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Abstract

Using newly available polygenic scores for educational attainment and cognitive ability, this paper investigates the possible presence and
causes of a negative association between IQ and fertility in the Wisconsin Longitudinal Study sample, an issue that Retherford and
Sewell first addressed 30 years ago. The effect of the polygenic score on the sample’s reproductive characteristics was indirect: a latent cognitive
ability measure, comprised of both educational attainment and IQ, wholly mediated the relationship. Age at first birth mediated the negative
effect of cognitive ability on sample fertility, which had a direct (positive) effect on the number of grandchildren. Significantly greater impacts
of cognitive ability on the sample’s fertility characteristics were found among the female subsample. This indicates that, in this sample, having a
genetic disposition toward higher cognitive ability does not directly reduce number of offspring; instead, higher cognitive ability is a risk factor
for prolonging reproductive debut, which, especially for women, reduces the fertility window and, thus, the number of children and grand-
children that can be produced. By estimating the effect of the sample’s reproductive characteristics on the strength of polygenic selection, it was
found that the genetic variance component of IQ should be declining at a rate between −.208 (95% CI [−.020, −.383]) and −.424 (95% CI
[−.041, −.766]) points per decade, depending on whether GCTA-GREML or classical behavior genetic estimates of IQ heritability are used to
correct for ‘missing’ heritability.
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There is considerable interest in the causes and consequences of
associations between cognitive ability and fertility. A recent
meta-analysis found that these two variables have typically been
negatively correlated in the United States in the 20th and 21st cen-
turies, with some (albeit far more limited) evidence of such a neg-
ative relationship in a small number of other areas of the world for
which data were available (Reeve et al., 2018). The identification of
genetic variants that predict cognitive ability and educational
attainment (in the form of polygenic scores, PGSs) has enabled
analyses that indicate that these variants are under direct negative
directional selection in contemporary populations (Beauchamp,
2016; Conley et al., 2016; Kong et al., 2017), effectively confirming
predictions made by Galton 140 years ago (Galton, 1869).

Studies utilizing PGSs have found negative genetic correlations
between cognitive ability measures and fertility (Kong et al., 2017),
indicating that at least some genetic variants that tend to raise
cognitive ability also tend to depress fertility. However, the causal
basis of this negative correlation is unclear. There are indications of
historical positive directional selection favoring higher frequencies
of variants predictive of cognitive ability when ancient (Bronze and
early Iron Age) and ancestrally matched modern genomes are

compared (Woodley of Menie et al., 2017b). This suggests that
in Western populations the negative association only arose rela-
tively recently, most likely during the period of industrialization,
when increasing ecological mildness lifted reproductive constraints
on those with lower cognitive ability and the development of inno-
vations such as contraception created opportunities for those with
high cognitive ability to limit their fertility (Lynn, 1996; Woodley
of Menie et al., 2017a).

A major factor associated with modernization that may have
played a pivotal role in reversing the genetic correlation between cog-
nitive ability and fertility (frompositive to negative) is the rise of uni-
versal education. Education causes fertility delay, which reduces
opportunity for fertility, more so in the case of females than males.
This is because the female fertility window is narrower than themale
window. Consistent with this observation, fertility by educational
attainment correlations are of consistently higher magnitude among
females compared to males across cultures (Meisenberg, 2008).

Phenotype-only analyses involving path modeling have offered
evidence for the predicted role of educational attainment as a
mediator of the association between IQ and fertility. A study by
Retherford and Sewell (1989) found that educational attainment
completely mediated the associations between IQ and (largely
completed) fertility in the Wisconsin Longitudinal Study (WLS).
A study by Meisenberg (2010) also found indications of mediation
when additional predictors were used (sex, liberal gender attitudes,
and income) in the National Longitudinal Study of Youth ’79
cohort (which was also in mostly completed fertility). A more
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recent study by Mededović (2017) employed a small sample
(N = 191) of the Serbian population at completed fertility (aged
in their 50s, fertility is typically complete at>45 years of age among
Western populations; Fieder & Huber, 2007; Martin et al., 2013),
finding positive associations between cognitive performance (evalu-
ated using the Advanced Progressive Matrices test) and number of
children, but negative associations between cognitive performance
and numbers of grandchildren. It also considered the role of age
at first birth, finding no significant direct effect of cognitive ability
on this measure, but negative associations between age at first birth
and number of grandchildren. The study also found strong indica-
tions that educational attainment mediated the effect of cognitive
performance on the sample's reproductive characteristics.

Finally, a study utilizing PGSs in a sample at approximately 50%
completed fertility sourced from the US AddHealth dataset found
substantial evidence of mediation, with the direct effect of the
cognitive ability PGS on fertility being reduced to effectively zero
after the indirect paths via cognitive ability and educational attain-
ment were modeled (Woodley of Menie et al., 2016). This latter
study discussed the need for genetically informed studies involving
samples at completed fertility in order to replicate this mediation.
It also highlighted the need for consideration of a larger number of
covariates, including age at first birth, which likely increases the
fitness of those with lower cognitive ability by allowing them earlier
and thus fuller participation in reproduction (Kong et al., 2017).

A genetically informed study using the same variables in
Mededović’s (2017) study will be attempted here. We analyze
new data released from the WLS, including number of grand-
children and a PGS predictive of cognitive ability and educational
attainment. Revisiting this issue is appropriate as it has been
30 years since Retherford and Sewell (1988, 1989) conducted their
own seminal analyses of the fertility × cognitive ability association
in the WLS, which did much to revive interest in the association
after nearly 40 years of neglect. With the additional variables,
the robustness of their findings can furthermore be ascertained.

Methods

Data

Wisconsin Longitudinal Study. The data were drawn from the
WLS, a longitudinal, mixed-sex sample of 10,317 almost exclu-
sively European-American individuals sourced from the graduate
population of the Wisconsin High School system. This sample was
first surveyed in 1957, with the most recent wave sampled in 2011.
The WLS tracks the development of a considerable number of
measures, including those relevant to the current study (for further
sample details, see Herd et al., 2014). For the total set of variables
(described below), data were available for a combined sample of
5629 individuals (male n = 2617, female n = 3012)

Variables

EA3 genome wide association study polygenic score. A total
of 9012 WLS study participants were genotyped on the Illumina
HumanOmniExpress array as part of a recent genome wide
association study (GWAS) for IQ, educational attainment, and
self-reported mathematical ability (Lee et al., 2018). The genetic
samples came from saliva collected first in 2007–08 by mail, then
during the course of home interviews conducted initially in March
2010. In this study, the educational attainment polygenic score
(Educational Attainment 3 [EA3] PGS) was estimated using a
GWAS approach for a reduced sample of 8527 individuals,

employing genotype probabilities obtained from the haplotype
reference consortium imputation and linkage disequilibrium
(LD)-adjusted weights. The educational attainment ‘phenotype’
was defined based on the ISCED 1997 UNESCO classification,
which incorporates seven internationally comparable categories
of educational attainment, rescaled as US years-of-schooling
equivalents (Lee et al., 2018). The PGS, which is only available
for this sample as a standardized single-indicator variable, includes
a total of 1,170,820 single nucleotide polymorphisms (SNPs). In
computing this PGS, Lee et al. (2018) excluded long-range LD regions
on chromosomes 5 (44–51.5 Mb), 6 (25–33.5 Mb), 8 (8–12Mb), and
11 (45–57Mb). They also LDpruned the remaining SNPs (R2< .1 on
a 1000-kb window). The extremely high ethnic homogeneity of
the WLS sample (Herd et al., 2014) negates the need for
population stratification controls. For full information on the
sampling and genotyping procedures used in constructing this
PGS, see www.ssc.wisc.edu/wlsresearch/documentation/GWAS/
Herd_QC_report.pdf.

Intelligence. In WLS, the respondents’ IQ was measured in 1957
using the Henmon–Nelson test, a 30-minute test consisting of 90
items of increasing difficulty, sampling across the domains of spa-
tial, verbal, and mathematical ability. In 1957, during the first wave
of data collection, the test administration was standardized across
the state of Wisconsin. The test exhibits high reliability (α ≈ .95;
e.g., Hansen, 1968), and scores on the test are strongly associated
with full-scale IQ scores obtained using other psychometric bat-
teries, such as the WAIS (r ≈ .80 - .85; e.g., Klett et al., 1986).
The variable employed in this analysis is labeled ‘preferredmeasure
of IQ’ in the WLS data file.

Educational attainment. Educational attainment, measured as
educational level, was obtained from the participants in 1975 when
they were in their mid-30s. The level of education was estimated
using a 9-point scale, the lowest level of which was associated with
‘High school graduate or less, less than one year of college’ and the
highest level with ‘PhD, MD, other doctorates not previously
included, and post-doctorate education’.

Sex. Respondent sex in WLS was measured during the first wave
of data collection in 1957 and is scaled 1 for male and 2 for female.

Number of children. Respondent number of children was
obtained for both sexes in two waves. The first wave was collected
in 1975 when the participants were in their mid-30s, the second
wave was collected in 2011, updating the previous wave with
fertility values collected for the cohort in its early 70s. At this
age, fertility among US Whites is >99% complete for females
(Martin et al., 2013).

Number of grandchildren. Number of grandchildren was mea-
sured in 2011 when the respondents were in their early 70s.

Age at first birth. Age at first birth was collected in 1975 when
the respondents were in their mid-30s.

Analysis

Both correlational and path analyses were used to examine the
associations among the variables for both the combined sample
and the male and female subsamples, respectively. The path analy-
ses were implemented inMplus v.5.21. To examine sex differences,
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multi-group path models were constructed (using the Mplus
option ‘grouping’; Geiser, 2013). An additional analysis was
conducted using a less restricted sample to determine the decadal
decline in IQ predicted using the strength of genetic selection on
the PGS employing formulas from Kong et al. (2017), which
account for the joint impact of both the quantum (number) and
timing of fertility on the rate of trait change.

Results

Analysis 1: Mixed Sex Sample

Table 1 presents the results of the correlation analysis involving all
variables for the combined sex sample (N = 5629).

Figures 1 and 2 report the results of two alternative pathmodels,
one in which the PGS is modeled as having joint effects on the
intelligence (IQ) and years of education (educational attainment)
measures, with the latter predicting age at first birth, and a second
model in which a latent cognitive ability variable is constructed
using the common variance between both intelligence and educa-
tional attainment, which has direct effects on age at first birth. In
bothmodels, age at first birth is modeled as having a direct effect on
the number of children. Number of children is modeled as having a
direct effect on number of grandchildren.

The two models exhibit approximately equal goodness-of-fit.
Themodel in which a latent cognitive ability factor is modeled ben-
efits from parsimony (fewer paths). In examining the associations
for each sex separately and determining the presence of sex
differences, the second (latent variable) model will be used.

Analysis 2: Sex Differences

Table 2 reports the results of the correlations among the variables
broken out by sex.

Figures 3 and 4 present the results of multi-group path models
run for each sex separately.

As shown in Figures 3 and 4, all paths are similar for males and
females except for the path from the latent cognitive ability factor
to age at first birth. While for males the effect is βCA→A1B = .25, for
females it is much larger: βCA→A1B = .46.

The difference was tested for significance by comparing amodel
with free paths (as shown in Figures 3 and 4) with a model where
the path from cognitive ability to age at first birth was restricted
(i.e., it was assumed that they were identical for each sex).
While the first model (unconstrained paths) had a χ2 of 284.16

(df = 20), the model with one constrained path had a χ2 of
348.63 (df = 21). The fit of the second more restricted model to
the data was much lower. A significance test of the χ2 difference
(64.47, df = 1) using a calculator for social science statistics
(available from: www.socscistatistics.com, p value from chi-square
calculator) found a highly significant result (p< .00001) meaning
that the fit of the second model is worse.

This means that the impact of cognitive ability on delay of age at
first birth is much less severe for men than for women.

Analysis 3. Estimating the Decadal IQ Loss Using the
Polygenic Scores

Given the availability of PGSs in theWLS database, along with data
on IQ and both the quantum and timing of fertility, it should be
possible to utilize the same formula employed by Kong et al.
(2017) to estimate the IQ decline due to the action of genetic
selection.

The formula utilized by Kong et al. (2017) combines both the
quantum and the timing of fertility to estimate the yearly impact of
selection on PGS level, as follows:

X¼ polygenic score with mean 0 and std 1 (1)

Regression 1:

Number of children �X (2)

Number of children ¼ aþ bX (3)

Regression 2:

Average age at child birth �X (4)

Average age at child birth ¼ cþ dX (5)

Mean change in X per year ¼ b
a� c

� d � log a
2

� �

c2
(6)

The mean parental age at birth of children was obtained from
the 1975 interviews. A subset of the individuals who participated in
the interview in 2011 have updated information on the ages at
birth. However, these were not used because (1) at the time of
the original interview the participants were 35–36, which, based
on the 2011 census data for US Whites, equates to a completed

Table 1. Correlation matrix for the entire sample (N = 5629)

PGS Sex
Educational
attainment IQ

Age at first
birth

Number of
children

Number of
grandchildren

PGS 1

Sex −.009 1

Educational attainment .255* −.134* 1

IQ .252* −.005 .444* 1

Age at first birth .119* −.307* .341* .113* 1

Number of children −.018 .065* −.122* −.047* −.351* 1

Number of grandchildren −.019 .078* −.104* −.022 −.313* .673* 1

Note: *p< .05, N = 5629.
PGS indicates polygenic score.
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fertility percentage for women of approximately 97% (for the
35–39 age range; Martin et al., 2013); (2) the later estimates may
be inflated via the inclusion of birth ages of children who are
not biologically theirs. For example, it is observed that some
individuals jump from reporting a relatively low to a relatively high
(i.e., 4–10) number of children, which might in part be driven by
adoptions; and (3) the 2011 data are only available for a small sub-
set of participants. Further derestricting the sample by dropping
number of grandchildren enhances the size of the sample that
can be employed for this analysis. The correlations among the
variables for the larger sample used in this calculation, along with
sample sizes, are presented in Table 3.

Based on these calculations, the PGS can be expected to decline
at a rate of −.001 Haldanes (standard deviation units) per year
(95% CI [−.000 (1), −.002 Haldanes]). In order to calculate the
decline in IQ expected, based on the predicted change in the
PGS, first the yearly change in PGS derived from the equations
is multiplied by 10, yielding a decadal decline of d = −.011
Haldanes per decade (95% CI [−.001, −.02 Haldanes]). Next,
the IQ change per standard deviation change in PGS is calculated
yielding 4.71 IQ points per Haldane. This can be used to convert
the predicted change in PGS (per Haldane) into an equivalent
change in IQ, yielding an IQ decline of −.052 IQ points per decade
(95% CI [−.005, −.094 IQ points per decade]).

It is important to note that this estimated IQ loss is a substantial
underestimate of the actual IQ loss, owing to the fact that the PGS
yields an imperfect measure of the actual heritability of IQ— thus,
to recover the actual loss, which will be considerably larger, a
correction is needed for ‘missing’ heritability. This is achieved
by taking the change in IQ per Haldane of PGS, and multiplying
it by the quotient of the ‘missing’ heritability of IQ, and the actual
variance in IQ explained by the PGS. There is debate about the
actual heritability of IQ in the literature, with studies employing

genome-wide complex trait analysis (GCTA), genome-based
restricted maximum likelihood (GREML)-based approaches
(where the additive heritability is estimated based on the use of
a restricted maximum likelihood estimate of the aggregate
influence of large numbers of variants) tending to be lower than
those computed on the basis of classical behavior genetic studies
employing twins. GCTA-GREML estimates of IQ heritability in
adults are around .40 (Plomin & Deary, 2015); however, such esti-
mates also suffer from a ‘missing’ GCTA heritability issue, as this
technique likely underestimates the heritability of a trait related to
the action of rare variants that are effectively additive in their
responsiveness to selection (Plomin & Deary, 2015). Classical
behavior genetic estimates of the additive heritability of IQ are con-
siderably higher in adults (h2≈ .80; Bouchard Jr., 2004), reflecting
the use of phenotypic convergence that necessarily captures all
salient additive and near-additive influences on trait variance.
Based on the GCTA-GREML IQ additive heritability estimate
(i.e., .40), IQ in the WLS sample would be expected to decline at
a rate of −.208 points per decade (95% CI [−.020, −.383 points
per decade]). Based on classical behavior genetic estimates of
additive IQ heritability (i.e., .80), the decline is −.424 points per
decade (95% CI [−.041, −.766 points per decade]).

Discussion

The availability of a PGS for cognitive ability (and educational
attainment) in the WLS permits the presence of genetic selection
for lower IQ to be directly established in this dataset, which con-
firms predictions made by Retherford and Sewell (1988, 1989).
This is demonstrated with path modeling, which indicates that
the effect of cognitive ability on fertility is primarily mediated
by age at first birth. These models also indicate the presence of
mediated positive effects on age at first birth of the PGS, stemming

Education 
years

0.55

Polygenic 
score 

education
Intelligence

0.25 (0.25)

0.26 (0.26)

0.41 (0.44)

Age at first 
birth

0.34 (0.34)

Number of 
children

Number of 
grandchildren

–0.35 (–0.35) 0.67 (0.67)

Fig. 1. Path model predicting number of chil-
dren by age at first birth, education and the
polygenic score (standardized beta-coeffi-
cients, correlations in parentheses, confirma-
tory fit index = .99, Standardized Root Mean
Square Residual (SRMR) = .02), N = 5629, entire
sample.

Education years

0.55

Polygenic 
score 

education
0.51 (0.51) Intelligence0.31 (0.31)

Age at first 
birth

0.37 (0.37)

Number of 
children

Number of 
grandchildren

–0.35 (–0.35) 0.67 (0.67)

Cognitive 
ability

0.88 (88) 0.23

0.74

Fig 2. Path model predicting number of
children by age at first birth, a latent cognitive
ability factor and the EA3 polygenic score
(standardized beta-coefficients, correlations
in parentheses, confirmatory fit index = .97,
SRMR = .03), N = 5629, entire sample.
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from a latent cognitive ability factor, composed of both educational
attainment and IQ. An alternative model allowed for reciprocal
effects on educational attainment and IQ, modeled as separate var-
iables, and found that educational attainment rather than IQmedi-
ated the positive association between the PGS and age at first birth.

The availability of data on grandchildren furthermore permit-
ted the effect of the PGS and cognitive variables on number of
grandchildren to bemodeled. It was found that number of children
mediated the effect of age at first birth on the number of grand-
children. These results are consistent with the findings of
Woodley of Menie et al. (2016), in that the impact of the PGS
can be modeled as having mediated effects on the sample’s fitness
characteristics, via the cognitive phenotype, and in particular
educational attainment (when this is modeled separately). This
is consistent with the ‘tradeoff’ model (Lynn, 1996), whereby
high-IQ individuals select for higher levels of educational

attainment, which causes delayed fertility, and consequently lower
numbers of both children and grandchildren.

Furthermore, consistent with the results of a recent large-scale
meta-analysis of the phenotypic association between IQ and
fertility (Reeve et al., 2018), the use of restricted multi-group path
models indicates the presence of a sex difference, characterized by a
significantly larger impact of cognitive ability on fertility character-
istics among the female relative to male subsample. The finding
that age at first birth mediates the impact of cognitive ability on
number of children, which in turn predicts number of grand-
children, in addition to the presence of negative correlations
between educational attainment, IQ, and number of children, is
also inconsistent with the findings of Mededović’s (2017) study
of a Serbian population, which failed to find effects of IQ on age
at first birth, but identified direct effects of IQ on number of
children and grandchildren, with the effect of the former being

Table 2. Correlation matrix for the male (n = 2617; below the diagonal) and female (n = 3012; above the diagonal) subsamples

PGS Educational attainment IQ Age at first birth Number of children Number of grandchildren

PGS 1 .243* .262* .127* −.031 −.018

Educational attainment .272* 1 .390* .430* −.155* −.116*

IQ .241* .498* 1 .104* −.025 .024

Age at first birth .117* .227* .129* 1 −.380* −.313*

Number of children .001 −.076* −.072* −.318* 1 .645*

Number of grandchildren −.018 −.076* −.087* −.306* .725* 1

Note: *p< .05.
PGS indicates polygenic score.

Education years

0.47

Polygenic 
score 

education
0.52 (0.52) Intelligence0.31 (0.31)

Age at first 
birth

0.25 (0.25)

Number of 
children

Number of 
grandchildren

–0.32 (–0.32) 0.73 (0.73)

Cognitive 
ability

0.92 (0.92) 0.16

0.73

Fig. 3. Multigroup path model predicting num-
ber of children with age at first birth, education
and the polygenic score (standardized beta-
coefficients, correlations in parentheses, con-
firmatory fit index = .96, SRMR = .04), N = 2617,
males only.

Education years

0.58

Polygenic 
score 

education
0.44 (0.44) Intelligence0.28 (0.28)

Age at first 
birth

0.46 (0.46)

Number of 
children

Number of 
grandchildren

–0.38 (–0.38) 0.65 (0.65)

Cognitive 
ability

0.91 (0.91) 0.18

0.81

Fig 4. Multigroup path model predicting num-
ber of children with age at first birth, education
and the polygenic score (standardized beta-
coefficients, correlations in parentheses, con-
firmatory fit index = .96, SRMR = .04), N = 3012,
females only.
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positive and the effect on the latter being negative. Mededović’s
analysis also identified direct positive effects of educational attain-
ment on age at first birth and on the number of children, but no
significant effect on number of grandchildren. The small sample
size (N = 191) employed by Mededović (2017), coupled with the
use of a population that may have undergone the transition into
selection for lower IQ more recently than the US and the use of
a ‘narrow’ measure of g (the APM; see Gignac, 2015), limits the
scope for comparing the two sets of results; however, it should
be noted that Mededović (2017) is the only study other than the
present effort to attempt to directly estimate the effect of IQ on
number of grandchildren. Future research should try to ascertain
the multigenerational persistence of selection effects on cognitive
ability using grandchildren in addition to children.

The apparent lack of a direct effect of the PGS on the sample’s
fertility characteristics in the path models results from the fact that
the present sample is very likely underpowered to detect the direct
effect net of covariates, the sample size being relatively modest
compared to very high-power samples that have detected the direct
effect (e.g., Kong et al., 2017; N = 129,808). That there likely exist
weak but direct negative genetic correlations between the two is
nevertheless suggestive of a relatively strong regime of selection
acting against cognitive ability — which appears to have been
present in the West since the industrial revolution of the early
to mid-19th century (Skirbekk, 2008; Woodley of Menie
et al., 2017a).

Consistent with this inference, utilizing a formula from Kong
et al. (2017) to estimate the joint effect of both the timing and quan-
tum of fertility on cognitive ability (scaled as IQ) based on the
strength of polygenic selection, we find evidence that the genetic
variance component of IQ should be declining anywhere between
dec =−.208 and −.424 of an IQ point in this sample, depending on
whether GCTA-GREML or classical behavior genetic estimates of
additive IQ heritability are used to correct for ‘missing’ heritability
in the equation.

In an earlier analysis of selection on IQ inWLS, Retherford and
Sewell (1988) estimated a decline of -.81 IQ points per generation,
assuming an IQ heritability of .40 (based on parent–offspring
resemblance, which is in line with the contemporary GCTA
GREML estimates), which translates in a decline of dec = .23,
IQ points assuming a generation length approximately equal to
the mean age of their sample (which was in the mid-30s).
Thus, the present estimates based on actual polygenic selection
are similar— assuming an equivalently low value for IQ heritability.

Some might find it puzzling that there is apparent selection
against intelligence alongside massive increases in IQ test perfor-
mance, that is, the Flynn effect. The apparent discrepancy between
these observations is known as Cattell’s paradox, named after

psychologist Raymond B. Cattell, one of the first observers of what
is now known as the Flynn effect, which he noted in a study that he
expected to yield evidence of phenotypic declines in intelligence
resulting from selection (Higgins et al., 1962). The most popular
approach to resolving Cattell’s paradox has been called the attenu-
ation model, which posits that despite decreases in genotypic IQ,
phenotypic IQ has risen nonetheless following industrialization
as a function of environmental improvements (e.g., better nutrition;
Lynn, 1996). A more promising approach has recently emerged,
however: the co-occurrence model (Woodley & Figueredo, 2013).
The co-occurrence model posits that the Flynn effect is driven by
environmental enhancements that augment specialized and mini-
mally heritable cognitive abilities. These improvements occur
together in time with phenotypic decreases in the highly heritable
general cognitive ability factor; further, these phenotypic declines
in g are explained as a function of genetic selection against g
(Woodley & Figuerdo, 2013). A number of studies have found com-
pelling evidence supporting the co-occurrence model, specifically
indications of long-term declines in certain endophenotypes that
likely track g over time, such as working memory (Wongupparaj
et al., 2017; Woodley of Menie et al., 2017a, 2018).

Finally, estimates of the strength of selection acting directly on
the genetic variants associated with cognitive ability, such as the
current effort, will shed much light on the determinants of the
contemporary evolutionary dynamics of this trait. Such research
furthermore has great potential to help in evaluating the magni-
tude of any existential risk (Bostrom, 2002) to civilization that
trends in g pose.
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