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Abstract 

An increasingly common phenomenon in modern work and school settings is individuals 

taking on too many tasks and spending effort without commensurate rewards. Such an 

imbalance of efforts and rewards leads to myriad negative consequences, such as burnout, 

anxiety, and disease. Here, we develop a model to explain how such effort-reward 

imbalances can come about as a result of biased social learning dynamics. Our model is 

based on a phenomenon that on some US college campuses is called "the floating duck 

syndrome." This phrase refers to the social pressure on individuals to advertise their 

successes but hide the struggles and the effort put in to achieve them. We show that a bias 

against revealing the true effort results in social learning dynamics that lead others to 

underestimate the difficulty of the world. This in turn leads individuals to both invest too 

much total effort and spread this effort over too many activities, reducing the success rate 
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from each activity and creating effort-reward imbalances. We also consider potential ways 

to counteract the floating duck effect: we find that solutions other than addressing the root 

cause, biased observation of effort are unlikely to work. 

1  Introduction 

Modern life constantly calls upon us to decide how to divide our time and energy between 

different domains of life, including school, work, family, and leisure. How we allocate our 

time and energy between the domains, how many different activities we pursue in each 

domain, and what the resulting rewards are, have profound effects on our mental and 

physical health. For example, occupational health research shows that persistent 

mismatches between effort at work and the material and social rewards from it can cause 

mental and physical health problems (Siegrist, 1996; Nordentoft et al., 2020). A common 

component of such a mismatch is overcommitment, or taking on too many task, which 

causes individuals to overextend themselves and underachieve rewards. Overcommitment 

in work and school settings is well documented and is frequently associated with adverse 

outcomes such as depression and anxiety (Wege et al., 2017; Adam, 2021; Porru 

et al., 2021). Overcommitment and the resulting pressure to multitask also contributes to 

incentives for academic dishonesty (Lavy, 2023). In all, overcommitment and effort-reward 

imbalances contributes significantly to the heavy toll of mental health problems on college 

campuses that claim more than a thousand students’ lives every year (Mistler et al., 2012). 

A related phenomenon is known to students as the floating duck syndrome on some US 

campuses. This term, originally coined at Stanford University, compares a student’s career 

to the seemingly effortless glide of a duck on the surface of the water while paddling 

furiously underwater, desperately getting by (Stanford University Student Affairs, 2022). It 

is meant to capture the twin pressures to succeed while making it seem easy. Other 

comparable terms exist in other schools (e.g., "Penn Face" at the University of 

Pennsylvania, or the more descriptive "effortless perfection" at Duke and Princeton 

Universities, Scelfo, 2015). The result of these pressures is that students often observe their 

peers’ successes but less often see the effort that was put in or the failures experienced. 

This phenomenon is often exacerbated by social media platforms and institutional public 



relations, which make successes more visible but not necessarily failures or the effort spent 

to achieve successes. This creates a visibility bias, which refers to a situation where certain 

types of information or actions are more readily observable than others, creating a skewed 

perception of others’ behaviors. In environments where individuals learn from others, such 

visibility biases can skew the information available to individuals. This can cause 

systematic distortions of behavior even in populations of agents that behave optimally 

given their information (Han et al., 2023; Hirshleifer and Plotkin, 2021; Akçay and 

Hirshleifer, 2021). 

In this paper, we propose that the bias against the visibility of effort, i.e., the paddling of the 

"floating duck," is a mechanism that causes overcommitment and an effort-reward 

imbalance amongst students. We develop a mathematical model of social learning in the 

presence of visibility biases. Specifically, we model a world where individuals try to make 

optimal decisions about their work effort, but have incomplete information about the 

difficulty of world, that is, how much effort it takes to succeed in a given activity. They 

therefore try to infer this property by observing the successes and the effort levels of their 

peers. This inference is complicated by the further assumption that each individuals’ costs 

from effort (or utility from success) is private information. We show that under these 

conditions, the pressure to appear to be succeeding effortlessly leads others to 

underestimate how difficult the world is. Somewhat paradoxically, this causes individuals 

to invest too much total effort, while at the same time dividing it between too many 

different activities. We show that this can indeed lead to higher number of successes, but at 

the cost of reducing overall utility and a mismatch between expected and realized rewards. 

The contribution of our paper is to provide an account of the floating duck syndrome and 

its negative consequences based on a rational actor model. Most existing accounts of this 

phenomenon rely on the idea of social comparison and negative emotions like envy 

(Festinger, 1954; Dijkstra et al., 2008; Verduyn et al., 2020). Instead, our model considers 

agents as making optimal decision given their information. In this account the negative 

consequences of the floating duck syndrome follow not from emotional processes, but from 

the fact that in the presence of biased information, individuals’ subjectively (given their 

beliefs) optimal decisions will not be optimal in an objective sense. As a result of the biased 



information, individuals in our model mistakenly expect more rewards for their effort 

which is not realized, leading to effort-reward imbalances. This provides a new hypothesis 

to understand the root cause of overcommitment and burnout on campuses and suggests 

new points of intervention to address the problem by helping individuals make better 

decisions about how to invest their effort. More broadly, our paper contributes to the 

growing literature that regards educational outcomes as resulting from individuals 

responding to perceived returns from their effort. Our own experiences as student and 

faculty, as well as qualitative evidence (McClelland and Case, 2023) suggest that students 

are aware of tradeoffs and opportunity costs they face in allocating effort to their studies 

and other activities, and try to make optimal choices. Recent studies have started to 

quantify returns to study effort in terms of academic achievement (Stinebrickner and 

Stinebrickner, 2008; Ersoy, 2021). These studies show that individuals’ beliefs about these 

returns are not always accurate (e.g., metaanalysis in Pinquart and Ebeling, 2020) and 

experimentally changing these beliefs can result in changes in effort investment and 

outcomes (Ersoy, 2023; Wright and Arora, 2022; Rury and Carrell, 2023). Our model adds 

to this literature by placing it in the context of social learning from peers. We show that 

social learning causes autonomous dynamics in beliefs that can converge to persistently 

inaccurate beliefs if the there are visibility biases. Optimally behaving agents subject to 

such inaccurate beliefs will then experience systematically distorted and suboptimal 

outcomes. We also evaluate some potential solutions to this problem and show that 

solutions that do not address the root cause, biased social learning, are unlikely to succeed. 

2  Basic model of optimal investments 

We consider a simple model where an individual has to decide how much total effort to 

invest into activities, and how many activities to attempt. An activity can be a course, a 

student club, or a job. To keep the model simple, we assume each activity is independent 

from others, and the individual succeeds or fails in each activity only as a function of the 

effort put into that activity. We assume success in each activity yields a unit reward, which 

can be getting a good grade, getting an award, or simply a sense of accomplishment. Effort, 

in turn, can mean both tangible quantities such as time investment, but also less tangible 

quantities such as energy and enthusiasm. What is important is that effort invested into 



activities has a cost, either material costs (e.g., the financial costs of activities) or 

opportunity costs (e.g., not investing enough time in leisure). 

We denote the total (aggregate) effort level as 𝑋𝐴. We assume each individual attempts 𝑛 

activities, and for simplicity assume that the total effort gets distributed evenly across 

activities, so each activity receives effort 𝑥 =
𝑋𝐴

𝑛
, or equivalently the number of activities 

attempted are 𝑛 =
𝑋𝐴

𝑥
. For mathematical convenience, we take 𝑛 to be a continuous variable 

in our main analysis. Success in each activity both a function of the effort (𝑥) invested into 

that activity and the "difficulty" of the world, which we denote by 𝜃; specifically, we denote 

success probability with a twice differentiable function 𝑓(𝑥, 𝜃), with 
𝜕𝑓

𝜕𝑥
> 0 and 

𝜕𝑓

𝜕𝜃
< 0. 

These assumptions mean that investing more into an activity increases the chance of 

success in that activity for a given difficulty 𝜃, while a more difficult world (higher 𝜃) 

reduces the chance of success for a given investment of effort into an activity. Again for 

simplicity, we assume all activities have the same difficulty 𝜃 and the same payoff from 

success which we set to one. The total expected number of successes, 𝑠(𝑋𝐴, 𝑥, 𝜃) for given 

total and per activity effort levels (𝑋𝐴 and 𝑥, respectively) is then given by: 

𝑠(𝑋𝐴, 𝑥, 𝜃) = 𝑛𝑓(𝑥, 𝜃) =
𝑋𝐴
𝑥
𝑓(𝑥, 𝜃) .    (1)  

Finally, we assume that the effort comes at an cost 𝑐(𝑋𝐴, 𝑘), a twice differentiable function 

with 
𝜕𝑐

∂𝑋𝐴
> 0, so the cost is increasing in total effort. We assume the cost function varies 

between individuals: different individuals might experience different levels of cost from a 

given effort (or equivalently, different utility from success in activities). This is accounted 

for by the second argument, 𝑘, in the cost function. We assume this cost parameter 𝑘 is 

privately known to each individual, and not directly observable by others. 

Although many of our results apply generally for suitable functional forms of 𝑓(⋅) and 𝑐(⋅), 

for ease of exposition we will work in part with a convenient set of functions. In particular, 

we will use the Tullock contest function (Tullock, 1980) for the success probability 𝑓 and a 

quadratic cost function 𝑐: 



𝑓(𝑥, 𝜃) =
𝑥𝑎

𝑥𝑎 + 𝜃𝑎
   (2) 

𝑐(𝑋𝐴, 𝑘) = 𝑘𝑋𝐴
2 ,   (3) 

 

where 𝑎 (assumed to be greater than 1) is a shape parameter. This success function can be 

interpreted as each activity being a "contest against the world" where the "world" invests 𝜃 

effort; increasing this 𝜃 lowers success probability. This function is plotted in Figure 1 for 

different values of 𝜃 and for the shape parameter 𝑎 = 2. Higher values of 𝑎 make the 

success function more threshold-like (switching from zero to one more rapidly around the 

difficulty level). 

 

 

   

 

Figure 1:. An example for the success function 𝑓(𝑥, 𝜃) =
𝑥2

𝑥2+𝜃2
, plotted for different values of 𝜃, 

illustrating that the success function is increasing with effort 𝑥, but decreasing with the 

difficulty of the world, 𝜃. Because this function gives the probability of success, it must be 

bounded between 0 and 1 (more generally, the utility from a single activity must be bounded), 

which gives it a characteristic sigmoidal shape.  

2.1  Optimal efforts under perfect information 

We assume that each individual chooses 𝑋𝐴 and 𝑥 to maximize their total utility given by 

𝑠(𝑋𝐴, 𝑥, 𝜃) − 𝑐(𝑋𝐴, 𝑘). Suppose that the individual knows the difficulty of the world 𝜃. (We 



assume every individual knows their own 𝑘.) Then, choosing 𝑋𝐴 and 𝑥 presents no 

problems: the optimal allocations must satisfy the following first order conditions: 

𝜕𝑠

∂𝑋𝐴
−

𝜕𝑐

∂𝑋𝐴
= 0   (4) 

𝜕𝑠

𝜕𝑥
= 0   (5) 

 

Solving these first order conditions gives us optimal total and per activity effort which we 

will denote by 𝑋𝐴
∗(𝜃, 𝑘) and 𝑥∗(𝜃), respectively. Note that the per activity allocation 𝑥∗ does 

not depend on the cost parameter 𝑘, since the cost is only a function of the total effort, not 

how many activities it is allocated to. These optimal effort levels are functions of 𝜃 because 

the success function 𝑓(𝑥, 𝜃) depends on 𝜃 and so does its derivatives. Substituting the 

success function 𝑠(𝑋𝐴, 𝑥, 𝜃) into the equations (4) and (5), we can write: 

𝑓(𝑥∗(𝜃), 𝜃)

𝑥∗(𝜃)
=

𝜕𝑐

∂𝑋𝐴
|
𝑋𝐴=𝑋𝐴

∗ (𝜃)

   (6) 

𝑓(𝑥∗(𝜃), 𝜃)

𝑥∗(𝜃)
=
𝜕𝑓

𝜕𝑥
|
𝑥=𝑥∗(𝜃)

   (7) 

 

We also need to check that the second order conditions 
∂2𝑠

∂𝑋𝐴
2 −

∂2𝑐

∂𝑋𝐴
2 < 0, and 

∂2𝑠

∂𝑥2
< 0 are 

satisfied to ensure that the solution to the first order conditions are a maximum and not a 

minimum of the individual utility. The former implies that we need 
∂2𝑐

∂𝑋𝐴
2 > 0, since 

∂2𝑠

∂𝑋𝐴
2 = 0; 

in other words, the cost of total effort has to be accelerating. Likewise, the other second 

order condition implies 
∂2𝑓

∂𝑥2
< 0; in other words, the marginal increase in the success 

probability in an activity must be declining with the effort put into that activity. 

 



   

 

Figure 2:. Optimal total (𝑋𝐴
∗) and per activity (𝑥∗) efforts as a function of 𝜃, calculated using 

the success function depicted in Figure 1, 𝑓(𝑥, 𝜃) =
𝑥2

𝑥2+𝜃2
, and a cost function 𝑐(𝑋𝐴, 𝑘) = 𝑘𝑋𝐴

2, 

with 𝑘 = 1/200. 

When the success function is given by the Tullock contest function (equation (2)) and the 

cost function is quadratic, the optimal total and per activity effort levels are given by: 

𝑥∗ = (𝑎 − 1)1/𝑎𝜃   (8) 

𝑋𝐴
∗ =

(𝑎 − 1)(𝑎−1)/𝑎

2𝑎𝑘𝜃
 .   (9) 

 

These solutions, depicted in Figure (2) show that the per activity effort increases with 

difficulty 𝜃 while the total effort decreases. The fact that the overall effort is declining in the 

difficulty of the world, 𝜃, might seem counterintuitive but it stems directly from the fact 

that difficulty level only affects the rewards from effort, not the cost. Making the world 

more difficult reduces the rewards from investing more effort, and therefore individuals 

have a reduced willingness to invest. In the Supplementary Information (SI) section SI.1, 

we show that these results hold more generally than these particular functional forms, 

specifically they hold for any kind of sigmoidal success function. We also show that the 

number of successes is always monotonically decreasing in the difficulty of the world. 



2.2  Inferring the difficulty of the world in a heterogeneous population 

Now we consider a world where individuals know the general shape of the success function 

𝑓(𝑥, 𝜃) but do not know how difficult the world is, i.e., the true value of 𝜃, which we will call 

𝜃𝑟 to distinguish from its inferred value. In order to make optimal effort investing 

decisions, individuals need to infer the value of 𝜃. We now show that they can so do if they 

observe both the successes and overall effort levels. 

From inequality (SI.5), we know that the expected number of successes 𝑠∗(𝜃) is 

monotonically decreasing with 𝜃 for a given cost parameter 𝑘. This means that if one 

observed the actual number of successes (or a representative sample) of individuals with 

known cost parameter 𝑘, one could mathematically invert the function 𝑠∗(𝜃, 𝑘) to obtain an 

unbiased estimate of the difficulty of the world, which we will term 𝜃𝑒𝑠𝑡(𝑠𝑜𝑏𝑠), where 𝑠𝑜𝑏𝑠 is 

the observed number of successes. 

However, because individual cost parameters 𝑘 are idiosyncratic and privately known, an 

individual needs more information than just the observed number of successes, 𝑠𝑜𝑏𝑠. 

Intuitively, this is because the same number of successes can be obtained either by 

someone who has low effort costs and invests a lot of total effort in a difficult world, or 

someone with high effort costs and invests relatively little in an easy world. Therefore, 

individuals also observe need to observe the total effort of others, which we denote by 

𝑋𝐴,𝑜𝑏𝑠. We can then rewrite the first order condition (7) as: 

𝑠∗

𝑋𝐴
∗ =

𝜕𝑓

𝜕𝑥
|
𝑥=𝑥∗(𝜃)

 .    (10)  

Note that the right-hand side of the above equation depends on 𝜃 but not on 𝑘. This means 

that if an individual knows the true difficulty level of the world and is behaving optimally, 

the ratio of their expected successes to their optimal total effort can be used to infer the 

true difficulty level 𝜃𝑒𝑠𝑡 . Specifically, if one observes 𝑠𝑜𝑏𝑠 successes and 𝑋𝐴,𝑜𝑏𝑠 total effort 

invested, one can solve the following equation to infer the estimated difficulty of the world, 

𝜃𝑒𝑠𝑡: 



𝑊𝑜𝑏𝑠 ≡
𝑠𝑜𝑏𝑠
𝑋𝐴,𝑜𝑏𝑠

=
𝜕𝑓

𝜕𝑥
|
𝑥=𝑥∗(𝜃𝑒𝑠𝑡)

 ,    (11)  

where we defined 𝑊𝑜𝑏𝑠 as the observed ratio of successes to total effort. We will call this 

quantity the observed success rate per unit overall effort. Equation (11) can give an 

unbiased estimate of 𝜃, provided the observed quantities on the left hand side are also 

unbiased. In particular, using the Tullock contest function (equation (2)) for the success 

function, we can write the estimated 𝜃𝑒𝑠𝑡  as: 

𝜃𝑒𝑠𝑡 =
(𝑎 − 1)(𝑎−1)/𝑎

𝑎𝑊𝑜𝑏𝑠
 .    (12)  

If the success rate 𝑊𝑜𝑏𝑠 is observed without bias, i.e., equal to the ratio obtained from 

solving for the first order condition (eq. (10)), and the observed individuals know the true 

value 𝜃𝑟 , one can show that: 

𝜃𝑒𝑠𝑡 =
(𝑎 − 1)(𝑎−1)/𝑎𝑋𝑡

∗(𝜃)

𝑎𝑠∗(𝜃)
=
(𝑎 − 1)(𝑎−1)/𝑎

𝑎

𝑎𝜃𝑟
(𝑎 − 1)(𝑎−1)/𝑎

= 𝜃𝑟 .    (13)  

In other words, in a world with unbiased observation of accurately informed individuals’ 

successes and total efforts, it is possible accurately infer the true difficulty of the world. In 

the next section, we will show a stronger result, namely that even if the population is 

initially misinformed (have an inaccurate estimate of 𝜃), unbiased social learning dynamics 

will over generations converge to the true value. 

3  Social learning dynamics with visibility bias 

Next we consider a simple model of a social learning dynamic and show that it can 

converge on inaccurate beliefs when individuals hide or underreport their true efforts, or 

effort is otherwise hard to observe fully. This is the essential element of the floating duck 

phenomenon: one does not see the furious paddling underwater. This is a kind of visibility 

bias (Han et al., 2023), which is related to but is distinct from tranmission biases 

considered in social learning literature which mostly deal with non-random selection of 

models to learn from (Kendal et al., 2018). 



Our dynamic proceeds as follows: at each time step 𝑡, a naive individual enters the world. 

They know their own cost function, including their cost parameter, 𝑘, and the functional 

form of the success function 𝑓(𝑥, 𝜃), but do not know the value of 𝜃𝑟 , the (constant) true 

difficulty of the world. To infer the difficulty of the world, the naive individual observes the 

individual from the previous generation (time 𝑡 − 1), specifically their success rate 𝑊𝑜𝑏𝑠. 

They do not observe the previous generation individual’s cost parameter 𝑘 (nor need to, 

given 𝑊𝑜𝑏𝑠, to infer 𝜃𝑒𝑠𝑡). Note that in this setting, the expected success rate is a function of 

both the true difficulty level of the world, 𝜃𝑟 , and the estimated one, 𝜃𝑒𝑠𝑡 . The latter is what 

individuals use to solve their optimality conditions, while the former determines the actual 

success probability given the efforts invested. 

To model the floating duck phenomenon, we assume that individuals systematically 

underreport their effort level by a constant factor of 𝛿 (0 ≤ 𝛿 < 1). In other words, we 

assume: 

𝑋𝐴,𝑜𝑏𝑠 = (1 − 𝛿)𝑋𝐴
∗(𝜃𝑒𝑠𝑡) ,    (14)  

where 𝑋𝐴
∗(𝜃𝑒𝑠𝑡) is the optimal total investment when the difficulty of the world is estimated 

as 𝜃𝑒𝑠𝑡 . This in turn means that the observed success rates 𝑊𝑜𝑏𝑠 are inflated from their true 

values by a factor 
1

1−𝛿
. When the success and cost functions are given by the functions in (2) 

and (3), this means that the expected observed success rate, when generation 𝑡 − 1 

estimates the difficulty of the world as 𝜃𝑒𝑠𝑡(𝑡 − 1) while it is in reality 𝜃𝑟 , is given by: 

𝑊𝑜𝑏𝑠 =
(𝑎 − 1)(𝑎−1)/𝑎

(1 − 𝛿)𝜃𝑒𝑠𝑡(𝑡 − 1) (𝑎 − 1 + (
𝜃𝑟

𝜃𝑒𝑠𝑡(𝑡 − 1)
)
𝑎

)

 .     

Substituting this into equation (11), we obtain for the estimate of the difficulty in 

generation 𝑡, 𝜃(𝑡): 

𝜃𝑒𝑠𝑡(𝑡) =
(1 − 𝛿)[(𝑎 − 1)𝜃𝑒𝑠𝑡(𝑡 − 1)𝑎 + 𝜃𝑟

𝑎]

𝑎𝜃𝑒𝑠𝑡(𝑡 − 1)𝑎−1
 .    (15)  

This equation allow us to calculate what the current generation’s estimate 𝜃𝑒𝑠𝑡(𝑡) will be 

given the previous generation’s estimate. This gives us a discrete time dynamical system, or 



equivalently, a one-dimensional discrete map (Strogatz, 1994). For such a discrete time 

dynamic, one of the main quantities of interest is its fixed points or equilibria, which are 

points where the dynamics do not lead to any change from one generation to the next. 

Further, a fixed point or equilibrium can be stable or unstable, meaning that the dynamics 

might return to the fixed point when perturbed away from it, or not. Stable fixed points can 

be expected to be the outcomes in the long run of discrete time dynamics such as the one 

given in (15). 

The fixed point of the map in estimated 𝜃𝑒𝑠𝑡 can be found by setting in equation (15) 

𝜃(𝑡) = 𝜃𝑒𝑠𝑡(𝑡 − 1) = 𝜃𝑒𝑠𝑡
∗  and solving for 𝜃𝑒𝑠𝑡

∗ , which yields: 

𝜃𝑒𝑠𝑡
∗ = 𝜃𝑟 (

1 − 𝛿

(𝑎 − 1)𝛿 + 1
)
1/𝑎

 .    (16)  

For 𝛿 > 0, i.e., with underreporting of effort, and 𝑎 > 1 the factor multiplying 𝜃𝑟 on the 

right hand side is going to be less than one, meaning that the equilibrium estimate 𝜃𝑒𝑠𝑡
∗  

from the social learning dynamics is going to be less than the true difficulty of the world, 𝜃𝑟 

(Figure 3). In other words, the floating duck syndrome will make individuals underestimate 

the difficulty of the world in the long run. 

   

 

Figure 3:. Graphical depiction of the one dimensional map in equation (15) that describes the 

social learning dynamics, with 𝛼 = 2 and 𝜃𝑟 = 3. The blue and red curves show the current 



generation’s estimate 𝜃𝑒𝑠𝑡(𝑡) given the previous generation’s, 𝜃𝑒𝑠𝑡(𝑡 − 1), for 𝛿 = 0 (no 

underreporting) and 𝛿 = 0.3 (30% of effort gets unreported), respectively. The point at which 

each curve intersects the 45∘ diagonal is an equilibrium of this dynamic. The blue curve 

intersects the diagonal at exactly 𝜃𝑟 (marked with a vertical dashed line), meaning that 

without underreporting, the social learning dynamics converge to the true value of the 

difficulty of the world. In contrast, the red curve’s intersection with the diagonal lies below 𝜃𝑟 , 

indicating that underreporting causes the equilibrium estimate of the difficulty to be lower 

than the true difficulty.  

This fixed point is stable when the derivative of the right-hand side of equation (15) with 

respect to 𝜃𝑒𝑠𝑡(𝑡 − 1), evaluated at the fixed point, is between −1 and 1, which yields: 

𝛿 <
1

𝑎 − 1
 .    (17)  

If this condition is satisfied, the learning dynamics converge to a stable value. If it is not 

satisfied, the dynamics converge to a stable cycle, as is common in discrete maps. Note that 

the parameter 𝑎 determines how steep the Tullock contest function is (i.e., how quickly it 

switches from low success probability to high success probability). Therefore, this 

condition means that steeper success functions impose a stronger limit on underreporting 

in order for learning dynamic to converge to a stable equilibrium. 

Figure 4 plots against the underreporting bias, 𝛿, the fixed point estimate 𝜃∗ from the social 

learning dynamics, the mean number of successes, failures, and the mean success rate (i.e., 

the number of successes per total effort) when individuals estimate 𝜃∗ but the real 

difficulty is 𝜃𝑟 . It shows several features: first, as indicated above, the fixed point of the 

social learning dynamics decreases as the underreporting bias increases. Remarkably, this 

leads to an increased expected number of successes, despite the fact that the equilibrium 

effort per activity decreases as shown in Figure 2 for 𝛼 = 2.1 This is because the total effort 

 
1 1This result is true for the stable fixed point 𝜃∗ of the social learning dynamics for any 𝛼 >
1. However, equation (17) implies that for 𝛼 > 2, there is a threshold 𝛿 that is less than 1, 
above which the fixed point becomes unstable. For 𝛿above this threshold, the total number 
of successes decrease with 𝛿. 



increases with the reduced inferred difficulty of the world, so while each activity is less 

likely to succeed, individuals try out many more activities. This is indicated by the fact that 

the mean number of failures (i.e., activities that were attempted but did not yield success) 

is sharply increasing with 𝛿. Finally, while both the mean number of successes and total 

effort increased with 𝛿, the success rate (their ratio) is decreasing as total effort gets 

diluted into more activities, many of which fail. 

   

 

Figure 4:. Illustration of the effects of the floating duck syndrome, using the Tullock contest 

function and quadratic cost functions (eqs. (2) and (3)) with 𝑎 = 2, 𝑘 = 1/200, and true 

difficulty of the world 𝜃𝑟 = 3, indicated with the dashed line in the first panel. Panels show the 

variation with underreporting 𝛿 in: (A): the long run estimate of the difficulty of the world, 

𝜃∗m given the level of underreporting (equation (16)), (B) number of successes expected 

(dashed curve) and realized (solid curve) at optimal effort investment given the long run 

estimate 𝜃∗, (C) the number of failures at this long run estimate, and (D) the expected (dashed 

curve) and realized success rate at this long run estimate. Panel A shows that as 

underreporting of effort increases, the social learning dynamics in the long run underestimate 

the true difficulty of the world (depicted by the dashed line) more severely. This leads 

individuals to put in more total effort and spread this out over more activities (as shown in 

Figure 2). As a result, the mean number of successes increases (Panel B), but so does the 



discrepancy between the number of successes individuals come to expect given the inferred 

estimate 𝜃∗ (dashed curve in Panel B) and the actual number of successes realized (solid 

curve in Panel B). Likewise, the number of failures (activities attempted by did not succeed 

also increases with underreporting (Panel C). Because total effort increases faster than the 

realized number of successes, the realized success rate per effort decreases (solid surve in 

Panel D) with underreporting, despite the fact that individuals’ long run estimates 𝜃∗ makes 

them expect higher success rates (dashed curve in Panel D). This is an indication of growing 

effort-reward imbalance as the level of underreporting increases.  

These results show how the floating duck syndrome can lead to effort-reward imbalance 

(Siegrist, 1996), where individuals increase their effort relative to what would be optimal 

but do not achieve commensurate rewards, and indeed have to face the prospect of many 

more failures because the effort is diluted across too many activities. It also shows that this 

can happen while the absolute number of successes is going up, so focusing only on 

successes would not pick up this outcome. We believe that these results capture the 

essence of what is going on in many college campuses. 

3.1  Short-term fixes do not solve the problem 

Above we have shown that underreporting of effort in a social learning dynamic causes 

individuals to underestimate the difficulty of the world, and leads to effort-reward 

imbalances It is tempting and to some degree inevitable to react to the adverse 

consequences of this underestimation by trying to lower the true difficulty so that it 

matches the expected difficulty inferred by the social learner. For example, it is tempting 

for faculty in a course to make assignments easier or give higher grades for the same 

performance. While this might resolve the short term effort-reward imbalance, our model 

suggests that it will not work in the long term. 

Specifically, we can model such a short term "fix" by assuming that some outside agent 

(e.g., faculty or parents) anticipates the underestimation of 𝜃 and adjusts the difficulty of 

the tasks to lower the actual difficulty, 𝜃𝑟 , so that it matches the estimated difficulty 𝜃𝑒𝑠𝑡  

from social learning. Going through the same steps as in the previous section, we can 



calculate the expected success rate and the equivalent of the discrete map in equation (15), 

which in this case simplifies to: 

𝜃(𝑡) = (1 − 𝛿)𝜃(𝑡 − 1) .    (18)  

This means that even if an outside agent intervenes and lowers the true difficulty of the 

world to match the (initially) underestimated difficulty, agents in the next round that 

observe the (inflated) success rate from this artificially lowered difficulty setting will 

estimate an even lower difficulty level. The only equilibrium of that process is when 𝜃 = 0, 

where success probability is 1 for any level of effort. In other words, trying to address the 

consequences of floating duck problem by lowering the difficulty of the world can only 

result in the world becoming trivially easy. 

3.2  Individual learning does not fully solve the problem 

Another intuitive solution to the floating duck effect is direct individual learning. If 

individuals get to experience the world themselves, they can get their own unbiased read 

on the difficulty of the world, counteracting the bias due to underreporting of effort. 

Specifically, we can consider a world that naive individuals first rely on social learning to 

infer the difficulty of the world, but update their estimates once they have their own 

experiences. In this world, since individuals decide (and therefore know) both their per 

activity effort 𝑥 and total effort 𝑋𝐴 and observe their successes they can directly obtain an 

unbiased estimate of 𝜃𝑟 . Thus, we can assume that after just one round of investments, 

individuals would learn the true difficulty level 𝜃𝑟  without any bias. Note that this analysis 

is meant to be a "best case" scenario for individual learning; there are many reasons to 

expect that learning might not yield an unbiased estimate after just one round. 

Even in this best case scenario for individual learning we run into the trouble when the 

information gets transmitted through biased observation of effort levels. To see this, we 

can calculate the average success rate 𝑊 of an individual over two rounds where the 

individual invests optimally in the first round using socially inferred 𝜃1 and in the second 

round using the true 𝜃𝑟: 



𝑊 =
𝑋𝐴
∗(𝜃1)/𝑥

∗(𝜃1)𝑓(𝑥
∗(𝜃1), 𝜃𝑟) + 𝑋𝐴

∗(𝜃𝑟)/𝑥
∗(𝜃𝑟)𝑓(𝑥

∗(𝜃𝑟), 𝜃𝑟)

𝑋𝐴
∗(𝜃1) + 𝑋𝐴

∗(𝜃𝑟)
 ,    (19)  

where the numerator is the total number of expected successes over two rounds (first 

round investing according to an inferred 𝜃1, second round investing according to the true 

𝜃𝑟), and the denominator is the total effort over two rounds. We assume that the next 

individual observes this average success rate but subject to the same underreporting of 

effort 𝛿 as before (i.e., 𝑊𝑜𝑏𝑠 = 𝑊/(1 − 𝛿) and uses that to infer their initial estimate 𝜃1. 

Using the same argument above, we can compute the fixed point for the first round 

estimate 𝜃1
∗. Figure 5 depicts how this first round estimate behaves with 𝛿. It shows that 

while individual learning can solve the problem (by assumption) for the second round 

investments, underreporting of effort still will lead individuals to underestimate the 

difficulty of the world. 

   

 

Figure 5:. The fixed point estimate for the first round estimate of 𝜃, 𝜃1 in a model with 

"perfect" individual learning, where individuals after one round can infer the true value of 𝜃𝑟 

and invest accordingly. However, the next round individual still observes the average success 

rate subject to underreporting of effort. As the figure shows, individual learning by itself does 

not get rid of the underestimation problem: naive individuals still infer a difficulty of the 

world lower than the true value (solid curve), and in fact, slightly lower than in the model 

without any individual learning (dotted curve, same as the top left panel in Figure 4). 



4  Discussion 

In this paper, we use a simple model to elucidate the consequences of the "floating duck" or 

effortless perfection syndrome, where individuals hide their actual effort and struggles to 

convey a perception that they achieve their successes with ease. We show that when 

individuals try to infer the returns to effort, i.e., the difficulty of the world, by social 

learning from peers, underreporting of effort leads others to underestimate the true 

difficulty of the world (i.e., how much effort it takes to succeed), which leads to both 

increased overall effort but also spreading out of this effort over too many activities. As a 

result, we show that individuals might in fact achieve more successes in absolute number, 

but their success rate, i.e., number of successes per total effort, goes down, because they 

invest into too many activities. This can explain the twin phenomena of overcommitment 

and effort-reward imbalances that lead to burnout and anxiety on many education 

institutions and workplaces. 

One alternative hypothesis for overinvestment to the one we model here is that it might 

arise from an overvaluation of successes, either objectively or due to biased perceptions. 

For example, one can easily imagine (and find examples of in the real world) a biased social 

learning dynamic that leads individuals to overestimate the number of successes they need 

to get hired for a job (or be admitted to professional schools). This would result beliefs that 

overestimate the marginal value of additional successes. In the SI section SI.2, we show that 

when the return from successes is overestimated individuals also overinvest in aggregate 

(choose an 𝑋𝐴 that is higher than optimal given true value of success). However, they do not 

overspread the effort (which only depends on the perceived difficulty), so that their 

probability of success per activity, and therefore their success rate would not decline. Thus, 

under the optimal choice assumptions of our model, merely overestimating the value of 

successes (or overestimating how many successes one needs to get hired) can explain 

overwork, but cannot explain why effort is spread too thin. The latter requires uncertainty 

and biased estimates about how effort in each task translates into success in that task 

under our assumptions. This suggests that other factors, such as uncertainty about overall 

aptitude of individuals or specific aptitude for particular tasks, might have similar effects. 



For example, if individuals overestimate their aptitude (which is similar to underestimating 

difficulty; see SI SI.3), this can lead to both overinvestment and overspreading of effort. 

Existing evidence supports some main assumptions and results of our model. Multiple lines 

of evidence suggest that individuals are indeed not accurately informed about how hard 

the activities they attempt are, or how their efforts will translate into success. A 

phenomenon consistently reported across decades is that students tend to overestimate 

the grades they will receive in classes (Murstein, 1965; Pinquart and Ebeling, 2020), 

consistent with at least initial underestimation of the difficulty of classes. More recent 

experimental evidence suggests that individuals change their effort investments when 

provided with information about the relation between effort and success or rewards, in 

line with what our model predicts. For example, Ersoy (2023) experimentally induces 

beliefs of higher vs. lower returns to effort in people who are taking online language 

learning lessons. Individuals who believed the returns from lessons are higher (defined as 

improvement in test scores per lesson) completed more lessons. As this experiment only 

manipulated beliefs about the returns from a specific activity, this is consistent with our 

model’s prediction that individuals will invest more total effort in an easier world. 

Likewise, Wright and Arora (2022) find that college students tend to overestimate the 

grades they will get in a class, and interventions to provide better information about 

expected grades results in more effort for at least some groups of students. Another recent 

study by Rury and Carrell (2023) asked students how many hours per week they thought 

they would have to invest to improve their grade by one letter grade and later told students 

in the treatment group what this number was in the previous iteration of the same course. 

Interestingly, they found that most students overestimated how many additional hours 

they need to study improve their grade. Telling them the true number in the previous year 

therefore lowered how difficult students believe it is to improve their grade (equivalently, 

increased the expected grade return from an additional hour of study). Again consistent 

with the model, they found a (short term) increase in the effort invested in homework, 

although this effect dissipated over the course of the semester. Overall, these empirical 

findings support the hypothesis that students often have incorrect estimates of the 



difficulty of courses or the returns of a given level of effort and react to information about 

these in a way consistent with our model. 

Given its adverse effects, the obvious question is why the floating duck syndrome, 

specifically the underreporting of effort, exist in the first place. While our basic model does 

not directly address this question, it highlights at least two compelling answers. The first 

answer relies on the observation that the successes achieved are often a means to an end. 

For example, good grades in college are often regarded as indicators of innate ability and 

the willingness to put in effort, and prospective employers for example often care about 

these attributes of a candidate much more than grades or degrees as such. If innate ability 

and effort are substitutes (as is true in our model and undoubtedly so to some extent in the 

real world), individuals can manipulate a prospective employer’s estimates of innate ability 

by underreporting effort. In section SI.3, we present a simple model that illustrates how 

this phenomenon might work. It shows that underreporting comes with a tradeoff for a 

given success level: individuals can appear more capable, but at the same time will appear 

to have higher effort cost (less willing to put in effort). Yet despite this, the analysis shows 

that individuals can gain by underreporting. While that model is only illustrative, it 

highlights how optimal behavior can lead to downplaying efforts after the fact, setting off 

the biased learning dynamics and the floating duck syndrome. Our results suggest that we 

need to design selection and reward schemes and promote cultural change that counteract 

these incentives to underreport effort. For example, emphasizing the willingness to put in 

effort in the face of difficult tasks relative to having higher innate ability when choosing 

candidates for jobs and additional educational opportunities would likely reduce the 

incentive to underreport effort. On the other hand, it can also exacerbate the over exertion 

problem. How to navigate this tradeoff remains an open problem. 

The second reason for why underreporting of effort might be prevalent is institutional 

culture. Notice that our model predicts that the absolute number of successes is increasing 

the level of underreporting. This means that an institution where individuals underreport 

their effort to others in the same institution, leading them to underestimate the difficulty of 

the world, overinvest, and end up with higher total successes, albeit at the expense of too 

high individual costs. Leaders of an institution that measures itself solely by the number of 



successes of their members would gain by encouraging a culture of underreporting, as long 

as the costs borne by members (burnout due to effort-reward imbalance, negative 

psychological consequences of excess failure rate) are not reflected on the institution’s 

objective functions. Arguably, this scenario describes many institutions of higher education 

and many workplaces, at least until relatively recently. A positive development in recent 

years is that the individual costs of overcommitment and the negative consequences of the 

floating duck syndrome are becoming more salient for institutions, in part because they 

start to reflect on the institution itself. It might therefore be expected that these costs, 

internalized at the institution level, might in the long term weaken or reverse the culture of 

underreporting. 

We considered some intuitive proposals to counteract the floating duck effect, and found 

that neither offers a complete solution. First we can show that the tempting (and oft-taken) 

short term fix of lowering the actual difficulty to match the (initially) underestimated levels 

is doomed to fail in the long term, since it requires constantly lowering difficulty level of 

tasks until everything becomes trivial. This confirms the intuition that many faculty share 

that lowering standards is a losing proposition (Arum and Roksa, 2014) but at the same 

time, our results highlight that simply refusing to lower standards or try to increase 

standards does not address the problem, as it would simply perpetuate the effort-reward 

imbalances. Second, letting individuals learn by themselves is also only a partial solution: 

even if we let individuals to gain perfect knowledge of the difficulty of the world from 

personal experience, as long as this information is transmitted by biased observation of the 

success rate, social learning dynamics will still lead to initial underestimation of the 

difficulty. Another tempting solution is to directly reward effort spent on individual 

activities to avoid overspreading of the effort. Our analyses (not shown) confirm that this 

can increase the per activity effort for a given difficulty level, but it does not solve the 

underestimation problem, and therefore at the social learning fixed point individuals will 

still overinvest and overspread. 

Counteracting the underreporting of effort in social learning dynamics would get to the 

root of the problem. How this can be accomplished is less clear, however. Cultural change 

that rewards honest and unbiased accounting of actual effort expended for school tasks 



would be welcome. For example, revealing what is often called the "shadow CV" 

(Looser, 2015), which includes not just successfully completed degrees, activities, awards, 

etc. but also failed activities, e.g., awards, fellowships an individual applied but did not get, 

would be helpful. In our model, if all failures are revealed as well as the successes, it allows 

an unbiased estimate of the difficulty of the world, and counteracts the floating duck effect. 

However, anecdotal evidence suggests that getting people to reveal all their failures is a 

hard sell in contemporary society, for reasons discussed above. At the same time, 

institutions can invest in accurate accounting of effort that goes into different activities 

(including extra-curricular activities) and communicating these clearly and in an unbiased 

way to students to counteract the underreporting bias. 

Our model is clearly highly stylized and does not capture a lot of the complexity of the real 

world or all mechanisms that can cause overcommitment and burnout for students. This is 

intentional. Our approach is the time-honored "proof-of-concept" model approach from 

evolutionary biology (Servedio et al., 2014), which intends to capture one significant aspect 

of the real world (in our case, the effects of social learning dynamics based on biased 

information), while still remaining tractable. Servedio et al. (2014) divides assumptions in 

this kind of model into three: critical, exploratory, and logistical. Our critical assumptions 

are that individuals are making decisions to maximize their number of successes given 

effort is costly, the difficulty of the world is initially unknown to them, and they infer it 

using two pieces of information: successes of others and their effort level, the latter of 

which is observed with some downward bias. Our model is intended to show that a 

seemingly disparate collection of phenomena can be explained with these critical 

assumptions. These phenomena, which are commonly observed in contemporary college 

campuses, include individuals both doing too much overall and doing too little for each 

task, as well as facing feelings of failure even though their absolute number of 

accomplishments go up. These results advance a new hypothesis to explain this collection 

of phenomena based on biases in social learning, rather than individual level emotional 

processes. 

There are other assumptions we make that fall into the exploratory and logistical 

categories. An example of an important exploratory assumption in the simple model is that 



individuals cannot learn individually. As we show in the section "Individual learning does 

not fully solve the problem," adding individual learning from own experience, even under 

the best case scenario of perfect information gained after just one round, does not fully 

negate the effects of the biased social learning. Finally, we also made logistical 

assumptions; for example that individuals observe expected number of successes instead of 

a draws from a binomial distribution and that all activities have the same difficulty and 

reward. Relaxing these would add complexity to the model and they might introduce 

additional wrinkles on top of the basic dynamics discussed here. For example, if activities 

were heterogeneous in difficulty or reward, individuals would be facing a richer 

information environment, and depending on how difficulty and reward correlate (and how 

they are observed), one might imagine additional dynamics like individuals sorting 

themselves according to their abilities and this might cause additional kinds of biases. 

Another logistical assumption we made in our basic model is that the true difficulty of the 

world, 𝜃𝑟 stays constant at the time scale of the social learning dynamics (except for the 

Section "Short term fixes do not solve the problem"). If 𝜃𝑟 changes infrequently or slowly, 

we expect our dynamics to not be affected, as the stability of our social learning dynamics is 

independent of 𝜃)𝑟. However, with large and frequent changes in 𝜃𝑟 , the dynamics might 

not have time to converge to the true value; in this case, the long-run behavior of the 

population will depend on the process by which the difficulty change. With very frequeny 

and large changes, it is possible that social learning might be completely uninformative and 

individuals might be better off resorting to purely individual learning (Turner et al., 2023). 

These are interesting future directions to explore. 

The main takeaway point from our model is that the widely observed (and seemingly 

worsening) problems of overcommitment and burnout on college campuses might arise as 

a consequence individuals learning from their peers in the presence of visibility biases. 

This has important implications for designing policies, specifically, our model highlights a 

need to understand peer social learning processes that affect students’ perception of the 

tradeoffs they face, their time and effort investment decisions, and their measures of 

success. While social learning has been recognized as a factor for acquiring particular 

behaviors such as binge drinking (Durkin et al., 2005), we propose that its role extends 



beyond this. Indeed, recent studies have started looking at social effects on academic 

success (Stadtfeld et al., 2019), although we are far from a detailed understanding for how 

students learn from each other and how this affects their decisions about study, work, and 

extracurricular activities. Our model suggests that this is an important area of study to 

promote more effective educational and career policies, and ultimately, human flourishing. 
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