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Let R be a ring with an identity 41, and R' a ring
anti-isomorphic to R. Let V be an R-module as well as an
R'-module. We assume that 1a = a for all elements a in V
and that V satisfies the minimum condition for R-submodules.
Elements of R will be denoted by «, 8,..., and those of V
by a,b,... Elements of R' willbe o« ', B ',..., where o '
corresponds to o by the anti-isomorphism. A mapping f of
V xV to R is called a bilinear mapping of V to R if it
satisfies the following.

(1) fa +b, c) = f(a, c) +1(b, ),
(2) f(a, b +c) = f(a, b) +f(a, <),
3) 8 f(a, b) = £(B a, b),
(4) f(a, ble = f(a, o 'b).

We also assume that the images f(V, V) generate additively
the whole set R. When all these assumptions are satisfied,
we say a system (V, R, R', f) is given. In this note, by a
system, we always mean the above system. The purpose of
this note is to determine the ring theoretic structure of such a
system. We shall define simplicity and semi-simplicity of
systems and a radical of a system and shall show that a system
is semi-simple if and only if its radical is zero. Then
structures of a simple system and of a semi-simple system
will be clarified. However, the latter result is a special case
of the more general result given in [1] by the present author,
and the proof will be omitted.

In the following, we denote f(a,b)c by abc for the sake
of simplicity. Then the property (3) implies an associative
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law:
(3" ab(cde) = (abc)de.

DEFINITION. A system (V, R, R', f) is called simple
if for any non zero elements a and b in V there exists the
third element ¢ such that acb # 0. A system is called
semi-simple if for any non zero element a in V there exists
an element ¢ such that aca # 0.

For a subset S of V, we set
N(S) = {ae V]avs = 0 for all v in V and all s in S} .

DEFINITION. The radical of a system is defined to be
the intersection Cl) N(T) where T ranges over all irreducible

R-submodules of V.

In order to prove the first result, some concepts and
notations will be required. For two elements a and b in V,
we consider an R-homomorphism of V to itself such that
v = vab for v in V. This is infact an R-homomorphism
due to (3'). Denote this R-homomorphism by ab. For an
R-submodule T of V, we shall designate by VT the additive
group generated by R-homomorphisms vt for v in V and t
in T. Then we consider some homomorphisms of the additive
group VT to T and of T to VT as follows. Take an
element a in V, and it will define a homomorphism (Sa of

VT to T such that 6a(vt) = avt. Also, an element b in V

will define a homomorphism 6'b of T to VT such that

6‘b(t) = bt. Itis easy to seethat 6 &' & = 6 due to
c

b "a cba
(3'), where 6a operates first, 6'b second and § last.
c

THEOREM 1. A system (V, R, R', f) is semi-simple
if and only if the radical of the system is zero.

Proof. Assume first that the radical is zero, and take any
non zero element a in V. Since a is not in the radical, there
exists an irreducible R-submodule T of V such that a ¢ N(T)
We apply the above discussion for this T. a ¢ N(T) implies
that there exists an element vt in VT such that 6a (vt) = avt # 0
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On the other hand, let b be a non zero element contained in
6a(VT). Since T is irreducible, T is generated by a single

element, say, b;T = Rb. Then t= o b with an element ¢« in
R. Using (4), we can see that 0 # avt = av(e b) = a( o 'v)b.

If weput ¢c= o 'v, then 6§ &' & #0, i.e. § 4 0, which
a c a aca

implies aca =z 0. Conversely assume that (V, R, R', f) is
semi-simple. Furthermore, assume that a non zero element
a is in the radical. Take an irreducible R-submodule T
contained in Ra. T = Rb as before, and hence b= g a
with B in R. Since the system is semi-simple, there exists
an element c¢ such that bcb # 0. Then ( B a)cb # 0, which
implies acb # 0, i.e., a¢ N(T). This is naturally absurd.
Thus the radical should be zero if the system is semi-simple.

Lastly the structures of simple and of semi-simple
systems will be given as follows, specializing the resultin [1].
To do so, we need one more concept. Taking V for T in
the previous discussion of VT, we can define an additive
group VV. Moreover, VV is seen to be a ring since
(xab)cd = xa(bcd) implies (ab)(cd) = a(bcd). Denote this ring
by Q. Then V is a Q-(right) module. Now let D be a
division ring and Dn the ring of all matrices of type nxn

with components in D. D (or Dm 1’1) denotes the set of all

matrices of type nxm (or m x n) with components in D.
By usual matrix calculation, we can multiply elements of Dn

and of D or elements of D and of D in this
n n m, n

’ ’ ?

order.

THEOREM 2. Suppose that V satisfies the minimum
condition for Q-submodules as well as for R-submodules.
If a system (V, R, R', f) is simple, then there exist an
isomorphism ¢ of R onto Dn as rings and isomorphisms

24 and ?5 of V onto Dn and onto D n respectively

, M m,

as addiiive groups such that f(a, b) = ¢ '1( <p1(a) <p2(b)) and that

Ba=o¢, (e(f)o, @)

When R=R +R_+...+R_ is a direct ring sum
1 2 m

(namely an orthogonal decomposition), we denote the naturally
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defined projection of f to Ri by f.. In this case, we also
i

have a direct ring sum R'=R'!' +R! +...+R!
1 2 m

THEOREM 3. Suppose that V satisfies the minimum
condition for Q-submodules as well as for R-submodules. If
a system (V, R, R', f) is semi-simple, then we have a direct
+V

2

ring sum R = R.1 + R2 +.. .+Rrn and a direct sum V = V1

+...V , where RV =0 unless i=j and V.V.V. =0 unless

m i ] - i J k -

i=j=k, and (Vi’ Ri’ R!, fi) are simple for i=1,2,...,m.
i
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