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1. Introduction

Hashimoto (1952; Theorems 8.3 and 8.5) proved the following theorems:

THEOREM A. / / L is a distributive lattice, then there exists a generalized
Boolean algebra Lr and an isomorphism from the lattice of all congruence
relations of L onto the lattice of all congruence relations of Lr.

THEOREM B. Any distributive lattice L is isomorphic with a sublattice of
a relatively comolemented distributive lattice L* such that (1) the lattice of
congruence relations on L* is isomorphic with that on L and (2) the length of
the closed interval [a, b] in Lis equal to that of [a, b] regarded as an interval
in L*.

It has been noted that Hashimoto's proofs are somewhat difficult to follow
and are proved with the apparatus of topology; hence these purely lattice theoretic
theorems are not placed in their most natural setting. In 1958 Gratzer and Schmidt
(1958; Theorem 1) asserted the following generalization of the Hashimoto theorems:

To any distributive lattice L there exists a generalized Boolean algebra B
having the properties:

(1) L is a sublattice of B;
(2) the lattice of all congruence relations of L is isomorphic to the lattice

of all congruence relations of B;
(3) if the interval [a, fc] of Lis of finite length, then [a, b] has the same length

as an interval of B.
In this note we give a counterexample to (2). In Section 2 we construct an

ideal £ of Band prove that the lattice of all congruence relations of L is isomorphic
to the lattice of all congruence relations of E (Corollary 2.11). We prove that
E = B if and only if 0 e L (Theorem 2.4); otherwise, £ is a maximal ideal of B
(Corollary 2.5). Our example shows that in general L cannot be embedded into E.
The construction of E is algebraic and, moreover, we prove that E is unique up
to isomorphism (Corollary 2.12). Thus we strengthen Theorem A.
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Our example also shows that Gratzer (1971; Lemma 5, page 104)) is in-
correct (Lemma 5 is in essence (2) above). We prove in Section 3 (also, see Corol-
lary 4.3) that a necessary and sufficient condition that this lemma be true is that
the lattice L has a smallest element.

In Section 4 we investigate distributive lattices K and L, where Lis a sublattice
of K and each congruence of Lhas a unique extension to K. In this case we prove
that there is a generalized Boolean lattice B that is /^-generated by Land contains
K as a sublattice (Theorem 4.5). From this result we obtain several interesting
corollaries; one of which asserts that the lattice L*of Theorem B is unique up to
isomorphism.

In Section 5 we give the example.
Throughout this note L will denote a distributive lattice, ^(L) will denote

the lattice of all congruence relations on L, J{L) will denote the lattice of all
ideals of L, N will denote the set of natural numbers, Z will denote the set
integers, • will denote the empty set, and X\Y will denote the set of elements
that belong to the set X but not to the set Y. Unless otherwise stated, isomorphism
will mean a homomorphism that is one-to-one (not necessarily onto). For the
standard results and definitions concerning lattices, the reader is referred to
Gratzer (1971) in particular, to Sections 9 and 10 of Chapter 2.

2. Evenly generated ideals

Throughout this section let B be a generalized Boolean lattice and let L be
a sublattice of B that generates B, that is, the smallest subring of B that contains
Lis B.

LEMMA 2.1 (i) B = {ax + ••• + a n | n e N and au---,aneL).

( i i ) If T is a sublattice of Land xeB such that x = at + ••• + an (n eN),

whereau---,ane T, thenx = bt + ••• + bn, where bu • • - , £ „ £ Tandbx ^ ••• ^ bn.

The proof of this lemma is similar to the proof of Gratzer (1971; Lemma 3,
page 102) and will be omitted.

COROLLARY 2.2. IfTis a sublattice of L and xeBsuch that x = a1-] 1- a2n _ t

( n e N ) , where a1,---,a2n-l^T, then x ~2. a for some a in T.

PROOF. By the lemma, x = bx -i— + b2n-i, where bu---,b2n-ieT and

bt ^ ••• ^ &2B-1- Thus x ^ x A l » i = xbi = bx, since In - 1 is odd and

b^bj = bt for each j .

LEMMA 2.3. Let T be an ideal of L and ET = {x\xeB and there exists
au---,a2,,e T(neN) such that x = at + ••• + a2n}. Then

(i) ET is an ideal of B;

(ii) ET = E x . n ( T ] B , where (T]B denotes the ideal of B generated by T;
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( i i i ) ET = {x\xeB and there exists au---,a2neT such that a1 ^ ••• ^ a2n

and x — at-\— + a 2 n } .

The proof of this lemma is straightforward and will be omitted. We shall
call the ideal ET of this lemma the ideal of B evenly generated by T. Also for the
remainder of this note we shall denote EL simply by E.

In Corollary 2.2, if T = Land x in B has a representation as a sum of an odd
number of elements from L, then x exceeds an element of L. The next theorem
shows that if L does not contain the zero of B and x in B has a representation as
a sum of an even number of elements of L, then x does not exceed an element
of L. Also, if x = at + ••• + an, where au---,aneL, then xe{al V ••• V fl

n]fl
and so each element of B is exceeded by an element of L. We say that L R-gener-
ates B if Lgenerates B and if Lhas a least element, then it is the zero of B. (The
definition of .R-generates given in Gratzer( 1971; page 102) also required that if L
has a largest element, then it must be the largest element of B.) If L does not have
a smallest element, then the definitions of .R-generates and generates coincide.

THEOREM 2.4. / / L generates B, then the following assertions are equiv-
alent:

(i) OeL.
(ii) LHE ¥= • •
(iii) L c E.
(iv) E = B.

PROOF, (i) implies (ii) is immediate as 0 e L n £ .

(ii) implies (iii). Let aeL and beLnE. Then a + beE and hence
a = a + b + beE.

(iii) implies (iv) is obvious as E is an ideal of B.

(iv) implies (i). If beL, then b = at + ••• + a2n, where au •••,a2neL and

at ^ ••• ^ a2n. Then b A ateL and b /\at = bal = at + ••• + alt where
there are 2« summands. Therefore bat = 0 and so OeL.

COROLLARY 2.5. IfO$L, then the index of E in B is two and hence E is
a maximal ideal of B. Moreover, L is a sublattice of the relatively complemented
lattice B\E and if M is an ideal of B such that M <~\L= • , then M s E.

PROOF. By the theorem, £ ^ B and L s B\E. If xeB\E, then x = at + —|-
«2n-i > where au---,a2n_ teL. If n = 1, x = a t a n d i f n > I,a1 + ••• + a2n_2eE.

Thus E + x = E + a for some aeL. If a,beL, then a + beE and so £ + a

= £ + b . Therefore the index of £ in B is two.
Since £ is an ideal of B and B is a generalized Boolean lattice, B\E is relatively

complemented. If M e / ( B ) | / ( £ ) , then M H L # Q by Corollary 2.2.
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LEMMA 2.6. Let 0 e # ( L ) and Ig be the ideal of B generated by

{a + b\a,beLand aOb}. Then Ig = { I ? = 1 a ; + fc,-|neN, a^b^L, at <L bh

and OiObi} and so IoeJ(E).

PROOF. For a,beL, a9b if and only if af\bOa\/b. Also, a + b =

ab + a + b + ab = a A b + a\/ b. Thus, Ie is the ideal of B generated by

{a + b\a,beL, a ^ b , and aOb}. Let I = { 'L?=1al +bt\neN, a^h^eL,

at ^ bt, and afib-^. Then clearly {a + b\a,beL, a ^ b, and adb} £ / ^ Ie

and I is closed with respect to addition. To prove that / is an ideal of B, it suffices
to show that for xel and aeL, axel. Let x = X" = 1af + bt, whereahbteL,
a; ^ bi, and afib^ For each i, aat = a A fl; ̂  a A frf = ab,- and a^b, implies
a A «; 0 a A £>;• Thus a x e / and so I = Ie. Clearly 79e ./(£).

LEMMA 2.7. Let leJ{E) and 9t = {{a,b)\a,beL and a + bel}. Then
Qj is a congruence relation of L.

PROOF. It is easily verified that 07 is an equivalence relation of L and if aOb
a n d t e L , t h e n a A t O b A t . N o w a \ / t + b \ / t = a + t + a t + b + t + b t =
a + b + (a + b)te/. Therefore a\J tOb\J t and so 0Te'g'(L).

THEOREM 2.8. T/ie mapping g of J{E) into ^(L) given by (l)g = 6t is an
isomorphism of •/(£) onto "^(L). T7ie inverse of g is given by {6)g~1 = Ig.

PROOF. By Lemma 2.7, # is a mapping of J{E) into #(L). If 0 e <tf(L), then
by Lemma 2.6, l9eJ{E). We will show that (78)^ = 0Ig = 6. If aOb, then
a + fee/, and so a6Ieb. Conversely ifaGIob, then a + belg and, without loss of
generality, we may assume that a ^ b. Now a + bele implies that a + b =
E"=1tfj + b^ where a,-, J^eL, a; ^ fo;, and a ^ . We induct on n. If n = 1,
then a + b =(a + fo)6 = axb + &! b, axb ^ fcib, and a^bOb^. Since &tb ̂  i ,
we may assume that a + b = ax + blt where ax 0 bt and a ^ i i j ^ f i . Therefore
0 = a t + at = (at + b^a! = aax + bat = aat + at. Hence ax ^ a. Now

a + b = ax + bt g bx, as at ^ bt, and so n = a V (a + b) ^ a V i>j ^ a V & = b.

Whence a\J bx = b and a V «i — a. Thus a ^ b ! implies a V axda\J bx or

a0b . Next assume that n > 1. Again a + b = £ " = 1 a ^ + bjo and so we may

assume that at^ bt ^ b for each i . Let d = V " = i bt. For 1 ^ k ^ n , aafc + a*

= (a + b)ak = 2 "=i,i#kaiak + biak. Now a 0/efo implies that aak9Igak and

hence by the inductive hypothesis aak0ak. Since ak0bk, we have aak9bk and so

a 0 a V fyt. Also ad + d = (a + fo)d = Z r = i M + M = 2 " = ia , -+ fc; = a + 6.

Hence a V ^ = « + ^ + a d = b . Thus we have a0 V % i ( a V h;), which is equi-

valent to aQb. Therefore g maps S(E) onto ^"(L).

Let / , JeJ(E) with / ^ J and let xej\l. Then there exists a x , - - - , a 2 n 6L

with at ^ ••• ^ a2n and x = ax + ••• + a2n- Multiplying x respectively by

a2>-"»f l2n-2»w e obtain flj + a2, ••• )a2 n_1 + a 2 n e J . Hence for some fc,(l ^ fe^n)
a 2 t - i + a2keJV- Therefore ( a 2 t _ 1 , a 2 t ) G ^ j \ ^ r a n d so g is one-to-one.
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If /, J e ./(£), then clearly / £ J if and only if 9j £ Qj. Therefore g is an iso-
morphism of J{E) onto ^(L). It is now clear that (6)g~l = Ie.

An immediate consequence of this theorem is

COROLLARY 2.9. (i) / / 0e#(L), then 9 = 0Ie.

(ii) IfIeS(E), then I = Itl.

COROLLARY 2.10. (Hashimoto, (1972; Theorem 7.2) </(£) (is isomorphic
to «"(£).

PROOF. Since £ is a generalized Boolean lattice and E generates itself, we have
by the theorem that J(E) is isomorphic to

COROLLARY 2.11. %(L) is isomorphic to

COROLLARY 2.12. / / D is a generalized Boolean lattice such that ^(L) is
isomorphic to ^(D), then D is isomorphic to E.

PROOF. AS noted above, ^(D) is isomorphic to •/(!>)• Hence ./(D) and
•?(E) are isomorphic. The compact elements of S(E) are the principal ideals
of E, which are isomorphic to E. Since compact elements are preserved under
isomorphism, it follows that E is isomorphic to D.

If Te J{L), let 6T = {(a,b)|a,beL and a\/ t = b\/ t for some t eT}.
It is easily verified that dT = {(a, b) I a, b e L and a\J b = (a /\b)\J t for some
te T] and that the mapping that sends Tinto 9T is an isomorphism of «/(L) onto
a sublattice of #(L) (Hashimoto (1973; Theorem 5.1)) . Moreover, for each
t e T, [t]9T = T, where \t]9T denotes the congruence class of 9T containing t.

COROLLARY 2.13. Let h be the mapping ofJ(L) into J(E) given by (T)h= ET.
Then h is an isomorphism of -f(L) onto a sublattice of J(E).

PROOF. It suffices to show that ET = IBT . If s, t e T, then s9Tt and so
s + teI$T. It follows that ET = I9r. Conversely, let a,beLwith a9Tb and a + b
eIgT. Then a \J b = (a A 6) V t for some (in Tandsoa + b + ab = ab + t + abt.
Therefore a + b = t + abt and since /, abte T, we have a + beET. Again it
follows that Igr £ ET.

We have now obtained the Hashimoto theorems mentioned in the introduc-
tion. For let L be a distributive lattice and B be a generalized Boolean lattice
R-generated by L. Then E = EL is a generalized Boolean lattice and ^(E) is iso-
morphic to ^(L) (Corollary 2.11). Moreover, we have proven that, up to isomor-
phism, E is unique (Corollary 2.12). If L has a smallest element, then E = B
(Theorem 2.4). If L does not have a smallest element, then L £ B\E (Theorem
2.4). Let K = B\L- Then K is a prime dual ideal of B since £ is a prime ideal
of B (Corollary 2.5). Thus K is a relatively complemented distributive lattice,
Lis a sublattice of K, and K does not have a smallest element (Corollary 2.2).
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If we let EK = {ct + ••• + c2n\cl,---,c2neK}, then it is easily verified that
EK = E. Since K generates B, <£(K) is isomorphic to V(EK) (Corollary 2.11) and
so ̂ {K) is isomorphic to ^ (L) . We will prove in Section 4 that, up to isomorphism,
K is unique (see Corollary 4.9).

COROLLARY 2.14. Let F be a maximal ideal of B and K = B\F. Then
F = {x|xe.B and there exists cly---,c2neK(ne N) such that x = ct + ••• + c2n}.
Hence K generates B and ^(K) is isomorphic to

PROOF. Let EK = {ct + ••• + c2n \ cu •••, cln e K]. Since F is maximal,
K is a dual ideal of B and hence a sublattice of B. Let c, d e K. Since
c + d = c f\d + c\J d, we may assume that c <j d. Thus c A (c + d) = 0.
Thus c + deF, as F is prime, and it follows that EK £ F. If xeF and c e X ,
x + c e F + c s x and so xeK + c s £ K . Therefore F = EK and -K generates B.
Since EK is the ideal of B evenly generated by K we have by Corollary 2.11 that
^(K) is isomorphic to ^(F).

Observe that K is a relatively complemented lattice, but in general does not
have a smallest element. Hence in general J(K) and ^(K) are not isomorphic.
To this end we prove

THEOREM 2.15. Let F be a maximal ideal of B and K = B\F. Then the
following are equivalent:

(i) K is a generalized Boolean lattice.
(ii) K has a smallest element.
(iii) K is isomorphic to F.
(iv) There exists ceK such that cF - {0}.
(v) There exists an atom of B in K.
(vi) F is a direct summand of B.

PROOF, (i) implies (ii) is trivial.

(ii) implies (iii). As noted above, K is always a relatively complemented lat-
tice and so by (ii), K is a generalized Boolean lattice. Thus by Corollary 2.12,
K is isomorphic to F.

(iii) implies (iv). If K is ismorphic to F, K has a least element c0. Now F
is generated by {c + d|c,deK and c ^ d}. For c,deK with d ^ c, c ^ c0

and so 0 g c0 A (c + d) ^ c A (c + d) = 0. It follows that c0F = {0}.
(iv) implies (v). Let c e K such that cF = {0}. Let x e B with 0 ^ x <; c.

If x e f , then 0 = ex = x. If xeK, then c + x e F and 0 = (c + x)c = c + x .
Therefore x = c and hence c is an atom of B.

(v) implies (vi). Let c be an atom of B in K. Then (c]B n F = {0}. Since
F is a maximal ideal of B, F + (c]B = B and so F is a direct summand of B.

(vi) implies (i). Suppose that B is the direct sum of F and M , where M is
an ideal of B. Since the index of F in B is two, it follows that M = {0, c} for
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some ceK. If x e K, then xf\c = c or x/\c = 0. Since F is prime, x A c ^ 0.
Therefore c is the smallest element of K and hence K is a generalized Boolean
lattice.

In concluding this section, we note that Theorem 2.15 exemplifies a reason
for requiring in the definition of L R-generates B that if L has a smallest element,
it must be the zero of B.

3. Extending congruences

Throughout this section let L denote a lattice without a smallest element,
Lo denote the lattice L with a smallest element 0 adjoined, and let
«•„(!) = {6\0e%(L) and L/0 has a least element}. J. Hashimoto (1973; The-
orem 5.1) proved that &0{L) is a dual ideal of C€{L). The hypothesis that L is
distributive is not needed for the proofs of Lemma 3.1, Corollary 3.2, and
Theorems 3.3 and 3.4.

LEMMA 3.1. / / 9 is a congruence relation of L, then 9 can be extended
to a congruence relation of Lo. Moreover,

(i) if 9£t>0{L), then 9 has a unique extension to Lo;
(ii) if 9e'£0(L), then 9 has exactly two extensions to L o .

PROOF. If 90 = 6 U {(0,0)}, then 90 is a congruence relation of Lo that
extends 9. If 9 $ ^0(L), then it is easily verified that 90 is the only extension of 9.
If 9e<£0(L) and T is the smallest element of LI9, then let 0t = 9 u ( T x {0})
U({0} x T ) u { ( 0 , 0 ) } . Then 9l is a congruence relation of LO that extends 9
and 9i> 90. Again it is easily verified that these are the only extensions of 9 in

COROLLARY 3.2. A congruence relation 9 of L has a unique extension to a
congruence relation of Lo if and only if

If T is an ideal of L, we observed in Section 2 that 9T e 'g'(L) and trivially T
is the least element of ~L\9T. Thus by the theorem, 9T has two extensions to L o .
It is evident that if B is a generalized Boolean lattice .R-generated by L o , then B
is also R-generated by L. We note that Lemma 5 (Gratzer (1971; page 104)) is
valid if the lattice has a smallest element and hence each congruence of Lo has
a unique extension to B, but Lemma 3.1 shows that each element of ^0{L) has
two extensions to B. Since ^(L) is isomorphic to ^(E) and co(L0) is isomorphic
to 'tf(B), this raises the following question: which congruences of E have two
extensions to B1 (By Gratzer (1971; Theorem 6, page 90) each congruence of E
has at least one extension to B.) In this section we give an answer to this question.

Let f0 and ,:
t be the mappings of r€(L) into ^(Lo) given by
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1 if

I 0/o otherwise,

where 0 e ̂ (L) and 90 and 9l are given above.

THEOREM 3.3. ( i ) / 0 is an isomorphism of #(L) into
(ii)/! is a one-to-one inclusion preserving mapping of<£(L) into ̂ (Lo) and

/ j | ̂ 0(L) is an isomorphism.

PROOF. The verification of (i) and that/x is a one-to-one inclusion preserving
mapping is straightforward and will be omitted. Let 9, vFe'£'0(L) and let S and
T denote the smallest elements of 9 and ¥ respectively. Then SnTis the smallest
element of 9 A ¥ (Hashimoto (1952; Lemma 5.1)). Then

91 A ^ j = (0U(Sx {0}) u({0} xS)u{(0,0)}nCFU(rx {0})u({0} x T)

= (9 n «F) u ((S n T) x {0}) u ({0} x(Sn T)) u {(0,0)}

= (0A ¥) ! •

Since / x is inclusion preserving 6t V ^ s (0 V *P)i • Let (a ,b)e(0 V ^ ) i and
U be the least element of L/(0 V * ) • If (a, fc) e 0 V * , then clearly (a, b) e 0! V f i -
If (a,b)e(U x {0}) U({0} x C/), then, since (0 V *F)i is symmetric, we assume
that aeU and b = 0. Now aeU implies that there exists bo,---,bmeL such
that a = b0, bmeT, and (bi,bi+1)e9ux¥. Hence (a,bm)e9t V ^ i • Since
TzU (Hashimoto (1952; Lemma 5.1)). ( ^ , 0 ) 6 ^ . Therefore (a,0)e9i V ̂ i •
Trivially, if a = b = 0, (a,b)e91 V ^ i .

We now describe the lattice ^(Lo) in terms

THEOREM 3.4. #(L0) is f//e disjoint union o/(^(L))/0 and {^0{L))ft. More-
over, (^(L))/! is a prime dual ideal ofV(L0) and for 9eV(L) and ¥e^ 0 (L) ,

0o A Vi = (0 A »P)o
and

PROOF. Using Lemma 3.1, Theorem 3.3, and the fact that L is a sublattice
of Lo, it is easily verified that ^(Lo) is the disjoint union of C#(L))f0 and
(^o(£))/i and that (^0(£))/i is a prime dual ideal of^(L0).

Let 0e^(L), f e ^ L ) , and T be the least element of L/>P. Then

0o A ?\ = (0 u {(0,0)})nCF U(T x {0}) U({0} x T) U {(0,0)})
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Since ft is inclusion preserving 0O s (0 y ¥ ) ! and *Fj £ (0 V **0i • There-
fore 0O V ^ i £ (0 V ¥ ) i . Let (a , i )£(8v *P)i and let U be the least element
of L/(0 V *P) • If (a, fc) e 0 V ¥ , then clearly (a, b) e 0O V ? i . Suppose that
(a,b)e[/ x {0}. Then there exists b0, •••,bmeL such that a — b0, bmeT, and
( ^ J j + 1 ) e 9 u 1 P . As above, (a, &J e 0O V ^ i and ( 6 . 0 ) 6 ? , . Hence (o,0)
e 0O V ^ i • It follows that (0 V *)i £ 0O V ? i •

For the remainder of this section, let B be a generalized Boolean lattice
i?-generated by L and E be the ideal of B evenly generated by L. Then by Corol-
lary 2.5, £ is a maximal ideal of B. Obviously B is also R-generated by Lo and
by Theorem 2.4 the ideal of B evenly generated by Lo is B. Let p be the isomor-
phism of ^(L) onto J{E) given by (8)p = Ig (p is the inverse of the isomorphism
g of Theorem 2.8), let p0 be the corresponding isomorphism of "^(LQ) onto
let i be the inclusion mapping of •/(£) into^(B), and let/0 be as above.

LEMMA 3.5. / / 0e#(L), then (0)pi = (0)/opo-
The proof of this lemma is routine and hence will be omitted.
LEMMA 3.6. Let F be a maximal ideal of B and I be an ideal of F. Then

there are at most two ideals of B whose intersections with F is I.

PROOF. Let M,NeJ{B)\f(F) such that M\C\ F = AT nF = I. Since F
is maximal, we have M = M A B = M A (F V N) = (M A F) V (M A N) =
/ V (M A N) S iV. Dually 7V,c M. Trivially / is the only ideal of F whose inter-
section with F is / .

THEOREM 3.7. Lef / be an ideal of E. Then there exists MeJ{B)\J{E)
such that M r\E = I if and only if (Z)p-1 e^0(L).

PROOF. Let M e S{B)\J{E) such that M HE = I ,T = M r>L, and 9 = Ip~l.
Then TeJ(L) and to prove that 06<g'o(L), it suffices to show that TeLjO. If
a,beT, then a + beM (~\E and hence by Lemma 2.7, aOb. Conversely let
a e T and be[a]0. Then a + foe/ £ M. Thus we have b =a + a + beM.
Therefore beM nL= Tand so TeLjQ. Since TsJ{V), it is the smallest ele-
ment of L/0. Hence 0 e #0(L).

Next suppose that 0 = Ip-xe<tf0(L). Then 0O = 0ft n((Lx L)u{(0,0)})
= 0/t n(Lx L)/o. By Theorem 3.4, 0/, n (L x L)/o = 0/o and by Lemma 3.5,
I = 6/n = 6fogo = 0/lfiro n(Lx L)fogo = eftgonE. Now 0/ l 3 oe^(B) and if
Tis the smallest element of L/0, then T £ 0/^0- Therefore Qfxg0§J(E).

It follows from this theorem that a congruence of £ which has exactly two
extensions to B is induced (see the discussion after Corollary 2.12) by an ele-
ment from

4. Extension Property
Let K be a distributive lattice. We say that K has the extension property

(EP) over L if L is a sublattice of K and each congruence of L can be uniquely
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extended to a congruence of K. If L is a sublattice of K, then K has (EP) over L
if and only if the mapping of ^(K) into 'tf(L), which sends / onto x^(L x L),
is one-to-one. (It is well known that this mapping is onto (Gratzer (1971; Theorem
6, page 90)). The next lemma is immediate from the definition.

LEMMA 4.1. Let K be a distributive lattice and M and L be sublattices
of K such that L ^ M. Then K has (EP) over L if and only if K has (EP) over
M and M has (EP) over L.

THEOREM 4.2. Let B be a generalized Boolean lattice R-generated by L.
(i) If OeL and K is a sublattice of B that contains L, then K has (EP)

over L.
(ii) If 0$Land K is a sublattice of B\E that contains L, then K has (EP)

over L.

PROOF. Let K be as either in (i) or (ii), 9 e %(L) and / e <£(K) such that x
is an extension of 9. Trivially, K i?-generates B and E = {cl-{ 1- c2n | cu---,c2neK),
where E is the ideal of B evenly generated by L. Let /„ and Ix be the ideals of E
generated by {a + b | a, b e L and a9b} and {c + d | c, d e K and c%d} respectively.
Clearly Ig £ Ix. Suppose (by way of contradiction) that Ig # Ix. Let f e ^ ( L )
such that OFJgT1 = Ix, where g'1 is the isomorphism given in Theorem 2.8.
Since Ix=> Ie, we have by Lemma 2.6 that there exists a,beL such that
a + be Ix\Ie and (a, b) e *¥\9. Now a + belx implies (a, b)ex and hence (a, b)e 9,
a contradiction. Therefore lx = Ie. Since K generates B and E is the ideal of B
evenly generated by K, we have by Theorem 2.8 that x is unique.

COROLLARY 4.3. Let B be a generalized Boolean lattice R-generated by L.
(i) If OeL, then B has (EP) over L.
(ii) lfO$L, then B\E has (EP) over L.

Note that in the preceding corollary, if 0 $ L, then BjE is a relatively com-
plemented lattice without a smallest element. Also, it gives a corrected version
of Gratzer (1971; Lemma 5, page 104).

LEMMA 4.4. Let K be a distributive lattice that has (EP) over L.
(i) If a0 is the smallest element of L, then a0 is the smallest element of K.
(ii) If c0 is the smallest element of K, then coeL.

PROOF, (i) Let eeK and x = {(c,d)\c,deK, c f\e f\a0 = d /\e A a0,
and c\/ a0 = d\/ a0}. It is readily verified that xe^(^0 a n d (e A a0,ao)ex-
If a,beLand axb, then a = b as a0 is zero the of L. Therefore / O(L x L) =
{(a,a)| a eL} and since K has (EP) over L, it follows that x = {(c>c)\ceK}.
Hence e A a0 = a0.

(ii) If c0 4 L, then by (i), Ldoes not have a smallest element. If D is the dual
ideal of K generated by L, then D = {c I c 2: a for some aeL} and D n {c0} = • •
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By Gratzer (1971; Theorem 15, page 75) there exists a prime ideal P of K such that
coeP and PIOD = • • Let / = {(c,d\c,deP or c,deKIP}. Then xe%{K) and
K/x = {P,K\P}. Moreover, xr\{L x L) = L x L = (K xK) O(L x L). Thus
K does not have (EP) over L.

We now prove a converse of Theorem 4.2.

THEOREM 4.5. Let K be a distributive lattice that has (EP) over L. Then
there exists a generalized Boolean lattice B that is R-generated by Land such
that K is a sublattice of B. Moreover, if L does not have a smallest element,
then K £ B\E, where E is the ideal of B evenly generated by L.

PROOF. Let C be a generalized Boolean lattice .R-generated by K and let
D = { x | x e C and there exists al,---,a2neL such that x = ay + ••• + a2n}•
Since Lis a sublattice of C, D is a subring of C. Let c, d e K, Xi = {(*, y) \ x, y e K
and x + y ^ c + d], and Xi — {(x» .V) | x> >'e K a n ^ x + y<Lef^c + d for
some e e D } . Clearly X\ is reflexive and symmetric. If (x, y), (y,z)GXi> t n e n

x + y <: c + d and ;; + z ^ c + rf. Hence (x + y) V (y + z) ^ c + cf. Now
x + z = (x + y) + (y + z) is the relative complement of (x + y) A (>' + z) in
[0, (x + y) V (y + z)] and hence x + z ^ c + d. Therefore Xi is a n equivalence
relation on K. Let (x,y)ext and z E K . Then xz + yz = (x + y) A z g x + j>
^ c + d and so (x Az, v A z) e / t . Now xAz + y\Jz = x + z + xz + y + z
+ yz = (x + y) + (x + y)z ^ (x + y) V ((x + y)z) ^ x + y ^ c + d. Therefore,
(x V z, yV z ) e x i and so X t G ^ X ) . A similar argument yields that
and obviously Xi-X\- ^(a, b) e / x n (L x L), then a + b ^c + d and a
Therefore (a, 6) e x2 • Since X has (£P) over L, it follows that *i = Xz • s i n c e

(c, d)exi, we have c + d ^ e g c + rffor some eeD so c + d e D . It follows
that D is the ideal of C evenly generated by K.

If /C has a smallest element c0, then by Lemma 4.4, coeL and c0 is the zero
of C. Thus, since 0 e K, we have by Theorem 2.4 that D = C. Therefore C is
a generalized Boolean lattice K-generated by Land D is the ideal evenly generated
by L.

If K does not have a smallest element, then by Lemma 4.4, L does not have
a smallest element. Since K generates C and 0<£K, we have by Corollary 2.5
that D is a maximal ideal of index two in C and iC n D = Q . Thus if a e L,
D + a = C\D. Again we have that C is a generalized Boolean lattice R-generated
by L and D is the ideal evenly generated by L.

Finally, if Ldoes not have a smallest element, then K does not have a smallest
element and so K s C\D.

As a corollary to the proof of this theorem we have

COROLLARY 4.6. Let K be a distributive lattice that has (EP) over L. If C
is a generalized Boolean lattice R-generated by K, then C is R-generated by L.
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COROLLARY 4.7. / / K is a relatively complemented distributive lattice that
has (EP) over L, then there exists a generalized Boolean lattice B that is R-gen-
erated by L and such that K = B or K = B\E.

PROOF. By the theorem there is a generalized Boolean lattice .R-generated
by Lsuch that K is a sublattice of B. If 0 e L, then OeK and so K is a generalized
Boolean lattice. Let a, be L and let c be the relative complement of a A b in the
interval [0, a\/ b~]Kof K. Then c = a + b and it follows that E £ K. By Theo-
rem 2.5, E = B.

If 0 $ L, then by the theorem K s B\E. Let x e B\E. Then x = a t + ••• + a2«-i
where a,, •••)a2n_1 e L with aj g ••• g a2B_!. If n = 1, then ^ e K . Suppose
that n > 1 and that a2 + ••• + a2n-2eK. Now a : g a2 ^ a2 + "• + a2n-2 ^
a2n-2 ^ a2«-i • Let c be the relative complement of a2 + ••• + a2n^2 in the
interval Oi ,a 2 n - i ]K of K. Then o^ = c A (a2 + ••• + a2n.2) and a2n_j =
cy(a2 + •••+a2n_2) = c + a2 + ••• + «2n_2 + c(a2 + ••• +a2n-2). Hence,
«i + ••• + a 2 n - i = c e X .

COROLLARY 4.8. Let K be a relatively complemented distributive lattice
that has (EP) over L. Then no proper sublattice of K contains L and is relatively
complemented.

PROOF. Let M be a relatively complemented sublattice of K that contains L.
By the preceding corollary, there is a generalized Boolean lattice B that is R-gtn-
erated by Land such that K = B or K = B\E. Then the proof of Corollary 4.7
shows that M = K.

COROLLARY 4.9. Let K^ and K2 be relatively complemented distributive
lattices which have (EP) over L. Then there is an isomorphism of Kt onto K2

that is the identity on L.

PROOF. Let B^ and B2 be generalized Boolean lattices that are i?-generated
by Ki and K2 respectively. By Corollary 4.6, Bt and B2 are .R-generated by L.
By Gratzer (1971; Theorem 6, page 104) there is an isomorphism q of B onto
B2 that is the identity on L.) (We note that Theorem 6 of Gratzer (1971) is valid
even though Lemma 5 which is invalid, is used in the proof.) If 0 e L, then B^ = iCt

and B2 ~ K2. If 0 e L, then Kt = B1/£1 and K2 = B2jE2, where E, is the ideal
of Bj evenly generated by L. Since (K^q is a relatively complemented lattice
that contains L, we ghave by Corollary 4.8 that (Kt)q = K2.

5. An example

The motivation for many of the ideas in this note is the following example.
Let P denote the power set of the naturally ordered set of integers and F

denote the collection of all finite subsets of the integers. For n e Z , (n] will
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denote the ideal of Z generated by n. Let B = F u {(n] u S \ n e Z and S e F}.
Then B is a sublattice of the complete Boolean lattice P and it is readily verified
that B is a generalized Boolean lattice.

Let r be the mapping of ^(Z) into P given by (0)r = l\{n \ n = l.u.b.[«]0}.
Then r is an isomorphism of " (̂Z) onto P and hence #(Z) is a complete Boolean
lattice. If L = {(«] | n e Z}, then L is isomorphic to Z, B is /^-generated by L,
and F is the ideal of B that is evenly generated by L. By Corollary 2.11, #(F)
is isomorphic to #(L) and hence to ^(Z). Since F satisfies the descending chain
condition, there does not exist an isomorphism of L into F .

Suppose (by way of contradiction) that ^(Z) is isomorphic to ^(B). Since B
is a generalized Boolean lattice, -f{B) is isomorphic to ^(B). Thus the ideals of
B form a Boolean lattice. However, by the corollary to Theorem 4.3 (Hashimoto
(1952; page 165)) this implies that B satisfies the descending chain condition.
This is impossible as L is a sublattice of B.

References

G. Gratzer (1971), Lattice Theory, (W. H. Freeman and Company, San Francisco, 1971).
G. Gratzer and E. T. Schmidt (1958), 'On the generalized Boolean algebra generated by a distrib-

utive lattice', Indag. Math. 20, 54-553.
J. Hashimoto (1953), 'Ideal theory for lattices', Math. Japan. 2,149-186.

University of Houston
U.S.A.

and

University of Wyoming,
U.S.A.

https://doi.org/10.1017/S1446788700029529 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700029529

