ ≥ U1)e
−αU1 | R(0) = x].

Note that, in the last term on the right-hand side of (4), we were allowed to omit the condi-
tion R(0) = x. The two functionals φ∗(x, α) and φ∗(x, α) have been investigated in [10].
The functional φ∗(x, α) matches the functional designated by �∗

U(θ | β1, β2) in [10] and the
functional φ∗(x, α) matches the functional �∗

L(θ | β1, β2) in [10].
It remains to evaluate the right-most term E[e−α(B1+τ(b−I1))] in (4). Defining bα(u) =

E[e−αB1(I1 < u)],

E[e−αB1−ατ(b−I1)] =
∫ b

0
E[e−ατ(b−u)] dbα(u)+

∫ ∞

b

dbα(u)

=
∫ b

0
(E[e−ατ(b−u)] − 1) dbα(u)+ E[e−αB1 ].

The LST ofB1 and the joint LST ofB1 and I1 are obtained by relating the ruin model to a G/M/1
queue with interarrival time distributionG(·), exponential service times with rateµ/(1−γ ), and
service speed 1: the intervals between claims become service times with adapted rateµ/(1−γ ),
and the claim sizes become interarrival times. This amounts to a geometric transformation in
which P1 := (1 − γ )B1 becomes a busy period in the G/M/1 queue, and I1 becomes the
subsequent idle period. We have

E[e−αP1−βI1 ] = µ

1 − γ

G∗(z(α)+ α)−G∗(β)
β − α − z(α)

= µ(1 −G∗(β))/(1 − γ )− z(α)

β − α − z(α)
, (5)

where z(α) is the unique zero of µ(1 − G∗(α + z))/(1 − γ ) − z in the right half-plane (see
Equation (20) of [1], or [11]). Hence,

E[e−αB1−βI1 ] = µ(1 −G∗(β))/(1 − γ )− z(α/(1 − γ ))

β − α/(1 − γ )− z(α/(1 − γ ))
. (6)

Since E[e−αB1−βI1 ] = ∫ ∞
0 e−βu dbα(u), bα(·) can be calculated by using the inversion formula

for LSTs.
Finally, a brief remark about the case x ≥ b. In this case, the ruin time is the sum of two

components: the time until the risk process first hits b via a claim that takes it to 0 or to some
value y ∈ (0, b), plus (in the latter case) the time to ruin when starting in y < b. The first
component is the ruin time starting at x − b in a risk model with slope 1 − γ . The second
component follows from the above reasoning, after the distribution of the undershoot y has
been determined; the latter distribution is given in Theorem 1 of [9].
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3. Ruin probability

We now focus on the case ρ < 1 − γ , since then ruin is not certain:

ψ̄(x) = P(τ = ∞ | R(0) = x) > 0.

In fact, we are interested in computing the latter probability.
In what follows, let θ(x, y) be the probability that R(t) reaches y before time τ , given

R(0) = x ≤ y. Then (see Lemma 3 of [1]), for y ≤ b,

θ(x, y) = F(x)

F (y)
, (7)

whereF(x) is the stationary distribution of the workload process of an M/G/1 queue with service
times distributed according to G(·) and Poisson arrivals with intensity µ. Also, by the duality
explained in Section 2, ψ̄(x) = Fγ (x), where Fγ is now the stationary distribution of V (t),
the workload process of an M/G/1-type dam with release rate 1 − γ whenever the dam content
exceeds b. The LST of Fγ (x) has been derived in [4]. Below we derive an explicit expression
for Fγ (x) (instead of an expression for its LST), by deriving such an expression for ψ̄(x). The
following result is essentially Corollary 6.1 of [7], but with a new and, we believe, insightful
proof and form of expression. More specifically, the expressions appearing in our Theorem 1
have a probabilistic interpretation which is different from the context in [7]. Compare, e.g. our
first relation in Theorem 1 with the respective equation ψ̄1(u) = q(b)ψ̄1,∞(u) in [7], where
the quantity q(b) is equal to our ψ̄(b)/F (b) and ψ̄1,∞(u) equals F(b)θ(u, b). Whereas in [7]
renewal-type equations are examined to derive Theorem 5.1 and then Corollary 6.1, we invoke
earlier results from queueing theory, which may not be known to be useful in this connection.
To formulate the result, we need yet another M/G/1 workload distribution: F (γ ) is the stationary
distribution of the workload in the M/G/1 queue with arrival rate λ, service time distribution
G(·), and service speed 1 − γ (so F (0)(·) ≡ F(·)).
Theorem 1. We have ψ̄(x) = θ(x, b)ψ̄(b) for x < b and

ψ̄(x) = F (γ )(x − b)+ F̄ (γ )(x − b)ψ̄(b)

∫ b

0
θ(b − u, b)Hx−b(du) (8)

for x ≥ b, where the survival probability at b is given by

ψ̄(b) = F(b)
1 − ρ − γ

1 − ρ − γF(b)
,

and where Ht(·) is the distribution function of the remaining lifetime at time t in a renewal
process with renewal times distributed according to Geq(z) = λ

∫ z
0 Ḡ(u) du.

Proof. We first determine ψ̄(b). Starting in b, either the process tends to ∞ without ever
reaching b again, the probability being 1 − ργ (where ργ := ρ/(1 − γ )), or, with probability
ργ , it returns to b and jumps below b. The distribution of the undershoot is given by the
equilibrium distribution Geq of G (p = 1 case on page 36 of [11]). Given that the undershoot
equals u, the probability of reaching b again before time τ is θ(b − u, b). At the moment at
which R(t) upcrosses b, we have the same situation as before: with probability 1 − ργ , the
process tends to ∞ without returning to b and, with probability ργ

∫ b
0 θ(b − u, b) dGeq(u), the

process returns to b and upcrosses b again before time τ .
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In Formula (5.110) of [3, p. 297] the following is shown for the GI/G/1 queue with load
ρ < 1. The steady-state workload, when positive, is in distribution equal to the sum of two
independent quantities, viz. the steady-state waiting time and the residual service time. In the
M/G/1 case this implies, using the PASTA (‘Poisson Arrivals See Time Averages’) property,
that F(y) = 1 − ρ + ρ

∫ y
0 F(y − u) dGeq(u). Hence, in particular,

∫ b

0
θ(b − u, b) dGeq(u) = F(b)+ ρ − 1

ρF(b)
.

Altogether we have

ψ̄(b) = 1 − ργ + ργ

∫ b

0
θ(b − u, b) dGeq(u)ψ̄(b),

so

ψ̄(b) = 1 − ργ

1 − ργ (F (b)+ ρ − 1)/ρF (b)

= F(b)
1 − ργ

F (b)(1 − 1/(1 − γ ))+ (1/(1 − γ )− ργ )

= F(b)
1 − ρ − γ

1 − ρ − γF(b)
.

If x < b then in order to have an infinite ruin time, the process has to reach b before it reaches
0, the probability being θ(x, b); this yields ψ̄(x) = θ(x, b)ψ̄(b).

If x ≥ b then τ = ∞ if either of the following events occurs. (i) The process tends to ∞
without reaching b again. The probability of this event is F (γ )(x − b) (see the formula for
θ(x, b) and let b → ∞). (ii) The process goes down to b again, thereby jumping below b, and
afterwards crosses b again before time τ . Since the undershoot below b has the distribution
Hx−b(x) (see Theorem 1 of [9]), it follows that the probability of this event is

F̄ (γ )(x − b)

∫ b

0
θ(b − u, b) dHx−b(u).

Hence, (8) follows.

4. Total dividends

Again, let R(0) = x < b. We assume in this section that ρ > 1 − γ , so that ruin is certain.
The total dividends until ruin are given by (suppressing x in the notation)

D(τ) = γ

∫ τ

0
1(R(s) > b) ds.

Note that D(t) + R(t) increases with slope 1 between the claims. Below we shall derive an
expression for the LST E[e−αD(τ)].

Let U0 = 0, and let Un denote the time of the nth upcrossing of the process R of the level b.
Define

Bn = inf{t > Un : R(t) < b} − Un,

with inf ∅ = ∞. By the strong Markov property, B1, B2, . . . are i.i.d.; note that U1, U2, . . .
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are independent and that U2, U3, . . . are identically distributed. Let N = sup{n : Un < τ }
denote the number of upcrossings before ruin. Then

D(τ) = γ (B1 + · · · + BN). (9)

Clearly, N is independent of B1, B2, . . . and

P(N = n) =
{
p0, n = 0,

(1 − p0)(1 − p)n−1p, n = 1, 2, . . . ,

where p0 = 1 − θ(x, b) is the conditional probability that level 0 is reached before level b
is upcrossed, given that the starting state is x. Since ρ > 1 − γ , we cannot apply (7) here.
Instead, let R0(t) be the surplus process of a risk model with γ = 0, and let τ0 denote the
first downcrossing time of level −x. We assume that R0(0) = 0, so that R0 becomes a Lévy
process. It is known that the probability distribution of the maximum, P(max0≤t<∞ R0(t) ≤ x),
is equal to the limit distribution of the reflected processA0(t) = R0(t)− inf{R0(s) : 0 ≤ s ≤ t}
as t → ∞ and is hence equal to an exponential distribution with mean 1/η, where η ∈ (0, µ)
solves η = µ(1 −G∗(η)) (cf. [1]). Hence, P(max0≤t<∞ R0(t) ≥ b − x) = e−η(b−x) and

e−η(b−x) = P
({

max
0≤t<τ0

R0(t) ≥ b − x
}

∪
{

max
τ0≤t<∞R0(t) ≥ b − x

})
= P

(
max

0≤t<τ0
R0(t) ≥ b − x

)
+ P

(
max

τ0≤t<∞R0(t) ≥ b − x
)

− P
({

max
0≤t<τ0

R0(t) ≥ b − x
}

∩
{

max
τ0≤t<∞R0(t) ≥ b − x

})
. (10)

It follows from the strong Markov property of R0 that

P
(

max
τ0≤t<∞R0(t) ≥ b − x

)
= P

(
max

0≤t<∞R0(t) ≥ b + Ix

)
= E[e−η(b+Ix)],

where Ix denotes a random variable, independent of R0, with the same distribution as −x −
R0(τ0). Since θ(x, b) is the probability that R0 reaches b − x before time τ0 and since
P(maxτ0≤t<∞ R0(t) ≥ b − x | max0≤t<τ0 R0(t) ≥ b − x) is equal to E[e−η(b+Ib)] (here
τ0 < ∞ almost surely is used), it follows from (10) that

e−η(b−x) = θ(x, b)+ E[e−η(b+Ix)] − E[e−η(b+Ib)]θ(x, b).
Since p0 = 1 − θ(x, b), it then follows that

p0 = 1 − eηx − E[e−ηIx ]
eηb − E[e−ηIb ] . (11)

We note that a formula for E[e−ηIx ] is given in [1] and that one might use Theorem 4 of [1] to
obtain (11).

To compute the parameter p (i.e. the probability that level 0 is reached before level b is
upcrossed, after a downward jump through b), recall that the negative overflows In = b −
R(Un + Bn) at a moment of downcrossing of level b have the same law as that of the idle
period in the G/M/1 queue. Its LST is obtained by taking α = 0 in (5) or (6). Let FI (·) be the
distribution with that LST. Then,

p = 1 − FI (b)+
∫ b

0
[1 − θ(b − y, b)] dFI (y). (12)
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It now follows from (9) that

E[e−αD(τ)] = E[E[e−αD(τ) | N ]]
= E[E[e−αγB1 ]N ]

= p0 + (1 − p0)
p E[e−αγB1 ]

1 − (1 − p)E[e−αγB1 ] ,

where E[e−αγB1 ] is obtained from (6) by substituting β = 0. Hence, we have proved the
following.

Theorem 2. We have

E[e−αD(τ)] = p0 + (1 − p0)
p E[e−αγB1 ]

1 − (1 − p)E[e−αγB1 ] ,

where the LST of B1 is given in (6) and where p0 and p are given in (11) and (12), respectively.

4.1. Mean of the ruin time and of the deficit at ruin

We could derive the mean ruin time from the transform results in Section 2. However, we
prefer to derive it using a probabilistic argument, once again exploiting a relation between
risk and queueing theory and using a queueing-theoretic level crossing argument. To compute
the expectation of the ruin time τ and the expectation of the deficit at ruin Y , we construct
the artificial regenerative process R̂(t) with cycle length Ĉ = τ − R̂(τ ) as follows (recall that
R̂(τ ) is negative so that Ĉ is the sum of the ruin time and the deficit Y = −R̂(τ )). We define

R̂(t) =
{
R(t), 0 ≤ t ≤ τ,

R(τ)+ t − τ, τ < t ≤ Ĉ.

By the theory of level crossings we obtain the balance equations for the equilibrium density
of R̂(t) (the density of the weak limit R̂ = limt→∞ R̂(t)):

(1 − γ 1(z > b))f̂ (z) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

µ

∫ ∞

0
Ḡ(w − z)f̂ (w) dw, z < 0,

µ

∫ ∞

z

Ḡ(w − z)f̂ (w) dw − ζ, 0 ≤ z < x,

µ

∫ ∞

z

Ḡ(w − z)f̂ (w) dw, x ≤ z ≤ b,

µ

∫ ∞

z

Ḡ(w − z)f̂ (w) dw, z > b.

(13)

Here ζ = f̂ (0−) = µ
∫ ∞

0 Ḡ(w)f̂ (w) dw. In order to get a better insight into these balance
equations, recall that each cycle starts at level R̂(0) = x and terminates at Ĉ with R̂(Ĉ) = 0,
where, by the construction of R̂(t), the increase rate below level 0 is 1. By the level crossing
approach, (1 − γ 1(z > b))f̂ (z) is interpreted as the long-run average upcrossing rate of
level z. The downcrossing rate is obviously represented by the integrals on the right-hand side
of (13), but the case 0 ≤ z < x deserves a remark. In this case, the number of upcrossings of
level z per cycle is one less than the number of downcrossings. Hence, we need to compensate
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the downcrossing rate by subtracting 1/E[Ĉ], which equals ζ = µ
∫ ∞

0 Ḡ(w)f̂ (w) dw, the
downcrossing rate of level 0.

The fourth equation of (13) is satisfied by f̂ (z) = Ce−ηz (with C a constant that has to be
determined later via normalisation); this is easily verified via substitution or by observing that,
for z > b, f̂ (z) behaves like the workload in a G/M/1 queue. Now, use this result to rewrite
the third equation as

f̂ (z) = µ

∫ b

z

Ḡ(w − z)f̂ (w) dw +H(z), where H(z) = µ

∫ ∞

b

Ḡ(w − z)Ce−ηw dw.

Now f̂ (z) on [x, b] can be obtained by successive substitutions and iterations:

f̂ (z) = H(z)+ µ

∫ b

z

Ḡ(w − z)H(w) dw + · · · .

Subsequently, similar procedures are applied on [0, x) and on (−∞, 0). Finally,C is determined
by normalisation.

The sequence of deficits associated with the regenerative process R̂(t) is a sequence of
i.i.d. random variables; let K(·) denote their common distribution function. A little thought
will convince that Ke(z) = P(R̂ ≥ −z | R̂ ≤ 0), z ≥ 0, where Ke(z) is the equilibrium
distribution of K . Thus,

K(z) = 1 − E[Y ] d

dz
P(R̂ ≥ −z | R̂ ≤ 0).

To compute E[Y ] and E[τ ], recall that (by level crossing) E[Ĉ] = 1/ζ and use the theory of
regenerative processes to conclude that

E[Y ] = E[Ĉ] P(R̂ < 0) = P(R̂ < 0)

ζ
, E[τ ] = E[Ĉ] P(R̂ ≥ 0) = P(R̂ ≥ 0)

ζ
.
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