Early-onset familial Alzheimer's disease (EOFAD) is a condition characterized by early onset dementia (age at onset < 65 years) and a positive family history for dementia. To date, 230 mutations in presenilin (PS1, PS2) and amyloid precursor protein (APP) genes have been identified in EOFAD. The mutations within these three genes (PS1/PS2/APP) affect a common pathogenic pathway in APP synthesis and proteolysis, which lead to excessive production of amyloid β. Compared with sporadic Alzheimer’s disease (AD), EOFAD has some distinctive features including early age at onset, positive familial history, a variety of non-cognitive neurological symptoms and signs, and a more aggressive course. There is marked phenotypic heterogeneity among different mutations of EOFAD. Studies in presymptomatic mutation carriers reveal biomarkers abnormalities. EOFAD diagnosis is based on clinical and family history, neurological symptoms and examination, biomarker features, as well as genotyping in some cases. New therapeutic agents targeting amyloid formation may benefit EOFAD individuals.

Early-onset familial Alzheimer’s disease (EOFAD) is a condition characterized by dementia onset at a relatively young age (before 65 years of age) and a positive family history for dementia. Multiple terminologies such as familial Alzheimer’s disease (FAD), early-onset AD (EOAD), autosomal dominant AD (ADAD), and autosomal dominant forms of early-onset AD (ADEOAD) have been used to describe similar but overlapping entities. We summarize the complex nosology in Figure 1.

Diagnostic criteria have a tremendous impact on the EOFAD epidemiology. If we use the stringent criteria of EOAD as onset of disease at age <61 years, and ADEOAD as occurrence of EOAD in at least three generations, the prevalence of EOAD and ADEOAD are 41.2 and 5.3 per 100,000 persons, respectively. This variable nosology poses a substantive challenge in identifying cases that should undergo predictive genetic testing in asymptomatic individuals for mutations in one of the three identified Alzheimer’s disease (AD)-related causal genes, since the priori probability of having a positive hit will be dependent on the definition used. Here, we will use EOFAD throughout this paper and use the onset criteria of age <65 years.
Early-onset familial Alzheimer’s disease represents up to 5% of the AD cases assessed in memory clinics and encompasses at least 230 mutations in three genes coding, or molecular processes involving the synthesis and proteolysis of beta-amyloid peptide 4 (http://www.molgen.ua.ac.be/ADMutations). Almost 50% of individuals carrying mutations in the presenilins (PS1 and PS2) and amyloid precursor protein (APP) genes have been identified in family pedigrees compatible with an autosomal dominant form of EOFAD.4-6

Mutation in one of these three genes is, to date, the only deterministic factor for AD. Thus, study of EOFAD patients and their families is of paramount importance for understanding the mechanisms underlying progression from “no cognitive impairment” to “dementia”.7 In addition, because of nearly 100% penetrance, longitudinal observational studies of EOFAD mutations carriers will provide the complete clinical course of AD progression from pre-clinical, mild cognitive impairment (MCI) and eventually to dementia phases.8-10 The goal of the present review paper is to summarize the current state of knowledge on EOFAD.

2. Genetic mutations

The high incidence of AD-like clinical and neuropathological changes in older patients with Down syndrome (trisomy 21) led to the suggestion that the causative gene of familial AD may be located on chromosome 21.11 In 1987, a gene locus at 21q11.2 to 21q22.2 was found in four large ADAD families by genetic linkage study.11 In 1991, the first missense mutation (Val→Ile) in APP was reported on chromosome 21p2 in one single EOFAD family, thus providing the first possible association between the APP mutations and abnormalities in amyloid processing.12 Since several families with early onset AD had no linkage to chromosome 21, Goate et al suggested that genetic heterogeneity may exist within EOFAD.12 Genetic heterogeneity was further supported by several independent studies when a locus for EOFAD on 14q24 was identified in 1992.13-15 In 1995, the PS1 gene, which encodes the protein presenilin 1 required for γ-secretase to produce amyloid-beta (Aβ) from APP, was cloned for the first time and was identified as one of pathogenic genes for the EOFAD.16 In the same year, the missense mutation in PS2 was found on the long arm of chromosome 1 in two different studies.17,18

To date, approximately 185 different pathogenic mutations in PS1, 13 mutations in PS2 and 32 mutations (or gene duplication) in APP have been identified in EOFAD (http://www.molgen.ua.ac.be/ADMutations). Nearly half of the families fulfilling criteria for EOFAD harbor one of these mutations. The underlying genetic defect remains unknown for the remaining 50% of EOFAD cases, suggesting further genetic and/or etiologic heterogeneity.19,20

While PS1 mutations are responsible for nearly 75-80% of genotyped families positive for a mutation, APP and PS2 mutations are responsible for 20-15% and less than 5%, respectively.3-5 The majority of the presenilin mutations are single-nucleotide substitutions, but small deletions and insertions have been described as well (http://www.molgen.ua.ac.be/ADMutations). Mutations of PS1 and PS2 cause amino acid sequence changes throughout the protein with some
clustering within the transmembrane domains and the hydrophilic loops. Seventy-five percent of APP mutations are missense and are located within exons 16 and 17 near the β- and γ-secretase cleavage sites. The remaining 25% of APP mutations are duplications rather than missense mutations (http://www.molgen.ua.ac.be/ADMutations).

3. Pathophysiology

Although the amyloid cascade is only one theory among myriads of other possible mechanisms for AD (e.g. tau, inflammatory or oxidative stress hypothesis) and amyloid alone is probably not sufficient to cause AD, the association of PS1/PS2/APP with amyloid synthesis and its processing warrants the amyloid cascade theory plays a more important role in EOFAD than the sporadic AD.21-24 According to the amyloid cascade hypothesis, AD is a consequence of an imbalance between Aβ production and Aβ clearance.24 In EOFAD, PS1, PS2 or APP mutations all have a common pathogenic mechanism resulting in increased production of Aβ42.25

Missense or duplication mutations in APP frequently increase the level of Aβ42.26 APP mutations near the β-secretase cleavage site augment β-site proteolysis leading to elevation of both Aβ40 and Aβ42.27 In contrast, those near the γ-secretase cleavage site increase production of Aβ42.28 As shown in Figure 2, presenilins are part of the catalytic subunit of the γ-secretase complex and are functionally involved in the γ-secretase-mediated proteolytic cleavage of APP.26,29 Mutations in PS1 or PS2 change the cleavage activity of APP, resulting in increased Aβ42 production with high Aβ42/Aβ40 ratio.26,29 It has been suggested that increased toxic Aβ42 initiates a cascade of down-stream pathological processes such as tau hyperphosphorylation, neurofibrillary tangles (NFTs) formation, neuroinflammation, loss of synaptic junctions and neuronal cell death, with dementia being the ultimate clinical result of these progressive neurodegenerative processes.24

4. Neuropathology

Early-onset familial Alzheimer’s disease exhibits the classic hallmark neuropathology of sporadic AD, including amyloid plaques, NFTs, neuronal loss and tissue atrophy, often in significantly enhanced quantities.30 For example, EOFAD is linked to significantly higher amounts of amyloid deposition compared with sporadic AD.30,31 Furthermore, some cases of EOFAD have been shown to have a faster rate of NFTs formation, neuronal loss and atrophy compared to sporadic AD.31,32

In contrast with sporadic AD, certain EOFAD mutations are characterized by distinctive neuropathological features,
including cotton wool plaques (CWP), severe cerebral amyloid angiopathy (CAA), or the presence of Lewy bodies. On the other hand, variable pathological expression reported in individuals carrying the same mutation suggests that epigenetic or other genetic factors may play a role in this phenotypic heterogeneity. It should be emphasized that there is considerable neuropathological heterogeneity across different APP and PS1 mutations.

As a variant of the amyloid plaque, CWP consist of large ball-like $\alpha\beta$ (mainly $\alpha\beta42$) deposits, usually devoid of a dense amyloid core or neuritic pathology. Cotton wool plaques are most often reported in PS1 mutations affecting exons 8 and 9, but are also observed in mutations of other regions in PS1. Up to 2009, 30 families with 25 defined PS1 mutations have been identified with CWP pathology. Cotton wool plaques variants often present with a particular clinical phenotype including spastic paraparesis and early onset (usually before 50 years-old) dementia.

In addition to amyloid deposition, CAA in the leptomeninges and penetrating vessels of the cortex and cerebellum is a pathological feature of many cases with APP mutations. Significant CAA is more frequently associated with PS1 mutations beyond codon 200, but a modest degree of CAA can also be found in other PS1 and PS2 mutations. Of note, $\alpha\beta$ deposits in vessels in CAA is mainly $\alpha\beta40$ rather than the more commonly observed $\alpha\beta42$. In some APP mutation cases, CAA can cause cerebral hemorrhage or stroke, which can in fact be the dominant phenotype rather than dementia itself.

As reported in sporadic AD, Lewy body pathology comprised of α-synuclein has also been found in the amygdala, substantia nigra, and even neocortex in some PS1 and PS2 mutations carriers. Lewy bodies coexist with CWP, suggesting that PS1 may also play an important role in the pathogenetic process of both aggregation of α-synuclein into Lewy bodies and deposition of β-amyloid into CWP48.

5. Clinical features
5.1 Clinical features of EOFAD

Similar to sporadic AD, most EOFAD cases have insidious onset episodic memory symptoms followed by other cognitive impairments. However, EOFAD has distinctive features including early age at onset (AAO) as well as non-cognitive neurological symptoms and a more aggressive course.

Age at onset is a robust clinical feature of EOFAD compared to the sporadic AD. One study demonstrated that the mean AAO of EOFAD was 46.9 years with the age ranging from 33 to 60 years. In general, the AAO of the autosomal dominant cases is earlier than that of the familial non-autosomal dominant cases. In addition, pedigrees with PS1 mutations have an earlier mean AAO compared to those with APP or PS2 mutations. In contrast to families with APP and PS2 mutations, the presence of one or two APOE e4 alleles does not have an effect on the AAO in families carrying PS1 mutations.

It is thought that EOFAD has a more aggressive course than late-onset sporadic AD, and EOFAD is associated with faster cognitive decline and higher mortality. In addition to memory impairment, patients with EOFAD often present with prominent cognitive impairment in other domains, such as apraxia, aphasia, or dysexecutive syndrome. It has also been described that EOFAD patients may have myoclonus, seizures, spastic paraparesis, and extrapyramidal signs more frequently than sporadic AD. Cerebral hemorrhage or stroke is a characteristic feature probably related to extensive CAA in some EOFAD cases, especially in APP mutation carriers. It should be noticed that there is considerable phenotypic heterogeneity among all affected family members within a pedigree.

5.2 Clinical features according to genotype

The clinical features of EOFAD are heterogeneous, most probably due to different genetic mutations and epigenetic factors. We summarize the clinical features according to different genotypes in the following section (Table).

5.2.1 Clinical spectrum of PS1 mutations

Early-onset familial Alzheimer’s disease with PS1 mutations typically have an AAO in the early 40s, ranging from 24 to 65 years. Among 21 cases of EOFAD caused by PS1 mutations (in intron 4), mean AAO is 37.4 years, mean age at death is 44.7 years and mean duration of illness is 7.3 years. A large scale follow-up study of PS1 E280A mutation carriers examining the whole spectrum of clinical progression from asymptomatic to dementia stages showed that median AAO was 38 years for symptomatic pre-MCI (which is defined by the present of memory complaints without meeting the criteria of MCI), 44 years for MCI, and 49 years for dementia. When the AAO of AD is before 35 years old, this disease is usually defined as very early onset Alzheimer disease (VEOAD). A literature review disclosed a total of 101 cases of VEOAD from 1934 to 2007, with all for whom conclusive genetic analysis have been done showing PS1 mutations. Although a subcortical pattern of neuropsychological deficits has been noted in some case reports, the cognitive profile has so far predominantly shown amnestic and involved multiple domains. In addition to cognitive symptoms, EOFAD with PS1 mutations may present with some unusual clinical features, in particular myoclonus and seizures. Despite almost all these symptoms having been reported in sporadic AD, extrapyramidal signs, behavioral and psychiatric symptoms (BPS) (anxiety, hallucinations, delusions), aphasia, visual agnosia, and ataxia are significantly more frequently found in in EOFAD with PS1 mutations.

The best example of a specific phenotype associated with a PS1 mutation probably represents the syndrome of “variant AD”. This syndrome is characterized by an early onset familial dementia and spastic paraparesis, typically associated with different PS1 mutations in exons 8 and 9, and unusual pathologic findings namely CWP. The mean AAO of this syndrome ranges from 27 to mid 50s, with the most typical being at the earlier ages of the spectrum. Thus, it is not surprising that many VEOAD cases have been reported with this syndrome. Spastic paraparesis of this “variant AD” is characterized by insidiously progressive impaired gait and mild weakness in the lower limbs, with the signs of hyperreflexia and clonus. In most patients, the spastic paraparesis precedes the dementia but this is not always the case.
5.2.2 Clinical spectrum of PS2 mutations

Of the three genes known to cause EOFAD, mutations in PS2 are the least common, and therefore the literature is relatively scant.\(^5\)\(^,\(^18\) Volga German pedigrees with N141I mutation in PS2 remain the largest and most studied group.\(^18\)\(^,\(^58\)

Compared to PS1 mutation carriers, carriers with PS2 mutations have a later AAO, a relatively longer disease duration, and a more variable disease expression.\(^38\)\(^,\(^73\) A review of 101 Volga German cases with N141I mutation in PS2 showed a mean onset age in the 50s (53.7±7.8 years, range 39-75) and a disease duration of 10.6 years, longer than PS1 mutations (8.4 years) but similar to sporadic late onset AD (10.6 years).\(^58\) Segregation and linkage analysis in Volga Germans have shown that APOE plays a small but significant role in modifying the AAO, with evidence for a dose-dependent relationship between number of APOEe4 alleles and AAO.\(^51\) Early and progressive defects in memory and executive functions are common with relative sparing of naming.\(^59\) PS2 mutations in this population are also more commonly associated with seizures (30%), hallucinations, delusions or ‘psychotic’ features (32%), and in some cases severe amyloid angiopathy and hemorrhagic stroke.\(^56\)

Interestingly, in an Italian family with PS2 A85V mutation, the phenotypic variation is very heterogeneous. The proband showed a clinical phenotype indicative of Lewy body dementia and an unusually neuropathologic feature characterized by the presence of abundant and widespread cortical Lewy bodies in addition to the hallmark pathologic lesions of AD.\(^47\) In contrast, other affected family members exhibited a clinical phenotype typical of AD.\(^44\)

5.2.3 Clinical spectrum of APP mutations

Among the 32 APP missense mutations families reported, the clinical symptoms for the Flemish mutation (A692G)\(^74\)\(^-\)\(^76\), Dutch mutation (E693Q)\(^77\), Arctic mutation (E693G)\(^78\), and Iowa mutation (D694N)\(^79\) are the most well studied and described. The phenotype is heterogeneous among the various mutations. The mean AAO ranged from the 40s (Flemish mutation)\(^75\) to 50s or 60s (Iowa mutation)\(^79\). In comparison with PS1 and PS2 mutations carriers, APP mutation carriers typically display a more severe CAA pathology, which can lead to haemorrhage, stroke-like episodes, leukoencephalopathy, and even cortical calcification.\(^75\)\(^,\(^76\)\(^,\(^78\)\(^,\(^79\) Clinically, patients with the Flemish mutations present either with symptoms related to cerebrovascular events or with cognitive dysfunction;\(^75\)\(^,\(^76\) whereas the Dutch mutation is mainly characterized by haemorrhage, often but not always followed by cognitive impairment or dementia.\(^80\) Moreover, the clinical picture of the Iowa mutation is a progressive aphasic dementia and leukoencephalopathy without any apparent focal symptoms, but often with the presence of occipital calcifications.\(^79\) As for patients with the Arctic mutations, the clinical picture is multiple cognitive dysfunctions without haemorrhage, consistent with the typical spectrum of AD.\(^78\)

In addition to APP mutations, APP duplication has been shown to be sufficient to cause EOFAD with CAA.\(^39\)\(^,\(^40\)\(^,\(^60\)\(^,\(^81\) In a study of five families with EOFAD and CAA due to APP duplication, the neuropathological findings were similar to those of Down’s syndrome patients.\(^39\) The cardinal clinical presentation is progressive dementia, frequently accompanied by intracerebral haemorrhage (26%) and seizures (57%).\(^39\) AAO of

| Table: Clinical spectrum among different genotypes of EOFAD |
|-------------------|-------------------|-------------------|
| **PS1 mutations** | **PS2 mutations** | **APP mutations or duplication** |
| Frequency | < 5% | 20-15% |
| Mutations reported| 13 | 32 mutations or complete gene duplication |
| Chromosome | 14 | 21 |
| Pathophysiology | increased Aβ42 production and high Aβ42/Aβ40 ratio | increased production of Aβ42 alone, or both Aβ42 and Aβ40 |
| Pathology | CWP in some, mild CAA in most mean AAO at early forties, ranged from 24 to 65 years | severe CAA in most forties (Flemish mutation) to fifties or sixties (Iowa mutation) |
| Age at onset | mean AAO in fifties, range from 39 to 75 years | haemorrhage, stroke-like episodes and leukoencephalopathy associated with severe CAA; seizures common |
| Canonical Phenotype| increased myoclonus, seizures, extrapyramidal signs, behavioural and psychiatric symptoms in some cases | increased PiB retention in the striatum and cortex |
| Amyloid imaging | no literature available | no literature available |
| FDG-PET | early hypometabolism in the posterior cingulate cortices, hippocampus and entorhinal cortices in presymptomatic stage | no literature available |
| Structural MRI | early medial temporal lobe atrophy in the presymptomatic stage | no literature available |
| CSF | no literature available | no literature available |

increased PiB retention in the striatum and cortex | no literature available |
early hypometabolism in the posterior cingulate cortices, hippocampus and entorhinal cortices in presymptomatic stage | no literature available |
early medial temporal lobe atrophy in the presymptomatic stage | no literature available |
profoundly decreased Aβ42 and increased t-tau and p-tau in presymptomatic stage | no literature available |
6. Biomarker profile in EOFAD

Due to nearly 100% penetrance in EOFAD mutation carriers, serial neuroimaging or cerebrospinal fluid (CSF) examination in the early stage of the mutation carriers provides an opportunity to identify early biomarkers of EOFAD that can be used to track disease progression from the presymptomatic stage through to dementia.82-84 Importantly, the study of EOFAD mutation carriers presents a nearly ideal scenario to test the amyloid cascade hypothesis and to study the effects of novel amyloid lowering therapies coming down the pipeline.85

A growing number of neuroimaging studies have demonstrated evidence of early alterations in brain structure and function in EOFAD mutations carriers prior to the onset of clinical symptoms. Pittsburgh Compound B (PiB) positron emission tomography (PET) studies have revealed evidence of elevated PiB retention beginning in the striatum in presymptomatic and early symptomatic PS1 and APP mutation carriers86-88 as well as APP gene duplication cases89, with neocortical areas becoming involved later. The pattern of amyloid deposition in EOFAD differs from that in sporadic AD, with higher striatal and somewhat lower cortical PiB retention in EOFAD.86,88 However, in the early clinical course, striatal amyloid depositions in EOFAD are not typically associated with either extrapyramidal symptoms or altered cognitive status.86,87

Alterations in brain metabolism and function have also been reported among presymptomatic EOFAD carriers using [18F]-fluorodeoxyglucose (FDG) PET and functional magnetic resonance imaging (MRI), respectively.90 Presymptomatic EOFAD individuals show widespread hypometabolism, consistent with the typical pattern seen in sporadic AD, involving the posterior cingulate cortex, hippocampus and entorhinal cortices, which precede significant brain atrophy in these regions.90 These data suggest that FDG-PET measures may serve as more sensitive biomarkers than structural MRI for the preclinical diagnosis of AD. In one functional MRI study, presymptomatic PS1 mutation carriers exhibited increased activity in the right anterior hippocampus during a task of encoding of novel face-name associations compared to matched controls.83 Another task-induced functional MRI study demonstrated activation decline in anterior cingulate cortex in the presymptomatic PS1 mutation carriers when employing an implicit novelty encoding paradigm.91

Structural MRI studies demonstrated that atrophy of the medial temporal lobe, including hippocampus and entorhinal cortex, was an early structural abnormality observed in presymptomatic and early symptomatic carriers, which can precede the clinical diagnosis of EOFAD by 3.5-5.5 years.82,84,92,93 Diffusion tensor imaging demonstrated that decreased fractional anisotropy in the limbic system especially in the columns of the fornix in presymptomatic and early symptomatic carriers84. Moreover, longitudinal studies also revealed an accelerated rate of atrophy in both medial temporal lobe and whole-brain volume measures.82,84

Several studies demonstrate that CSF Aβ42 concentration in presymptomatic carriers of PS1 mutations are already profoundly low compared with a control group, when these subjects are 4 to 12 years younger than the ages at which their parents first developed symptoms of AD.95,96 In addition, CSF total tau and p-tau levels are dramatically elevated in presymptomatic carriers of PS1 or APP mutations compared with controls.95,96 These findings support the concept that both Aβ42 and tau protein in CSF are sensitive indicators of presymptomatic EOFAD.

7. Differential diagnosis and genetic counselling

7.1 Differential diagnosis

Since several neurological heredity diseases can also present with some overlapping clinical features of EOFAD (e.g., early onset cognitive impairment and autosomal dominant pattern of inheritance), other differential diagnoses must be considered before the diagnosis of EOFAD is made. Frontotemporal dementia (FTD) is the third most common cause of early onset dementia, with AD and vascular dementia (VD) being the most common and second cause, respectively.2 Patients with an autosomal dominant pattern account for about 10-20% of all FTD cases.97,98 Overall, patients with mutations in microtubule-associated protein tau (MAPT) and progranulin (GRN) each account for 5-11% of total FTD cases,97,98 and mutations in the C9ORF72 gene account for approximately another 11% of familial FTD cases.99,100 Although behavioral variant FTD can present with memory and semantic impairment, it is more commonly characterized by insidious changes in personality, interpersonal conduct, and emotional modulation and involves progressive disintegration of the neural circuits involved in social cognition, emotion regulation, motivation, and decision making, which are clinical features that can distinguish from EOFAD.2,98 Usually, The FTD patients have frontal and/or temporal atrophy on MRI with appropriate changes on functional imaging.101 Furthermore, FDG-PET in most FTD patients often show an asymmetically frontal and anterior temporal hypometabolism pattern, distinct from AD patients who have an abnormally low uptake in the posterior cingulate, precuneus, medial temporal lobe, and temporoparietal regions.101,102 In the United States, FDG-PET has been approved as a routine examination tool for the differential diagnosis of AD from FTD in 2004.102 PiB-PET can also be utilized for the differential diagnosis of EOFAD. A recent study demonstrated that PiB and FDG showed similar accuracy in discriminating AD and FTD, with PiB being more sensitive than FDG.103

Prion diseases (such as familial Creutzfeldt-Jakob disease (CJD), fatal familial insomnia) can also aggregate in families, and can share a number of clinical features with EOFAD.2,104 Familial prion disease are caused by mutations within the prion protein (PRNP) gene.104 Commonly, the patients with familial CJD have the codon 200 mutation, and fatal familial insomnia is associated with the codon 178 mutation in the PRNP.104 Clinically, familial CJD is characterized by cognitive impairment, along with myoclonus, periodic sharp-wave complexes in electroencephalogram (EEG), and hyperintensity in the cortex or striatum as shown by diffusion weighted images of MRI.104 Furthermore, familial CJD usually has a more rapid progressive course than EOFAD.104
Since some types of EOFAD, such as APP mutations or duplications carriers, are commonly associated with cognitive impairment and a prominent CAA, certain familial types of vascular dementia, such as cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL), should also be considered in the differential diagnosis.39,105 Hemorrhages or microhemorrhages occur more commonly in EOFAD than in CADASIL.39,78 In contrast, CAA of CADASIL usually causes leukoencephalopathy or ischemic stroke instead of hemorrhage.105 Ultimately, genetic testing can differentiate CADASIL from EOFAD, with the former being associated with Notch3 mutations.106

7.2 Genetic diagnosis and genetic counselling

7.2.1 Diagnostic genetic testing

Genetic testing for patients with early onset dementia and positive family history can be a valuable tool for identifying causative mutations and excluding some differential diagnoses. Sequencing the entire coding regions of \textit{PS1} and \textit{PS2}, and exons 16 and 17 of the \textit{APP} gene is required to determine if a pathogenic mutation exists.107 Genetic screening on 65 ADEOAD families revealed that 66\% (N=43) were attributable to \textit{PS1} mutations and 16\% (N=10) to \textit{APP} mutations, while 18\% (N=12) remained unexplained as no mutation could be identified.107 Recently, whole genome single-nucleotide polymorphism (SNP) analysis was utilized to flag genomic regions of homozygosity identical by descent in two siblings with EOFAD with no identifiable \textit{PS1}, \textit{PS2} or \textit{APP} mutation and a family history suggestive of autosomal recessive inheritance.5 Several candidate loci were identified using this method and further sequencing analyses need to be done.6 Another study performed a large scale sequencing analysis of \textit{PS1}, \textit{PS2}, and \textit{APP} genes in \textit{>200} unrelated patients with EOAD and discovered three novel and four previously identified \textit{PS1} mutations, one novel \textit{PS2} mutation and one novel \textit{APP} mutation.108 Based on the segregation and association law, Guerreiro et al.108 proposed a scale for grading mutations as not pathogenic, possibly pathogenic, probably pathogenic and definitely pathogenic.

7.2.2 Presymptomatic genetic testing and counselling

The availability of genetic testing and counseling is creating both advantages and dilemmas for the asymptomatic relatives of an EOFAD individual with a pathogenic mutation.109-111 Prior to performing any genetic testing in asymptomatic individuals, the benefits of relieving anxiety and being able to make informed future decisions must be weighed against the potential risks of emotional distress, depression, compromise of insurance and employment, and social isolation through discussion with genetic counselor and a clinical geneticist as appropriate.112 Additionally, genetic testing and counseling should include a thorough assessment of family dynamics, financial support, and cultural issues.109 The issue of marital counselling and prenatal diagnosis must also be considered.109,110 Two independent studies have demonstrated that genetic testing and counseling in EOFAD can be completed successfully. Most presymptomatic individuals believe that testing is beneficial and demonstrate effective coping skills without major psychiatric complication during follow up observation.113,114 The most common reasons for presymptomatic family members to request genetic testing are concern about early symptoms of dementia, financial or family planning, and relief from anxiety.113,114

8. Treatment

To date, there are no large-scale clinical trials of EOFAD individuals to test the effect of the anti-dementia medicines due to the rarity of this population. Since the pathogenesis and clinical features are similar in EOFAD to those of sporadic AD, it has been common practice to use symptomatic drugs (such as donepezil, rivastigmine, galantamine and memantine) in managing EOFAD patients, which had been proven to ameliorate the symptoms of dementia in clinical trials of sporadic AD.115

Currently, several disease-modifying clinical trials based on the amyloid cascade hypothesis with an aim to reduce total brain Aβ load are ongoing in mild to moderate sporadic AD.115,116 Recently, the phase II trial of gantenerumab, a fully human anti-Aβ monoclonal antibody, showed amyloid-targeting antibody performed well resulting in a dose-dependent reduction in brain amyloid level in mild to moderate AD.116 However, it is now realized that initiating disease-modifying treatments during the dementia stage may not be adequate since extensive brain damage has already established; and thus, the maximal benefit of disease-modifying therapy should theoretically be obtained in the earlier stage.85,117 Disease-modifying prevention trials such as the Dominantly Inherited Alzheimer Network (DIAN), which target asymptomatic preclinical individuals, is already in the planning stages.7 The overarching preventive aim in preclinical stage of AD is to arrest the pathologic processes in the earliest stages (e.g., Aβ deposition) in order to prevent subsequent neurodegeneration and eventual cognitive decline.85,118 In the near future, presymptomatic EOFAD gene mutation carriers will have a potential to benefit from disease-modifying prevention.

ACKNOWLEDGEMENTS

National Nature Science Foundation of China (NSFC) [30700241 to Liyong Wu] and the Beijing Scientific and Technological New Star Program [2007B069 to Liyong Wu]; Scholarship from Chinese Scholarship Council [to Liyong Wu]; Clinical fellowship from Pfizer Canada [to Liyong Wu]; Canadian institutes of Health Research (CIHR) [MOP-11-51-31 to Pedro Rosa-Neto and Serge Gauthier]; Alzheimer’s Association [NIRG-08-92090 to Pedro Rosa-Neto]; Nussia & André Aisenstadt Foundation [to Pedro Rosa-Neto]; Fonds de la recherche en santé du Québec [16326 to Pedro Rosa-Neto]; Clinical Genetics Investigatorship by CIHR [to Ging-Yuek Hsiung].

REFERENCES

