J. Austral. Math. Soc. 19 (Series A) (1975), 225-237.

GENERALIZED BOOLEAN LATTICES

Dedicated to the memory of Hanna Neumann

RICHARD D. BYRD, ROBERTO A. MENA, and LINDA A. TROY

(Received 11 June 1973)

Communicated by G. B. Preston

1. Introduction

Hashimoto (1952; Theorems 8.3 and 8.5) proved the following theorems:

THEOREM A. If L is a distributive lattice, then there exists a generalized Boolean algebra L_r and an isomorphism from the lattice of all congruence relations of L onto the lattice of all congruence relations of L_r .

THEOREM B. Any distributive lattice L is isomorphic with a sublattice of a relatively comolemented distributive lattice L_r^* such that (1) the lattice of congruence relations on L_r^* is isomorphic with that on L and (2) the length of the closed interval [a, b] in L is equal to that of [a, b] regarded as an interval in L_r^* .

It has been noted that Hashimoto's proofs are somewhat difficult to follow and are proved with the apparatus of topology; hence these purely lattice theoretic theorems are not placed in their most natural setting. In 1958 Grätzer and Schmidt (1958; Theorem 1) asserted the following generalization of the Hashimoto theorems:

To any distributive lattice L there exists a generalized Boolean algebra B having the properties:

(1) L is a sublattice of B;

(2) the lattice of all congruence relations of L is isomorphic to the lattice of all congruence relations of B;

(3) if the interval [a, b] of L is of finite length, then [a, b] has the same length as an interval of B.

In this note we give a counterexample to (2). In Section 2 we construct an ideal E of B and prove that the lattice of all congruence relations of L is isomorphic to the lattice of all congruence relations of E (Corollary 2.11). We prove that E = B if and only if $0 \in L$ (Theorem 2.4); otherwise, E is a maximal ideal of B (Corollary 2.5). Our example shows that in general L cannot be embedded into E. The construction of E is algebraic and, moreover, we prove that E is unique up to isomorphism (Corollary 2.12). Thus we strengthen Theorem A.

225

Our example also shows that Grätzer (1971; Lemma 5, page 104)) is incorrect (Lemma 5 is in essence (2) above). We prove in Section 3 (also, see Corollary 4.3) that a necessary and sufficient condition that this lemma be true is that the lattice L has a smallest element.

In Section 4 we investigate distributive lattices K and L, where L is a sublattice of K and each congruence of L has a unique extension to K. In this case we prove that there is a generalized Boolean lattice B that is R-generated by L and contains K as a sublattice (Theorem 4.5). From this result we obtain several interesting corollaries; one of which asserts that the lattice L_r^* of Theorem B is unique up to isomorphism.

In Section 5 we give the example.

Throughout this note L will denote a distributive lattice, $\mathscr{C}(L)$ will denote the lattice of all congruence relations on L, $\mathscr{I}(L)$ will denote the lattice of all ideals of L, N will denote the set of natural numbers, Z will denote the set integers, \Box will denote the empty set, and X\Y will denote the set of elements that belong to the set X but not to the set Y. Unless otherwise stated, isomorphism will mean a homomorphism that is one-to-one (not necessarily onto). For the standard results and definitions concerning lattices, the reader is referred to Grätzer (1971) in particular, to Sections 9 and 10 of Chapter 2.

2. Evenly generated ideals

Throughout this section let B be a generalized Boolean lattice and let L be a sublattice of B that generates B, that is, the smallest subring of B that contains L is B.

LEMMA 2.1 (i) $B = \{a_1 + \dots + a_n \mid n \in \mathbb{N} \text{ and } a_1, \dots, a_n \in L\}.$

(ii) If T is a sublattice of L and $x \in B$ such that $x = a_1 + \dots + a_n$ $(n \in \mathbb{N})$, where $a_1, \dots, a_n \in T$, then $x = b_1 + \dots + b_n$, where $b_1, \dots, b_n \in T$ and $b_1 \leq \dots \leq b_n$.

The proof of this lemma is similar to the proof of Grätzer (1971; Lemma 3, page 102) and will be omitted.

COROLLARY 2.2. If T is a sublattice of L and $x \in B$ such that $x = a_1 + \dots + a_{2n-1}$ $(n \in \mathbb{N})$, where $a_1, \dots, a_{2n-1} \in T$, then $x \ge a$ for some a in T.

PROOF. By the lemma, $x = b_1 + \cdots + b_{2n-1}$, where $b_1, \cdots, b_{2n-1} \in T$ and $b_1 \leq \cdots \leq b_{2n-1}$. Thus $x \geq x \wedge b_1 = xb_1 = b_1$, since 2n-1 is odd and $b_1b_j = b_1$ for each j.

LEMMA 2.3. Let T be an ideal of L and $E_T = \{x \mid x \in B \text{ and there exists } a_1, \dots, a_{2n} \in T \ (n \in \mathbb{N}) \text{ such that } x = a_1 + \dots + a_{2n}\}$. Then

(i) E_T is an ideal of B;

(ii) $E_T = E_L \cap (T]_B$, where $(T]_B$ denotes the ideal of B generated by T;

(iii) $E_T = \{x \mid x \in B \text{ and there exists } a_1, \dots, a_{2n} \in T \text{ such that } a_1 \leq \dots \leq a_{2n} \text{ and } x = a_1 + \dots + a_{2n}\}.$

The proof of this lemma is straightforward and will be omitted. We shall call the ideal E_T of this lemma the *ideal of B evenly generated by T*. Also for the remainder of this note we shall denote E_L simply by E.

In Corollary 2.2, if T = L and x in B has a representation as a sum of an odd number of elements from L, then x exceeds an element of L. The next theorem shows that if L does not contain the zero of B and x in B has a representation as a sum of an even number of elements of L, then x does not exceed an element of L. Also, if $x = a_1 + \cdots + a_n$, where $a_1, \cdots, a_n \in L$, then $x \in (a_1 \lor \cdots \lor a_n]_B$ and so each element of B is exceeded by an element of L. We say that LR-generates B if L generates B and if L has a least element, then it is the zero of B. (The definition of R-generates given in Grätzer (1971; page 102) also required that if L has a largest element, then it must be the largest element of B.) If L does not have a smallest element, then the definitions of R-generates and generates coincide.

THEOREM 2.4. If L generates B, then the following assertions are equivalent:

- (i) $0 \in L$. (ii) $L \cap E \neq \Box$.
- (iii) $L \subseteq E$.
- (iv) E = B.

PROOF. (i) implies (ii) is immediate as $0 \in L \cap E$.

(ii) implies (iii). Let $a \in L$ and $b \in L \cap E$. Then $a + b \in E$ and hence $a = a + b + b \in E$.

(iii) implies (iv) is obvious as E is an ideal of B.

(iv) implies (i). If $b \in L$, then $b = a_1 + \cdots + a_{2n}$, where $a_1, \cdots, a_{2n} \in L$ and $a_1 \leq \cdots \leq a_{2n}$. Then $b \wedge a_1 \in L$ and $b \wedge a_1 = ba_1 = a_1 + \cdots + a_1$, where there are 2n summands. Therefore $ba_1 = 0$ and so $0 \in L$.

COROLLARY 2.5. If $0 \notin L$, then the index of E in B is two and hence E is a maximal ideal of B. Moreover, L is a sublattice of the relatively complemented lattice B E and if M is an ideal of B such that $M \cap L = \Box$, then $M \subseteq E$.

PROOF. By the theorem, $E \neq B$ and $L \subseteq B \setminus E$. If $x \in B \setminus E$, then $x = a_1 + \dots + a_{2n-1}$, where $a_1, \dots, a_{2n-1} \in L$. If $n = 1, x = a_1$ and if $n > 1, a_1 + \dots + a_{2n-2} \in E$. Thus E + x = E + a for some $a \in L$. If $a, b \in L$, then $a + b \in E$ and so E + a = E + b. Therefore the index of E in B is two.

Since E is an ideal of B and B is a generalized Boolean lattice, $B \setminus E$ is relatively complemented. If $M \in \mathscr{I}(B) \setminus \mathscr{I}(E)$, then $M \cap L \neq \Box$ by Corollary 2.2.

LEMMA 2.6. Let $\theta \in \mathscr{C}(L)$ and I_{θ} be the ideal of B generated by $\{a + b \mid a, b \in L \text{ and } a\theta b\}$. Then $I_{\theta} = \{\sum_{i=1}^{n} a_i + b_i \mid n \in \mathbb{N}, a_i, b_i \in L, a_i \leq b_i, and a_i \theta b_i\}$ and so $I_{\theta} \in \mathscr{I}(E)$.

PROOF. For $a, b \in L$, $a\theta b$ if and only if $a \wedge b \theta a \vee b$. Also, $a + b = ab + a + b + ab = a \wedge b + a \vee b$. Thus, I_{θ} is the ideal of *B* generated by $\{a + b \mid a, b \in L, a \leq b, and a\theta b\}$. Let $I = \{\sum_{i=1}^{n} a_i + b_i \mid n \in \mathbb{N}, a_i, b_i \in L, a_i \leq b_i, and a_i \theta b_i\}$. Then clearly $\{a + b \mid a, b \in L, a \leq b, and a\theta b\} \subseteq I \subseteq I_{\theta}$ and *I* is closed with respect to addition. To prove that *I* is an ideal of *B*, it suffices to show that for $x \in I$ and $a \in L$, $ax \in I$. Let $x = \sum_{i=1}^{n} a_i + b_i$, where $a_i, b_i \in L$, $a_i \leq b_i$, and $a_i \theta b_i$. For each *i*, $aa_i = a \wedge a_i \leq a \wedge b_i = ab_i$ and $a_i \theta b_i$ implies $a \wedge a_i \theta a \wedge b_i$. Thus $ax \in I$ and so $I = I_{\theta}$. Clearly $I_{\theta} \in \mathscr{I}(E)$.

LEMMA 2.7. Let $I \in \mathscr{I}(E)$ and $\theta_I = \{(a, b) \mid a, b \in L \text{ and } a + b \in I\}$. Then θ_I is a congruence relation of L.

PROOF. It is easily verified that θ_I is an equivalence relation of L and if $a\theta b$ and $t \in L$, then $a \wedge t \theta b \wedge t$. Now $a \vee t + b \vee t = a + t + at + b + t + bt = a + b + (a + b)t \in I$. Therefore $a \vee t \theta b \vee t$ and so $\theta_I \in \mathscr{C}(L)$.

THEOREM 2.8. The mapping g of $\mathscr{I}(E)$ into $\mathscr{C}(L)$ given by $(I)g = \theta_I$ is an isomorphism of $\mathscr{I}(E)$ onto $\mathscr{C}(L)$. The inverse of g is given by $(\theta)g^{-1} = I_{\theta}$.

PROOF. By Lemma 2.7, g is a mapping of $\mathscr{I}(E)$ into $\mathscr{C}(L)$. If $\theta \in \mathscr{C}(L)$, then by Lemma 2.6, $I_{\theta} \in \mathscr{I}(E)$. We will show that $(I_{\theta})g = \theta_{I_{\theta}} = \theta$. If $a\theta b$, then $a + b \in I_{\theta}$ and so $a \theta_{I_{\theta}} b$. Conversely if $a \theta_{I_{\theta}} b$, then $a + b \in I_{\theta}$ and, without loss of generality, we may assume that $a \leq b$. Now $a + b \in I_{\theta}$ implies that a + b = a $\sum_{i=1}^{n} a_i + b_i$, where $a_i, b_i \in L$, $a_i \leq b_i$, and $a_i \theta b_i$. We induct on *n*. If n = 1, then $a + b = (a + b)b = a_1b + b_1b$, $a_1b \leq b_1b$, and $a_1b \theta b_1b$. Since $b_1b \leq b$, we may assume that $a + b = a_1 + b_1$, where $a_1 \theta b_1$ and $a_1 \leq b_1 \leq b$. Therefore $0 = a_1 + a_1 = (a_1 + b_1)a_1 = aa_1 + ba_1 = aa_1 + a_1$. Hence $a_1 \leq a$. Now $a + b = a_1 + b_1 \leq b_1$, as $a_1 \leq b_1$, and so $n = a \lor (a + b) \leq a \lor b_1 \leq a \lor b = b$. Whence $a \lor b_1 = b$ and $a \lor a_1 = a$. Thus $a_1 \theta b_1$ implies $a \lor a_1 \theta a \lor b_1$ or $a\theta b$. Next assume that n > 1. Again $a + b = \sum_{i=1}^{n} a_i b + b_i b$ and so we may assume that $a_i \leq b_i \leq b$ for each *i*. Let $d = \bigvee_{i=1}^n b_i$. For $1 \leq k \leq n$, $aa_k + a_k$ $= (a + b)a_k = \sum_{i=1,i \neq k}^n a_i a_k + b_i a_k$. Now a $\theta_{I_k} b$ implies that $aa_k \theta_{I_k} a_k$ and hence by the inductive hypothesis $aa_k \theta a_k$. Since $a_k \theta b_k$, we have $aa_k \theta b_k$ and so $a \theta a \lor b_k$. Also $ad + d = (a + b)d = \sum_{i=1}^n a_i d + b_i d = \sum_{i=1}^n a_i + b_i = a + b$. Hence $a \lor d = a + d + ad = b$. Thus we have $a\theta \lor_{i=1}^{n}(a \lor b_{i})$, which is equivalent to $a\theta b$. Therefore g maps $\mathscr{I}(E)$ onto $\mathscr{C}(L)$.

Let $I, J \in \mathscr{I}(E)$ with $I \neq J$ and let $x \in J \setminus I$. Then there exists $a_1, \dots, a_{2n} \in L$ with $a_1 \leq \dots \leq a_{2n}$ and $x = a_1 + \dots + a_{2n}$. Multiplying x respectively by a_2, \dots, a_{2n-2} , we obtain $a_1 + a_2, \dots, a_{2n-1} + a_{2n} \in J$. Hence for some $k, (1 \leq k \leq n)$ $a_{2k-1} + a_{2k} \in J \setminus I$. Therefore $(a_{2k-1}, a_{2k}) \in \theta_J \setminus \theta_I$ and so g is one-to-one. If $I, J \in \mathscr{I}(E)$, then clearly $I \subseteq J$ if and only if $\theta_I \subseteq \theta_J$. Therefore g is an isomorphism of $\mathscr{I}(E)$ onto $\mathscr{C}(L)$. It is now clear that $(\theta)g^{-1} = I_{\theta}$.

An immediate consequence of this theorem is

COROLLARY 2.9. (i) If $\theta \in \mathscr{C}(L)$, then $\theta = \theta_{I_{\theta}}$.

(ii) If $I \in \mathscr{I}(E)$, then $I = I_{\theta_I}$.

COROLLARY 2.10. (Hashimoto, (1972; Theorem 7.2) $\mathscr{I}(E)$ is isomorphic to $\mathscr{C}(E)$.

PROOF. Since E is a generalized Boolean lattice and E generates itself, we have by the theorem that $\mathscr{I}(E)$ is isomorphic to $\mathscr{C}(E)$.

COROLLARY 2.11. $\mathscr{C}(L)$ is isomorphic to $\mathscr{C}(E)$.

COROLLARY 2.12. If D is a generalized Boolean lattice such that $\mathscr{C}(L)$ is isomorphic to $\mathscr{C}(D)$, then D is isomorphic to E.

PROOF. As noted above, $\mathscr{C}(D)$ is isomorphic to $\mathscr{I}(D)$. Hence $\mathscr{I}(D)$ and $\mathscr{I}(E)$ are isomorphic. The compact elements of $\mathscr{I}(E)$ are the principal ideals of E, which are isomorphic to E. Since compact elements are preserved under isomorphism, it follows that E is isomorphic to D.

If $T \in \mathscr{I}(L)$, let $\theta_T = \{(a, b) \mid a, b \in L \text{ and } a \lor t = b \lor t \text{ for some } t \in T\}$. It is easily verified that $\theta_T = \{(a, b) \mid a, b \in L \text{ and } a \lor b = (a \land b) \lor t \text{ for some } t \in T\}$ and that the mapping that sends T into θ_T is an isomorphism of $\mathscr{I}(L)$ onto a sublattice of $\mathscr{C}(L)$ (Hashimoto (1973; Theorem 5.1)). Moreover, for each $t \in T$, $[t]\theta_T = T$, where $[t]\theta_T$ denotes the congruence class of θ_T containing t.

COROLLARY 2.13. Let h be the mapping of $\mathscr{I}(L)$ into $\mathscr{I}(E)$ given by $(T)h = E_T$. Then h is an isomorphism of $\mathscr{I}(L)$ onto a sublattice of $\mathscr{I}(E)$.

PROOF. It suffices to show that $E_T = I_{\theta_T}$. If $s, t \in T$, then $s\theta_T t$ and so $s + t \in I_{\theta_T}$. It follows that $E_T = I_{\theta_T}$. Conversely, let $a, b \in L$ with $a\theta_T b$ and $a + b \in I_{\theta_T}$. Then $a \lor b = (a \land b) \lor t$ for some t in T and so a + b + ab = ab + t + abt. Therefore a + b = t + abt and since t, $abt \in T$, we have $a + b \in E_T$. Again it follows that $I_{\theta_T} \subseteq E_T$.

We have now obtained the Hashimoto theorems mentioned in the introduction. For let L be a distributive lattice and B be a generalized Boolean lattice R-generated by L. Then $E = E_L$ is a generalized Boolean lattice and $\mathscr{C}(E)$ is isomorphic to $\mathscr{C}(L)$ (Corollary 2.11). Moreover, we have proven that, up to isomorphism, E is unique (Corollary 2.12). If L has a smallest element, then E = B(Theorem 2.4). If L does not have a smallest element, then $L \subseteq B \setminus E$ (Theorem 2.4). Let $K = B \setminus L$. Then K is a prime dual ideal of B since E is a prime ideal of B (Corollary 2.5). Thus K is a relatively complemented distributive lattice, L is a sublattice of K, and K does not have a smallest element (Corollary 2.2).

[5]

If we let $E_K = \{c_1 + \dots + c_{2n} | c_1, \dots, c_{2n} \in K\}$, then it is easily verified that $E_K = E$. Since K generates $B, \mathscr{C}(K)$ is isomorphic to $\mathscr{C}(E_K)$ (Corollary 2.11) and so $\mathscr{C}(K)$ is isomorphic to $\mathscr{C}(L)$. We will prove in Section 4 that, up to isomorphism, K is unique (see Corollary 4.9).

COROLLARY 2.14. Let F be a maximal ideal of B and $K = B \setminus F$. Then $F = \{x \mid x \in B \text{ and there exists } c_1, \dots, c_{2n} \in K(n \in \mathbb{N}) \text{ such that } x = c_1 + \dots + c_{2n}\}.$ Hence K generates B and $\mathscr{C}(K)$ is isomorphic to $\mathscr{C}(F)$.

PROOF. Let $E_K = \{c_1 + \dots + c_{2n} \mid c_1, \dots, c_{2n} \in K\}$. Since F is maximal, K is a dual ideal of B and hence a sublattice of B. Let $c, d \in K$. Since $c + d = c \land d + c \lor d$, we may assume that $c \leq d$. Thus $c \land (c + d) = 0$. Thus $c + d \in F$, as F is prime, and it follows that $E_K \subseteq F$. If $x \in F$ and $c \in K$, $x + c \in F + c \subseteq K$ and so $x \in K + c \subseteq E_K$. Therefore $F = E_K$ and K generates B. Since E_K is the ideal of B evenly generated by K we have by Corollary 2.11 that $\mathscr{C}(K)$ is isomorphic to $\mathscr{C}(F)$.

Observe that K is a relatively complemented lattice, but in general does not have a smallest element. Hence in general $\mathscr{I}(K)$ and $\mathscr{C}(K)$ are not isomorphic. To this end we prove

THEOREM 2.15. Let F be a maximal ideal of B and $K = B \setminus F$. Then the following are equivalent:

(i) K is a generalized Boolean lattice.

(iv) There exists $c \in K$ such that $cF = \{0\}$.

(v) There exists an atom of B in K.

(vi) F is a direct summand of B.

PROOF. (i) implies (ii) is trivial.

(ii) implies (iii). As noted above, K is always a relatively complemented lattice and so by (ii), K is a generalized Boolean lattice. Thus by Corollary 2.12, K is isomorphic to F.

(iii) implies (iv). If K is isomorphic to F, K has a least element c_0 . Now F is generated by $\{c+d \mid c, d \in K \text{ and } c \leq d\}$. For $c, d \in K$ with $d \geq c$, $c \geq c_0$ and so $0 \leq c_0 \land (c+d) \leq c \land (c+d) = 0$. It follows that $c_0F = \{0\}$.

(iv) implies (v). Let $c \in K$ such that $cF = \{0\}$. Let $x \in B$ with $0 \le x \le c$. If $x \in F$, then 0 = cx = x. If $x \in K$, then $c + x \in F$ and 0 = (c + x)c = c + x. Therefore x = c and hence c is an atom of B.

(v) implies (vi). Let c be an atom of B in K. Then $(c]_B \cap F = \{0\}$. Since F is a maximal ideal of B, $F + (c]_B = B$ and so F is a direct summand of B.

(vi) implies (i). Suppose that B is the direct sum of F and M, where M is an ideal of B. Since the index of F in B is two, it follows that $M = \{0, c\}$ for

⁽ii) K has a smallest element.

⁽iii) K is isomorphic to F.

some $c \in K$. If $x \in K$, then $x \wedge c = c$ or $x \wedge c = 0$. Since F is prime, $x \wedge c \neq 0$. Therefore c is the smallest element of K and hence K is a generalized Boolean lattice.

In concluding this section, we note that Theorem 2.15 exemplifies a reason for requiring in the definition of LR-generates B that if L has a smallest element, it must be the zero of B.

3. Extending congruences

Throughout this section let L denote a lattice without a smallest element, L_0 denote the lattice L with a smallest element 0 adjoined, and let $\mathscr{C}_0(L) = \{\theta \mid \theta \in \mathscr{C}(L) \text{ and } L/\theta \text{ has a least element}\}$. J. Hashimoto (1973; Theorem 5.1) proved that $\mathscr{C}_0(L)$ is a dual ideal of $\mathscr{C}(L)$. The hypothesis that L is distributive is not needed for the proofs of Lemma 3.1, Corollary 3.2, and Theorems 3.3 and 3.4.

LEMMA 3.1. If θ is a congruence relation of L, then θ can be extended to a congruence relation of L_0 . Moreover,

(i) if $\theta \notin \mathscr{C}_0(L)$, then θ has a unique extension to L_0 ;

(ii) if $\theta \in \mathscr{C}_0(L)$, then θ has exactly two extensions to L_0 .

PROOF. If $\theta_0 = \theta \cup \{(0,0)\}$, then θ_0 is a congruence relation of L_0 that extends θ . If $\theta \notin \mathscr{C}_0(L)$, then it is easily verified that θ_0 is the only extension of θ . If $\theta \in \mathscr{C}_0(L)$ and T is the smallest element of L/θ , then let $\theta_1 = \theta \cup (T \times \{0\}) \cup (\{0\} \times T) \cup \{(0,0)\}$. Then θ_1 is a congruence relation of L_0 that extends θ and $\theta_1 > \theta_0$. Again it is easily verified that these are the only extensions of θ in $\mathscr{C}(L_0)$.

COROLLARY 3.2. A congruence relation θ of L has a unique extension to a congruence relation of L_0 if and only if $\theta \notin \mathscr{C}(L_0)$.

If T is an ideal of L, we observed in Section 2 that $\theta_T \in \mathscr{C}(L)$ and trivially T is the least element of L/θ_T . Thus by the theorem, θ_T has two extensions to L_0 . It is evident that if B is a generalized Boolean lattice R-generated by L_0 , then B is also R-generated by L. We note that Lemma 5 (Grätzer (1971; page 104)) is valid if the lattice has a smallest element and hence each congruence of L_0 has a unique extension to B, but Lemma 3.1 shows that each element of $\mathscr{C}_0(L)$ has two extensions to B. Since $\mathscr{C}(L)$ is isomorphic to $\mathscr{C}(E)$ and $\omega(L_0)$ is isomorphic to $\mathscr{C}(B)$, this raises the following question: which congruences of E have two extensions to B? (By Grätzer (1971; Theorem 6, page 90) each congruence of E has at least one extension to B.) In this section we give an answer to this question.

Let f_0 and f_1 be the mappings of $\mathscr{C}(L)$ into $\mathscr{C}(L_0)$ given by

$$\theta f_0 = \theta_0$$

and

232

$$\theta f_1 = \begin{cases} \theta_1 & \text{if } \theta \in \mathscr{C}_0(L) \\ \\ \theta f_0 & \text{otherwise,} \end{cases}$$

where $\theta \in \mathscr{C}(L)$ and θ_0 and θ_1 are given above.

THEOREM 3.3. (i) f_0 is an isomorphism of $\mathscr{C}(L)$ into $\mathscr{C}(L_0)$.

(ii) f_1 is a one-to-one inclusion preserving mapping of $\mathscr{C}(L)$ into $\mathscr{C}(L_0)$ and $f_1 \mid \mathscr{C}_0(L)$ is an isomorphism.

PROOF. The verification of (i) and that f_1 is a one-to-one inclusion preserving mapping is straightforward and will be omitted. Let θ , $\Psi \in \mathscr{C}_0(L)$ and let S and T denote the smallest elements of θ and Ψ respectively. Then $S \cap T$ is the smallest element of $\theta \wedge \Psi$ (Hashimoto (1952; Lemma 5.1)). Then

$$\theta_1 \land \Psi_1 = (\theta \cup (S \times \{0\}) \cup (\{0\} \times S) \cup \{(0,0)\} \cap (\Psi \cup (T \times \{0\}) \cup (\{0\} \times T) \cup \{(0,0)\})$$

$$= (\theta \cap \Psi) \cup ((S \cap T) \times \{0\}) \cup (\{0\} \times (S \cap T)) \cup \{(0,0)\}$$
$$= (\theta \land \Psi)_{1}.$$

Since f_1 is inclusion preserving $\theta_1 \vee \Psi_1 \subseteq (\theta \vee \Psi)_1$. Let $(a, b) \in (\theta \vee \Psi)_1$ and U be the least element of $L/(\theta \vee \Psi)$. If $(a, b) \in \theta \vee \Psi$, then clearly $(a, b) \in \theta_1 \vee \Psi_1$. If $(a, b) \in (U \times \{0\}) \cup (\{0\} \times U)$, then, since $(\theta \vee \Psi)_1$ is symmetric, we assume that $a \in U$ and b = 0. Now $a \in U$ implies that there exists $b_0, \dots, b_m \in L$ such that $a = b_0$, $b_m \in T$, and $(b_i, b_{i+1}) \in \theta \cup \Psi$. Hence $(a, b_m) \in \theta_1 \vee \Psi_1$. Since $T \subseteq U$ (Hashimoto (1952; Lemma 5.1)). $(b_m, 0) \in \Psi_1$. Therefore $(a, 0) \in \theta_1 \vee \Psi_1$. Trivially, if a = b = 0, $(a, b) \in \theta_1 \vee \Psi_1$.

We now describe the lattice $\mathscr{C}(L_0)$ in terms of $\mathscr{C}(L)$.

THEOREM 3.4. $\mathscr{C}(L_0)$ is the disjoint union of $(\mathscr{C}(L))f_0$ and $(\mathscr{C}_0(L))f_1$. Moreover, $(\mathscr{C}_0(L))f_1$ is a prime dual ideal of $\mathscr{C}(L_0)$ and for $\theta \in \mathscr{C}(L)$ and $\Psi \in \mathscr{C}_0(L)$,

$$\theta_0 \wedge \Psi_1 = (\theta \wedge \Psi)_0$$
$$\theta_0 \vee \Psi_1 = (\theta \vee \Psi)_1.$$

and

PROOF. Using Lemma 3.1, Theorem 3.3, and the fact that L is a sublattice of L_0 , it is easily verified that $\mathscr{C}(L_0)$ is the disjoint union of $(\mathscr{C}(L)) f_0$ and $(\mathscr{C}_0(L)) f_1$ and that $(\mathscr{C}_0(L)) f_1$ is a prime dual ideal of $\mathscr{C}(L_0)$.

Let $\theta \in \mathscr{C}(L)$, $\Psi \in \mathscr{C}_0(L)$, and T be the least element of L/Ψ . Then

$$\begin{aligned} \theta_0 \wedge \Psi_1 &= (\theta \cup \{(0,0)\}) \cap (\Psi \cup (T \times \{0\}) \cup (\{0\} \times T) \cup \{(0,0)\}) \\ &= (\theta \cap \Psi) \cup \{(0,0)\} \\ &= (\theta \wedge \Psi)_0. \end{aligned}$$

[8]

Since f_1 is inclusion preserving $\theta_0 \subseteq (\theta \lor \Psi)_1$ and $\Psi_1 \subseteq (\theta \lor \Psi)_1$. Therefore $\theta_0 \lor \Psi_1 \subseteq (\theta \lor \Psi)_1$. Let $(a, b) \in (\theta \lor \Psi)_1$ and let U be the least element of $L/(\theta \lor \Psi)$. If $(a, b) \in \theta \lor \Psi$, then clearly $(a, b) \in \theta_0 \lor \Psi_1$. Suppose that $(a, b) \in U \times \{0\}$. Then there exists $b_0, \dots, b_m \in L$ such that $a = b_0, b_m \in T$, and $(b_i, b_{i+1}) \in \theta \cup \Psi$. As above, $(a, b_m) \in \theta_0 \lor \Psi_1$ and $(b_m, 0) \in \Psi_1$. Hence (a, 0) $\in \theta_0 \lor \Psi_1$. It follows that $(\theta \lor \Psi)_1 \subseteq \theta_0 \lor \Psi_1$.

For the remainder of this section, let B be a generalized Boolean lattice R-generated by L and E be the ideal of B evenly generated by L. Then by Corollary 2.5, E is a maximal ideal of B. Obviously B is also R-generated by L_0 and by Theorem 2.4 the ideal of B evenly generated by L_0 is B. Let p be the isomorphism of $\mathscr{C}(L)$ onto $\mathscr{I}(E)$ given by $(\theta)p = I_{\theta}$ (p is the inverse of the isomorphism g of Theorem 2.8), let p_0 be the corresponding isomorphism of $\mathscr{C}(L_0)$ onto $\mathscr{I}(B)$, let ι be the inclusion mapping of $\mathscr{I}(E)$ into $\mathscr{I}(B)$, and let f_0 be as above.

LEMMA 3.5. If $\theta \in \mathscr{C}(L)$, then $(\theta)p\iota = (\theta)f_0p_0$.

The proof of this lemma is routine and hence will be omitted.

LEMMA 3.6. Let F be a maximal ideal of B and I be an ideal of F. Then there are at most two ideals of B whose intersections with F is I.

PROOF. Let $M, N \in \mathscr{I}(B) \setminus \mathscr{I}(F)$ such that $M \in \cap F = N \cap F = I$. Since F is maximal, we have $M = M \wedge B = M \wedge (F \vee N) = (M \wedge F) \vee (M \wedge N) = I \vee (M \wedge N) \subseteq N$. Dually $N \subseteq M$. Trivially I is the only ideal of F whose intersection with F is I.

THEOREM 3.7. Let I be an ideal of E. Then there exists $M \in \mathscr{I}(B) \setminus \mathscr{I}(E)$ such that $M \cap E = I$ if and only if $(I)p^{-1} \in \mathscr{C}_0(L)$.

PROOF. Let $M \in \mathscr{I}(B) \setminus \mathscr{I}(E)$ such that $M \cap E = I$, $T = M \cap L$, and $\theta = Ip^{-1}$. Then $T \in \mathscr{I}(L)$ and to prove that $\theta \in \mathscr{C}_0(L)$, it suffices to show that $T \in L/\theta$. If $a, b \in T$, then $a + b \in M \cap E$ and hence by Lemma 2.7, $a\theta b$. Conversely let $a \in T$ and $b \in [a]\theta$. Then $a + b \in I \subseteq M$. Thus we have $b = a + a + b \in M$. Therefore $b \in M \cap L = T$ and so $T \in L/\theta$. Since $T \in \mathscr{I}(L)$, it is the smallest element of L/θ . Hence $\theta \in \mathscr{C}_0(L)$.

Next suppose that $\theta = Ip^{-1} \in \mathscr{C}_0(L)$. Then $\theta_0 = \theta f_1 \cap ((L \times L) \cup \{(0,0)\})$ = $\theta f_1 \cap (L \times L) f_0$. By Theorem 3.4, $\theta f_1 \cap (L \times L) f_0 = \theta f_0$ and by Lemma 3.5, $I = \theta p_1 = \theta f_0 g_0 = \theta f_1 g_0 \cap (L \times L) f_0 g_0 = \theta f_1 g_0 \cap E$. Now $\theta f_1 g_0 \in \mathscr{I}(B)$ and if T is the smallest element of L/θ , then $T \subseteq \theta f_1 g_0$. Therefore $\theta f_1 g_0 \notin \mathscr{I}(E)$.

It follows from this theorem that a congruence of E which has exactly two extensions to B is induced (see the discussion after Corollary 2.12) by an element from $(\mathscr{C}_0(L))p$.

4. Extension Property

Let K be a distributive lattice. We say that K has the extension property (EP) over L if L is a sublattice of K and each congruence of L can be uniquely

extended to a congruence of K. If L is a sublattice of K, then K has (EP) over L if and only if the mapping of $\mathscr{C}(K)$ into $\mathscr{C}(L)$, which sends χ onto $\chi \cap (L \times L)$, is one-to-one. (It is well known that this mapping is onto (Grätzer (1971; Theorem 6, page 90)). The next lemma is immediate from the definition.

LEMMA 4.1. Let K be a distributive lattice and M and L be sublattices of K such that $L \subseteq M$. Then K has (EP) over L if and only if K has (EP) over M and M has (EP) over L.

THEOREM 4.2. Let B be a generalized Boolean lattice R-generated by L. (i) If $0 \in L$ and K is a sublattice of B that contains L, then K has (EP) over L.

(ii) If $0 \notin L$ and K is a sublattice of $B \setminus E$ that contains L, then K has (EP) over L.

PROOF. Let K be as either in (i) or (ii), $\theta \in \mathscr{C}(L)$ and $\chi \in \mathscr{C}(K)$ such that χ is an extension of θ . Trivially, K R-generates B and $E = \{c_1 + \dots + c_{2n} | c_1, \dots, c_{2n} \in K\}$, where E is the ideal of B evenly generated by L. Let I_{θ} and I_{χ} be the ideals of E generated by $\{a + b \mid a, b \in L \text{ and } a\theta b\}$ and $\{c + d \mid c, d \in K \text{ and } c\chi d\}$ respectively. Clearly $I_{\theta} \subseteq I_{\chi}$. Suppose (by way of contradiction) that $I_{\theta} \neq I_{\chi}$. Let $\Psi \in \mathscr{C}(L)$ such that $(\Psi)g^{-1} = I_{\chi}$, where g^{-1} is the isomorphism given in Theorem 2.8. Since $I_{\chi} \supset I_{\theta}$, we have by Lemma 2.6 that there exists $a, b \in L$ such that $a + b \in I_{\chi} \setminus I_{\theta}$ and $(a, b) \in \Psi \setminus \theta$. Now $a + b \in I_{\chi}$ implies $(a, b) \in \chi$ and hence $(a, b) \in \theta$, a contradiction. Therefore $I_{\chi} = I_{\theta}$. Since K generates B and E is the ideal of B evenly generated by K, we have by Theorem 2.8 that χ is unique.

COROLLARY 4.3. Let B be a generalized Boolean lattice R-generated by L. (i) If $0 \in L$, then B has (EP) over L.

(ii) If $0 \notin L$, then $B \setminus E$ has (EP) over L.

Note that in the preceding corollary, if $0 \notin L$, then B/E is a relatively complemented lattice without a smallest element. Also, it gives a corrected version of Grätzer (1971; Lemma 5, page 104).

LEMMA 4.4. Let K be a distributive lattice that has (EP) over L.

(i) If a_0 is the smallest element of L, then a_0 is the smallest element of K. (ii) If c_0 is the smallest element of K, then $c_0 \in L$.

PROOF. (i) Let $e \in K$ and $\chi = \{(c, d) | c, d \in K, c \land e \land a_0 = d \land e \land a_0, a_0 \in c \lor a_0 = d \lor a_0\}$. It is readily verified that $\chi \in \mathscr{C}(K)$ and $(e \land a_0, a_0) \in \chi$. If $a, b \in L$ and $a\chi b$, then a = b as a_0 is zero the of L. Therefore $\chi \cap (L \times L) = \{(a, a) | a \in L\}$ and since K has (EP) over L, it follows that $\chi = \{(c, c) | c \in K\}$. Hence $e \land a_0 = a_0$.

(ii) If $c_0 \notin L$, then by (i), L does not have a smallest element. If D is the dual ideal of K generated by L, then $D = \{c \mid c \ge a \text{ for some } a \in L\}$ and $D \cap \{c_0\} = \Box$.

By Grätzer (1971; Theorem 15, page 75) there exists a prime ideal P of K such that $c_0 \in P$ and $P \cap D = \square$. Let $\chi = \{(c, d \mid c, d \in P \text{ or } c, d \in K/P\}$. Then $\chi \in \mathscr{C}(K)$ and $K/\chi = \{P, K \setminus P\}$. Moreover, $\chi \cap (L \times L) = L \times L = (K \times K) \cap (L \times L)$. Thus K does not have (EP) over L.

We now prove a converse of Theorem 4.2.

THEOREM 4.5. Let K be a distributive lattice that has (EP) over L. Then there exists a generalized Boolean lattice B that is R-generated by L and such that K is a sublattice of B. Moreover, if L does not have a smallest element, then $K \subseteq B \setminus E$, where E is the ideal of B evenly generated by L.

PROOF. Let C be a generalized Boolean lattice R-generated by K and let $D = \{x \mid x \in C \text{ and there exists } a_1, \dots, a_{2n} \in L \text{ such that } x = a_1 + \dots + a_{2n}\}.$ Since L is a sublattice of C, D is a subring of C. Let $c, d \in K$, $\chi_1 = \{(x, y) | x, y \in K\}$ and $x + y \leq c + d$, and $\chi_2 = \{(x, y) \mid x, y \in K \text{ and } x + y \leq e \leq c + d \text{ for } x + y \leq e \leq c + d \}$ some $e \in D$. Clearly χ_1 is reflexive and symmetric. If (x, y), $(y, z) \in \chi_1$, then $x + y \leq c + d$ and $y + z \leq c + d$. Hence $(x + y) \lor (y + z) \leq c + d$. Now x + z = (x + y) + (y + z) is the relative complement of $(x + y) \land (y + z)$ in $[0, (x + y) \lor (y + z)]$ and hence $x + z \leq c + d$. Therefore χ_1 is an equivalence relation on K. Let $(x, y) \in \chi_1$ and $z \in K$. Then $xz + yz = (x + y) \land z \leq x + y$ $\leq c+d$ and so $(x \wedge z, y \wedge z) \in \chi_1$. Now $x \wedge z + y \vee z = x + z + xz + y + z$ $+yz = (x + y) + (x + y)z \leq (x + y) \lor ((x + y)z) \leq x + y \leq c + d$. Therefore, $(x \lor z, y \lor z) \in \chi_1$ and so $\chi_1 \in \mathscr{C}(K)$. A similar argument yields that $\chi_2 \in \mathscr{C}(K)$ and obviously $\chi_2 \subseteq \chi_1$. If $(a, b) \in \chi_1 \cap (L \times L)$, then $a + b \leq c + d$ and $a + b \in D$. Therefore $(a, b) \in \chi_2$. Since K has (EP) over L, it follows that $\chi_1 = \chi_2$. Since $(c,d) \in \chi_1$, we have $c+d \leq e \leq c+d$ for some $e \in D$ so $c+d \in D$. It follows that D is the ideal of C evenly generated by K.

If K has a smallest element c_0 , then by Lemma 4.4, $c_0 \in L$ and c_0 is the zero of C. Thus, since $0 \in K$, we have by Theorem 2.4 that D = C. Therefore C is a generalized Boolean lattice R-generated by L and D is the ideal evenly generated by L.

If K does not have a smallest element, then by Lemma 4.4, L does not have a smallest element. Since K generates C and $0 \notin K$, we have by Corollary 2.5 that D is a maximal ideal of index two in C and $K \cap D = \square$. Thus if $a \in L$, $D + a = C \setminus D$. Again we have that C is a generalized Boolean lattice R-generated by L and D is the ideal evenly generated by L.

Finally, if L does not have a smallest element, then K does not have a smallest element and so $K \subseteq C \setminus D$.

As a corollary to the proof of this theorem we have

COROLLARY 4.6. Let K be a distributive lattice that has (EP) over L. If C is a generalized Boolean lattice R-generated by K, then C is R-generated by L.

COROLLARY 4.7. If K is a relatively complemented distributive lattice that has (EP) over L, then there exists a generalized Boolean lattice B that is R-generated by L and such that K = B or $K = B \setminus E$.

PROOF. By the theorem there is a generalized Boolean lattice *R*-generated by *L* such that *K* is a sublattice of *B*. If $0 \in L$, then $0 \in K$ and so *K* is a generalized Boolean lattice. Let $a, b \in L$ and let *c* be the relative complement of $a \wedge b$ in the interval $[0, a \vee b]_K$ of *K*. Then c = a + b and it follows that $E \subseteq K$. By Theorem 2.5, E = B.

If $0 \notin L$, then by the theorem $K \subseteq B \setminus E$. Let $x \in B \setminus E$. Then $x = a_1 + \dots + a_{2n-1}$ where $a_1, \dots, a_{2n-1} \in L$ with $a_1 \leq \dots \leq a_{2n-1}$. If n = 1, then $a_1 \in K$. Suppose that n > 1 and that $a_2 + \dots + a_{2n-2} \in K$. Now $a_1 \leq a_2 \leq a_2 + \dots + a_{2n-2} \leq a_{2n-2} \leq a_{2n-1}$. Let c be the relative complement of $a_2 + \dots + a_{2n-2}$ in the interval $[a_1, a_{2n-1}]_K$ of K. Then $a_1 = c \wedge (a_2 + \dots + a_{2n-2})$ and $a_{2n-1} = c \vee (a_2 + \dots + a_{2n-2}) = c + a_2 + \dots + a_{2n-2} + c(a_2 + \dots + a_{2n-2})$. Hence, $a_1 + \dots + a_{2n-1} = c \in K$.

COROLLARY 4.8. Let K be a relatively complemented distributive lattice that has (EP) over L. Then no proper sublattice of K contains L and is relatively complemented.

PROOF. Let *M* be a relatively complemented sublattice of *K* that contains *L*. By the preceding corollary, there is a generalized Boolean lattice *B* that is *R*-generated by *L* and such that K = B or $K = B \setminus E$. Then the proof of Corollary 4.7 shows that M = K.

COROLLARY 4.9. Let K_1 and K_2 be relatively complemented distributive lattices which have (EP) over L. Then there is an isomorphism of K_1 onto K_2 that is the identity on L.

PROOF. Let B_1 and B_2 be generalized Boolean lattices that are *R*-generated by K_1 and K_2 respectively. By Corollary 4.6, B_1 and B_2 are *R*-generated by *L*. By Grätzer (1971; Theorem 6, page 104) there is an isomorphism *q* of *B* onto B_2 that is the identity on *L*.) (We note that Theorem 6 of Grätzer (1971) is valid even though Lemma 5 which is invalid, is used in the proof.) If $0 \in L$, then $B_1 = K_1$ and $B_2 = K_2$. If $0 \in L$, then $K_1 = B_1/E_1$ and $K_2 = B_2/E_2$, where E_i is the ideal of B_i evenly generated by *L*. Since $(K_1)q$ is a relatively complemented lattice that contains *L*, we ghave by Corollary 4.8 that $(K_1)q = K_2$.

5. An example

The motivation for many of the ideas in this note is the following example. Let P denote the power set of the naturally ordered set of integers and F denote the collection of all finite subsets of the integers. For $n \in \mathbb{Z}$, (n] will

 $B = F \cup j(n] \cup S \mid n \in \mathbb{Z}$ and $S \in \mathbb{Z}$

denote the ideal of \mathbb{Z} generated by n. Let $B = F \cup \{(n] \cup S \mid n \in \mathbb{Z} \text{ and } S \in F\}$. Then B is a sublattice of the complete Boolean lattice P and it is readily verified that B is a generalized Boolean lattice.

Let r be the mapping of $\mathscr{C}(\mathbb{Z})$ into P given by $(\theta)r = \mathbb{Z} \setminus \{n \mid n = 1.u.b.[n]\theta\}$. Then r is an isomorphism of $\mathscr{C}(\mathbb{Z})$ onto P and hence $\mathscr{C}(\mathbb{Z})$ is a complete Boolean lattice. If $L = \{(n] \mid n \in \mathbb{Z}\}$, then L is isomorphic to \mathbb{Z} , B is R-generated by L, and F is the ideal of B that is evenly generated by L. By Corollary 2.11, $\mathscr{C}(F)$ is isomorphic to $\mathscr{C}(L)$ and hence to $\mathscr{C}(\mathbb{Z})$. Since F satisfies the descending chain condition, there does not exist an isomorphism of L into F.

Suppose (by way of contradiction) that $\mathscr{C}(\mathbb{Z})$ is isomorphic to $\mathscr{C}(B)$. Since B is a generalized Boolean lattice, $\mathscr{I}(B)$ is isomorphic to $\mathscr{C}(B)$. Thus the ideals of B form a Boolean lattice. However, by the corollary to Theorem 4.3 (Hashimoto (1952; page 165)) this implies that B satisfies the descending chain condition. This is impossible as L is a sublattice of B.

References

- G. Grätzer (1971), Lattice Theory, (W. H. Freeman and Company, San Francisco, 1971).
- G. Grätzer and E. T. Schmidt (1958), 'On the generalized Boolean algebra generated by a distributive lattice', *Indag. Math.* 20, 54–553.
- J. Hashimoto (1953), 'Ideal theory for lattices', Math. Japan. 2, 149-186.

University of Houston U.S.A.

and

University of Wyoming, U.S.A.

[13]