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ABSTRACT

In practical applications of Credibility Theory the structure parameters usually have
to be estimated from the data. This leads to an estimator of the a posteriori mean
which is often biased and where the credibility factor depends on the data. A more
coherent approach to the problem would be to also treat the unknown parameters as
random variables and to simultaneously estimate the a posteriori mean and the
structure parameters. Different statistical models are proposed which allow for such
a solution. These models all lead to an estimation of the posterior mean which is a
weighted average of the prior mean and of the observed mean, the weights
depending on the observations.
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1. INTRODUCTION

We have k different risks with a claims record over a certain number of years

Depending on the specific problem, the data are numbers of claims from different
insurance policies, loss ratios from insurance portfolios for instance in fire, liability
or workmen's compensation insurance and burning costs from different reinsurance
treaties.

With each claims record XVj there is an associated measure of risk exposure /?,-,
which is a number of risk years, a sum insured, a turnover, a total amount of wages
or a premium income depending on the specific problem.
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138 RENE SCHNIEPER

Within the framework of credibility theory it is assumed that
1. Each risk i is characterized by an individual unknown risk parameter 0,; the risk

parameters 6t, 02, ..., 0k are i.i.d. random variables.
The random vectors (Gt, Xn, ..., Xin.) i = 1, ..., k are independent.

2. Given 8t the observations

Xii, Xi2, ..., Xjn.

are independent with finite second moments

Pu

The individual premium fi(6j) is to be approximated by a premium which is
linear in the observations

= «;o + X aUXij

and which minimizes the expected squared error

E^d,)-^,)]2

It is shown that the optimal linear premium is a weighted average of the
individual mean and of the a priori mean

fi(Oj) - ZjXi + (1 -Zi)m

where

m = E[p(d)]

x,. = X Pijtij \ Z Pu

The weight z-, given to the individual mean xt. is called the credibility factor. It is
equal to

Pi.b

Pi. b + w

where

Pi = X Pij

w = E[o2{9)\

b and w are the between risks and within risks variance components respectively.
To practically compute the credibility premium we need to estimate the structure
parameters m, b and w.
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m is either known a priori e.g. from some nationwide statistics or is estimated
from the collective. The best linear unbiased estimator for m is

k

m = 2 J — xi-
/ = i z

with

z = X z/-
1=1

In what follows we shall assume that m is known a priori and focus on the
estimation of b and u>. [In KLUGMAN (1986) m is assumed to be a random variable
and included in the Bayesian analysis].

In their pioneering paper BUHLMAN and STRAUB (1970) propose the following
" natural" estimators.

w = -
k i• = i n,- — 1

X PiMa-Xi)2

i / *
1 ( Vi Pi- -> w

= - X — (x,-xf-(k-l) -
-\ p p

where

p = XP<

V Pi

'• P I P

Since the estimator of the between risks variance component may be negative, it
is replaced by max (b, 0) in practical applications.

Other estimators have also been proposed; for a review of the subject see for
instance DUBEY and GISLER (1981). A common property of these estimators is that
they usually lead to a biased estimator of fi (6).

We shall adopt a different approach. Since b and u> are unknown quantities we
shall treat them as random variables and we shall propose statistical models which
allow for a simultaneous estimation of b, w and pi (8). The credibility factor will
depend upon the observations, but this is also the case for the Buhlmann-Straub
estimator once b and w have been replaced by b and w.

A general discussion of Bayesian inference on variance components in a normal
model as well as in a generalisation of the normal model can be found in Box and
TIAO (1973).

The present paper focuses on applications to credibility theory.
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2. THE BASIC MODEL

We assume that the data described at the outset is generated by the following
model:
— the individual premiums jut stem from a normal distribution with unknown

precision n;
— the claims record of risk i

xn, xi2,..., xin,
stems from a normal distribution with mean fxt and unknown precision p.

Note that instead of emphasizing the variance of a random variable, we
emphasize its precision. This model is best illustrated by the following picture
where the realizations of random variables are represented by drawings from an
urn.

7T

p (p)

X
11

. , / i k p

X
kl

X
In

X
kn.
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Conventions and notation

— Densities are indexed by their arguments; thus p (jc) and p (p) do not necessarily
represent the same density.

— Distribution laws of random variables are symbolized by p(-). However we do
not necessarily assume that the density of a random variable exists.

— <p (m, a1) denotes the normal density with mean m and variance o1.
The formal model assumptions are as follows

1) The precision n of the individual premiums and the precision p of the
observations are random variables whose distribution function will be specified
later.

2) Each risk is characterized by an individual premium ptt and a common
precision p.
i) fi\, pi2, •••, [*/< a r e independent random variables given n; their common

density is cp(m, n~').
ii) (a,, xn, ..., xin) are independent random vectors given n and p.
iii) [i\, [i2> •••> Mk> a r e independent random variables given n.

3) Given (a,, p), x,; (j = 1, ..., «,-) are independent random variables with common
density q>Qij, p~ ' ) .

Remarks

1) If the distribution of n and Q were degenerated [i.e. if the probability mass of
the common distribution of n and p is concentrated in some possibly unknown
points (JI0, p())J the above model would be a special case of the credibility
model.

2) A similar model, but with individual precisions Py for each observation, has
been proposed by JEWELL and SCHNIEPER (1983) for the treatment of outlin-
ers.

We now turn to the problem of the estimation of the individual premium. Let D
denote the set of the claims records from all individual risks; the best estimator of
the individual premium (best in the sense that it minimizes the expected squared
error) is the posterior mean.

I D) = £(M, I D, p, Ji)p(p, n\D)dp-dn

Because of assumptions 2) and 3) we have

i jrm + pn.x,
E(Pi | D, p, it) = Z-U: = Xf

n + pnt

because the credibility formula is exact in the case of a normal likelihood (with
known variance) and a normal prior.

Xj. is as in section 1 but with all measures of exposure equal to one.
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Therefore we have

E(/*,\D) = E\ PH> I D\ • Xi. + E\—-— I D] •
{ ) { )

m

= z,(D)x,. + [\-Zi(D)]m

The posterior mean is given by a credibility type formula where the credibility
factor depends on the data. To determine the credibility factor and the posterior
mean, we must determine the posterior distribution of n and Q given the data.

Using Bayes' Theorem we have

p(p, JI\D) cc p(D\p, xc)p(fi, Jt)

The common density of g and n will be specified later; for the likelihood we
obtain

p{p\p,n)= \p(D\(A_, p, Ji)p(y_\p, Jt)diu] ... dfik

where

From assumption 2) ii) and 3) it follows

p(D\£, Q, n)^Q2 '-' -e 2 y ' - "

and from 2) i)

- — Jt 2 {/i, - m)-
2

I - - —

p((X_\Q, Jt) « 7l2 • e 2

therefore the likelihood becomes

I - Is«,. f -I(jr2(^-m)3
 +(?22(x,,-ft)2) ,

p(D \Q, Jt) a JI2 • Q2 • -e 2 ' dfi, •... • dju

and upon integration we obtain

*
I 7T2p2 '• ' - - ( p l f c ? -(M + pn,)xf t inn2)

p(D\ p, jt) « • e 2 - '

from which it is seen that

2,*y and 2̂ jCy / = 1, ..., k
j j
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are sufficient statistics.
After some straightforward but tedious algebraic transformations the likelihood

can be written in an intuitively more appealing form

- — 2 n,
22

p(D\p, it) « e 2

from which we can compute the posterior density of p and ic (once the prior density
has been specified) and the posterior mean. The reason why the problem remains
tractable is because p(D \p, n) is in analytical form; this in turn is due to the fact
that for given jr and p p(D \JU, p, n) and p(/i \ p, n) are conjugate priors.

Remark

The following relation is true in general

, | D] = E[fii ID, p, Ji]p(fi, n I D)dp, dn,

and from credibility theory we obtain

E\ft,\D, p, n] -
Tim

Jt +

independently of the above distributional assumptions.
Therefore the form of the optimal estimator

E [ f i , \ D ] - z ( D ) x , + (l-

is independent of the distributional assumptions; these are only needed to compute
the credibility factor

f
J Ji

3. A NUMERICAL ILLUSTRATION

We illustrate the results of section 2 with the following very simple numerical
example

1
m-0, ic = —

3

\ 1 with probability 0.333
P = \

{0.001 with probability 0.667
E(p) = 0.334
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There is only one risk and let us also assume that there is only one
observation x.

p\D =
1 with probability p (D \ p = 1) • 0.333

0.001 with probability p (D I Q = 0.001) • 0.667

with

P(.D\P)

x*(p) =

] _ - _ ( 0 . 3 3 3 J C * ( p ) 2 + p \ x - x * ( p ) \ 2 )
• 2 g 2

0.333 + p)

px \ 0.750 x f o r p = l

0.333 +p 10.003 x for p = 0.001

As x becomes "large", i.e. deviates strongly from m the whole probability mass
is shifted towards p = 0.001 and E(fi \D) converges towards 0.003x.

P (Q = 0.001 \D) z(D) \O)

0
1
2

3
4
5
6
7
8
9

10

0.112
0.125
0.172
0.279
0.481
0.739
0.918
0.983
0.997
1.000
1.000

0.666
0.657
0.621
0.541
0.391
0.198
0.064
0.016
0.005
0.003
0.003

0
0.657
1.243
1.624
1.564
0.988
0.387
0.112
0.040
0.029
0.030

where

z(D) = D

E(/u\D) = Z(D)-X+ [\-z(D)]-m = z{D) • x

If we take two observations instead of one a more interesting picture emerges.
Two "large" observations are given a high credibility factor because the within
variance component is low, whereas one "small" and one "large" observation are
given a low factor. The result is best illustrated by the contour plot of the posterior
mean where X, and X2 are the two observations and the "estimate" is the posterior
mean. (See Appendix 1).

4. THE SIMPLE EXPONENTIAL FAMILY

We now show that the method used to derive simultaneous estimations of the
individual premium and of the hyperparameters can be applied to the whole simple
exponential family. We use some of the results of JEWELL (1974).

https://doi.org/10.2143/AST.25.2.563244 Published online by Cambridge University Press

https://doi.org/10.2143/AST.25.2.563244


ON THE ESTIMATION OF THE CREDIBILITY FACTOR A BAYESIAN APPROACH 145

Before defining the new model, we simplify our parameterization. In the basic
model, the a posteriori individual premium for risk i, given the precisions, is

Jt • m +

Jt + I

which can be rewritten in the following way

vm +
I D, p, Jt) =

with
jt

v = —

and it is apparent that only the ratio of n over p is relevant, and not the two
variance components separately.

We shall refer to v as to the time constant. It is equal to the number of individual
claims records necessary for the credibility factor to be equal to one half.

This new parametrisation is more "natural" than the one introduced in section 2
since in practical applications one often has a priori information on the credibility
factor and therefore on the time constant but not necessarily on the two variance
components separately. The reason for using both Jt and p in section 2 is
mathematical tractability.

The exponential family likelihoods with the sample mean as sufficient statistics is

p{x\d) = a

and their natural conjugate priors are

p{6) = d(no,xo)-
lc(er"«e-9\

JEWELL (1974) shows that under certain regularity conditions

E[fi(d)\ =— = m
«0

The above family is closed under sampling, so that if we observe xiX, ..., xjn. for
fixed 0, then p (9,1D) is of the same form with new parameters

It follows that

xQ + L xn
E\H(P,)\D\ = = ~ —

nt n0 + nt
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We now generalize the model by introducing a random time constant. The model
assumptions are the following:
1) The time constant v is a random variable whose distribution function will be

specified later.
2) Each risk is characterized by an individual parameter 9h

i) #i, 92, ..., 9k are independent random variables given v; their common
density is p(d\v) = d(v, vrri) ~ ' c (9) ~ v e " 6vm

ii) (fij, Xn, ..., Xin.) i = 1, ..., k are independent random vectors given v.
3) Given 9h X^ (j = 1, ..., nt) are independent with common density p(x\9) =

6

The posterior mean now is

= [E(M(9i)\D,v)p(v\D)dv

where

£[M((9,) |D, V] =

and therefore

£[ ,M(0 , ) |D] = E\-^~ I D\xi. + £ - — I D |m

= z(D)-x, + [\-z(D)]-m

On the other hand

p(v\D==p(D\v)p(v)-p(x)-i

and

p(D\v) = pCDlr, 0)/?(0|v)d0, -J02- ... d0t

1=1 J

Y V ^

oc

(v, vm)
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As in our basic model, p (D \ v) is in analytic form. This is so because for given v
p(D | 6, v) and p(0 I v) are conjugate priors.

We illustrate our general result with the following.

Example

We assume a Poisson likelihood and gamma prior.

0 x

p(x\d) = e~8 x = 0, 1, ...
- ix\

y'"

ev e>o
r(mv)

and we have
m) \k k

- in
r{vm

We have five risks, each with recorded number of claims for two years

D =

using the estimators given in section 1, we have

w = 0.2

b = 0.325

and the time constant is

w
v - — = 0.615

b

If we compute the likelihood function p(d\v) another picture emerges

^ 9

and the likelihood is very flat for v larger than 2, as is apparent from the graph in
appendix 2 where we have assumed m = 0.6. From the shape of the likelihood it is
obvious that p (v \ D) and therefore z (D) will heavily depend on the choice of the
prior p (v).
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5. ARBITRARY MEASURES OF EXPOSURE - THE BUHLMANN-STRAUB EXAMPLE

Our basic model can be generalized to the case where the measures of exposure are
arbitrary. We make the same assumptions as in section 2 except for assumption 3)
which now reads: given (//,-, p), X^ (j = 1, ..., «,) are independent random variables
with common density cp(fi,, (/?,-,• p)~ ' ) . pVj are known measures of exposure.

The posterior mean is computed as in section 2.

E(JUI\D) = E(pt\D, p, 7i)p(p, 7i\D)dpd7t

but now we have

E(jUj \D, Q, JC) =
Jim j . xh

n + QPi.

with pj. and x{. as in section 1. The posterior distribution of Q and it is formally as
in section 2.

p (p, it I D) oc p (D | p, Ji)p(p, 7i)

but the likelihood now is

p (D | p, 71)

- - 2 H;
712 p2 • [OT Z (jf - m)2 + p 2 2 />„ (.rf/ - .if )2 ]

e 2 ' '

The proofs are as in section 2. We now reanalyze the data of BUHLMAN-STRAUB

(1970). In their paper the authors give as-if burning costs of seven different excess
of loss treaties. For each treaty we have the burning costs from five different years
and each treaty is characterized by a measure of exposure and the gross premium
income.

The burning costs (in percent of the gross premium income) are as follows:

Year

Treaty

0.0
11.3
8.0
5.4
9.7
9.7
9.0

0.0
25.0

1.9
5.9
8.9

14.5
9.6

4.2
18.5
7.0
7.1
6.7

10.8
8.7

0.0
14.3
3.1
7.2

10.3
12.0
11.7

7.7
30.0
5.2
8.3

11.1
13.1
7.0
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and the gross premium income (in some monetary unit) are

Treaty

j
i

1
2
3
4
5
6
7

1

5
14
18
20
21
43
70

2

6
14
20
22
24
47
77

Year

3

8
13
23
25
28
53
85

4

10
11
25
29
34
61
92

5

12
10
27
35
42
70
100

Buhlmann-Straub compute w and h using the formula given in section 1; they
obtain

w = 209.0- 10 "4

b = 12.1 • 10"4

which gives the following estimates for the precisions

p = iv~x = 48

h = b~] = 8 2 6

the time constant being

v = - = 1 7
P

Instead of computing a point estimate we look at p (D | it, p). The contour plot of
the likelihood is given in appendix 3.

It is seen that the maximum likelihood estimator is approximately

pmle - 50

jtmle = 500

thus giving a much smaller time constant

v = 10
Thus the impact of the variance estimates on the credibility premium of a small
treaty can be quite important. A full bayesian analysis would entail specifying a
joint prior distribution for n and Q and computing the posterior mean through
numerical integration. Since this is straightforward it is omitted here.
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Appendix 1

Plot of estimate
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Appendix 2
Plot of lkhd vs nu

(X 1F-5)

Appendix 3
Plot of lkhd

" 5E16

(X %0)
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