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Some Proofs of Newton's Theorem on Sums of Powers
of Boots.

By R. F. MUIRHEAD, M.A., D.Sc.

This well-known theorem, published in Newton's Arithmetica
Universalis, may be formulized thus :—

where sm = the sum of the mth powers of the roots of the equation
xn-pix"-l+pix

n~2 ...±pn = 0. - - - (2)

Of course, when m>n, certain coefficients p,,+1, j»n+5, •••pm will be
zero, and the last term that does not vanish will be ±pnsm_,,.

Several elementary proofs of this theorem which have not
hitherto been printed have accumulated in my notes during past
years. They are elementary in the sense that they do not involve
the use of infinite series. The present communication has been
suggested to me by a perusal of the note by Mr Tweedie in last
session's Proceedings, where a brief and suggestive proof of the
theorem is given.

Of the proofs given in the present paper, the first is one for
which I am indebted to Mr John Dougall, who showed it to me
several years ago. The second, perhaps, is the most direct. The
third is a modification of the line of proof given in Chapter XVIII.
of ChrystaPs Algebra.

FIRST PROOF.

Denote by F(«) the expression
(*». "JMm-1+#!*»_» ~ ••• ±/>>»-!«1 + ™Pm)n

where sr= the sum of the rth powers of the n letters alt a,, ... a,
and pr = „ „ „ „ products of aj, 04, ... an taken r at a time.
Then for the case of n = m, the quantities ait a?, ... are the roots of
the m-ic ~ „, , „ » r* /n\

xmpxT-1+pxm-i±px + p 0. - - (3)
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Substituting successively a,, <u, ...a,,, for x in (3) and adding the
results, we get F ( w ) = () . . . ( 4 )

Now suppose n = m + 1, then if any one of the quantities a,, a,, ... an

vanish, F(m + 1) will reduce to F (m) and will therefore vanish.
Hence that particular a must be a factor of F(m+1). Similarly
we see that each of the other letters a must be.a factor of F(m + 1).
This is only possible if F(m + 1) is identically zero, since it is only
of dimensions m in the a's.

Thus ¥(m + 1) = 0 identically.

In a similar manner we can show that F(?n + 2) is identically zero,
since it reduces to F(m + 1), and therefore to zero when one of its
rra + 2 a's vanishes. And so on, by mathematical induction.

Thus when n-djim we have F(n) = 0.
The proof when n<m is easy, by taking an n-ic and multiplying
by a;"1-" and then substituting a,, a.,, ... an successively for x in it,
and adding: but here, of course, pn+1, pll+«, •••pm are all zero, and
F(n) reduces to , ,

Sm~P\ Sm-1 + P? *™-S • • ' — Vn Sm-n •

SECOND PROOF.

Given n letters a, /3, y, ... we have

(r))...2a*2(a£y... to q factors) = 2(a*+1/?y...) + 2(a"/3y...to?+ 1 factors)

excepting when p = 1, in which case we have

(6)...2o Z(a/3y...toqfactors) = 2(a=/3y..) + (q + l)2(a/3..toq + 1 factors).

Hence we deduce

3a'» - ZaSa"1-1 + 2a/32aJ"-- - ... ± 2(a/?y ... to w - 1 factors) 2a

= 2a™ - (2a™ + 2am-1/3) + (2a'"-1/? + 2a"-7fy) - ...

+ {2(a^7...) + 2 ( a^ . . . ) }

+ {2(a2/3y...) +niZ(a(ly ... torn factors)}

= + t»2(aj8 ... to TO factors).
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Thus, using the previous notation, we have

»m - Pi *«_1 + P2 «m-2 • • • ± Pm-1 «1 + »»/>« = 0

which is Newton's Theorem, excepting that pu p^ ... are here defined

as symmetric functions, instead of as coefficients of an equation.

This proof applies equally for all positive integral values of m;

but, of course, if m>n, the values of pn+i, pn+z> •••Pm W>H be zero.

THIRD PROOF.

Let pr denote the sum of the products of n letters a, /?, y, ...

taken r at a time, and ar denote the same function of the n-\

letters /3, y, 8, ..., and br that of the n - 1 letters a, y, 8, ..., and so

on. Then it is obvious from first principles that

Pr-l - ««,-! + «r-l

p2 =0.0,1 + a 2

Multiplying these equations respectively by

1, -a , a2, -a 3 , . . .±a- 2 , + a1-,

and adding, we get

Pr-<>-Pr-l + <>?Pr-i + a"~>l = «r + a" " " (7)

Similarly we can show that

Pr - yPr-1 + y^Pr-1 + /~>1 = «r + 7'

Summing these identities, we get

HP, ~ »lPr-l + SlPr-l + *r-lPi = n ~ rPr + *r ,

the factor n - r being due to the fact that each term of pr occurs in

n - r of the quantities a,, br, etc., viz., in those which do not exclude

any of the r letters of which that term is formed.
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Hence, transposing, we have

- + *r-l Pi ± «r = 0.

Thus Newton's Theorem is proved for all positive integral values of r.
Of course when r > n, certain p'& will be zero.

This method of proof is in essential respects analogous to that
given in Chrystal's Algebra, Chapter XVIII., from which, however,
it differs principally with respect to its starting point, i.e., in starting
from the elementary symmetric functions instead of from an equation.
It is perhaps worthy of note that, as put here, the investigation
enables us to deduce as a corollary the fact that -plt pit-p3, etc.,
are the coefficients of the n-ic whose roots are a, /3, y, ....

The equation (7) may be written

ar-Pior-'+pzar-"- ±Pr= ±ar.

Putting r = n and observing that in this case ar = an = 0,

we get a"-^1an-1+p2a"-2 ±pn = 0.

Thus the equation oc"-pix"~1...±pn = 0 is satisfied by each of the
n quantities a, /3, y, ... ; i.e., it is the equation of which these are the
roots.

It may be of interest to generalise Newton's Formula to a certain
extent, by using the method of the second proof.

The equation (5) may be seen to hold good for all values of p,
whether positive, negative, or even fractional, provided we agree
that in each 2 on the right hand side of (5) one letter is to have an
index attached, which may be 0 or 1 in certain cases, and that
^(/JyS.. . to 5 factors) is the same as (q + l)2(a/3 to q + 1 factors)

and that
2a°(/JyS... to g factors) is the same as (n - q) 2(a/J-y... to g factors)

so that -a0 is the same as n. The exceptional case of p = 1

(equation 6) will then be included in the general formula (5).
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To illustrate the modified notation, let us take the case of four
quantities a, /?, y, <5. Here we have

ZaiPy = a}{Sy + a 1 ^ + a'yS + /Fay + jS'aS + /3>yS + y'a/3 + y'aS + f/38

= 3(a/?y + a/85 + ayS + ySyS),

2ao/?y = a°/3y + a"/88 + a°yS + /S°ay +

= 2(/8y

and i V =

In the identity (5) read in this way, let us substitute for p the
values m, m-1, m ~ 2, ... m - r + 1, successively, multiply these
equations by +1 and by - 1 alternately, and add the results
together. Noting that each term is of dimensions m, we have

Hence we have

i V - Stt^a"-1 + 2a/32a'»-2 - . . . + ( - l)'2(a/8.. .)1a«^r

= ( - l ) ^ ( a - ^ y . . . ) - - - (8)

A further generalisation is got by subtracting this from the
corresponding formula with s substituted for r.

This gives

= 2(a»'-y8y...)-(-l)'-i;(a'»-/ay...) - - (9)

Now note the special case when s = r + 2. Equation (9) then
becomes

Pr+1 *•„,_,_, -Pr+, .V_,_2 = 2(a—'/By...) - 2 ( a - ^ y . . . ) - (10)

Tliis equation (10) could also be easily deduced directly from first

principles.
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