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Abstract

In this paper, we discuss MDP-the moment optimal problem for the first-passage model. A
policy improvement iteration algorithm is given for finding the fc-moment optimal stationary
policy.

1. Introduction

Allowing for the risk factor Jaquette [5, 6] posed a moment optimality model for a
discounted Markov decision process. Sobel [15] presented a formula for the k-Xh
moment of the total discounted return. A minimal variance problem (that is, a two-
moment optimal problem) in optimal policies for the discounted MDP was discussed
in [2, 12]. A moment optimality model in which the discount factor is dependent on
history was discussed in [10]. For other works in the field see also Baykal- Giirsoy
and Ross [1], Filar, Kallenberg and Lee [3], Filar and Lee [4], Kawai [7], Chung [8,
9], Sobel [13, 14] and White [16].

This paper discusses the moment optimal problem for the first-passage model on
the basis of [11]. The first-passage model is also of practical interest. In particular,
the model can be applied to solve optimal control problems of reliability and queueing
systems and other controlled stochastic systems.

A it-moment is defined in Section 2. Some formulas for ^-moments are given by
Theorem 2.1 in Section 2. Sufficient and necessary conditions for a policy n to be
a it-moment optimal policy are given by Theorem 2.6. Theorems 2.7 and 2.8 state
that the problems of the existence and calculation of a ^-moment optimal policy (or
a moment-optimal policy) in the space of general policies can be changed into the
same problems in the space of deterministic stationary policies. Theorem 2.9 states
that there exists a stationary policy which is moment optimal if A is nonempty and
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finite. An algorithm of policy-improvement type is given in Section 3 for finding the
fc-moment optimal stationary policy.

The first-passage model with denumerable state space is {S, A, q, r, Vk], where the
state space 5 and action set A are nonempty and countable. Let 5 = {0, 1, 2 , . . . } ,
So = {1, 2, 3 , . . . } . A one-step reward r satisfies \r(i, a)\ < M and r(0, a) = 0,
i € S, a € A. The symbol q denotes the family of stationary one-step transition laws:
when the system is in state i and we take an action a, the system moves to a new
state j selected according to the conditional probability q(j\i,a), where q satisfies
<7(0|0, a) — 1, a e A. A definition of criterion Vk is given in Section 2.

The set of general policies n = (JT0, nu 7r2,...) is denoted by n . A mapping
/ : S —> A is called a deterministic decision rule. Let F denote the set of all
deterministic decision rules / . For / e F, f°° = ( / , / , . . . ) is called a stationary
policy. FIj denotes the set of all stationary policies. Obviously n ' c l l .

At any stage t(> 0), X, and A, denote respectively a state of the system and an
action taken in that state.

ASSUMPTION A. There exists a real number a > 0 and a positive integer TV such that
PAxN = 0\x0 = i} > a for VTT G n , Vi e 50.

In the following, we assume that Assumption A is always true.
Let Xo = i0, Ao = a0, X\ = I'I, Ai = au ..., Xn = in. The sequence hn =

(I'O, a0, i\,ax,... , in) is called a history up to stage n and Hn(n > 0) denotes the set
ofall/tn.

Let n - (7To, JT,, n2,...) € Y\, hn = (i0, a0, i u a u . . . , in) e Hn(n > 1). The

policy n' = {R'O, n[,...) e n is defined as follows. For Wt > 0, V/i, e H,, define

n't(a\h,) = nn+l(a\i0,a0,iuai, ... ,«„_,, ft,), a € A.

Write n' = n(i0, a0,... , in_,, an_0 or n' = 7i(hn).
The following facts stated here without proof are derived in [11].

LEMMA 1.1. Letn> N, i0 e So, TC € n, then

where [X] denotes the greatest integer which does not exceed X.

LEMMA 1.2.

r=0 a
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PROOF. This follows immediately from the proof of Lemma 2.2 in [11].

Suppose XQ — i and let x denote the smallest integer t such that X, = 0. Let

Yr(Xt,A,)\Xo = i \ , n e U , i e S .
1=0

V(n, i) is the expected total reward obtained using the policy it starting from i. Let
V*(i) = supV(n,i),i € 5.

THEOREM 1.1 (Optimally equation).

V( i ) = sup r(i, a) + y % ( y | i , a)V(j) \, i e S.
I J

Let n 6 n , hn = (i0, aQ, i u a u . . . , in) e Hn. If Pn{X0 — i0, Ao = a0, X, =

iu A] = a], . . . , Xn = in\X0 = iQ] > 0, then hn is called a realizable history under
the policy n.

Let

i € 5.

THEOREM 1.2. Let i e 5, n e FI. 7/ien a necessary and sufficient condition that
V{n,i) = V*(i) is that for Vn > 0, if hn = (i,a0,... , in) is a realizable history
under the policy n and nn(a\hn) > 0, then a 6 A*(in).

PROOF. Similar to the proof of Theorem 2.4 in [11].

By Theorem 1.2 we have

COROLLARY 1.1. (1) If f{i) G A*(i) for alii e S, then V(f°°,i) = V*(i)forall
i € S.

(2) Let i e 5, it = (n0, nu ...) € n and V(n, i) = V*(i). If no(a\i) > 0, then
a € A*(i).

COROLLARY 1.2 (Bellman's optimality principle). Let i € 5, n € n and V(n, i) =
V*(i). Ifhn = (i, ao, ii,at,... , /„) (n > 1) is a realizable history under the policy
it, then V(n(hn), in) = V*(in).
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PROOF. Letn(hn) = (n'0,n[,Tz'2, . . . ) V m >_0. Let / im = (h,,doJuau • • • ,L) e Hm

be a realizable history under the policy n(hn) and n'm(a\hm) > 0. It is easy to see,
(i, OQ, J'I, Qi, . . . , in, ao,i\,a\,... , im) is a realizable history under policy n. By the
definition of n(hn),

nn+m(a\i, ao, iuau... ,in-Uan-i,hm) = n'm(a\hm) > 0,

by Theorem 1.2 (necessity), a e A*(im). So, by Theorem 1.2 (sufficiency),
V(n(hn), in) = V(iB).

THEOREM 1.3. / / f°° is optimal in Tld
s (that is, V(f°°, i) > V(g°°, i) for Wi e S,

Wg°° G Yld
s.), then f°° is also optimal in Yl (that is, V(/°°, i) > V(n, i) for Vi G S,

VJT G IU

LEMMA 1.3. Let S be finite, feF.Ifa set of numbers {V(i) : i G So} satisfies

then V(i) = 0, / G So.

Let V,, V2 G Rn(n > l),Vt = (V,(l), V,(2),... , V,(n)), i = 1, 2. Define

V, > V2 ̂ > Vx ( i ) > V2(j) for i = 1, 2 , . . . . n.
V, > V2 < = » V, > V2 and V, # V2.

2. The moment optimal problem

By the Cauchy criterion, we know that Y17=N+\ " P ( 1 ~ a)ln~l/N] is convergent for
p= 1,2,.... Let

, TV, p) = Y^ n"(l ~ a)[n-l/N] \
|_n=/V+l J

+N", p = 1, 2

LEMMA 2.1. Let i e S0,n G n , p = 1,2, Then
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PROOF. By L e m m a 1.1,

[5]

= n = ^T = n | X ° = '>
N

n"PAT =

n=N+\
N

'Ar = n\X0 = i
n=\ n=N+\

'Ar<N\X0 = i}+ £ n"(
n=N+i

< D(a, N, p).

So, by Lemma 2.1, when i e So, n e n , p = 1,2,...,

zJ|X>(X,,A,/|Xo = <
<=o

n\X0 = i]

i / 0|X0 = i}

\X0 = i]

< (2M)pD(a, N, p). (2.1)

DEnNinoN2.1. Let

'=°
Let V0(n,i) = 1, / e 5,7r € n .

It is easy to see, V*^, 0) = 0, n e n , k = 1, 2,
Because r(0, a) = 0 and g(0|0, a) = 1, we have

Vk(n, i) = £ , = i , i e 5,7r G n , k = 1,2,

THEOREM 2.1. Le/ 7r = (n0, nu ...) € n, i e 5, k = 1, 2 , . . . . Then

Vt(n, i) = i) I Rk(i,a, n)
[

1, a), y) | ,

JjeS
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where
k-l

Rk(i,a,n) = i,fl), J),
p=0 j€S

The definition of n(i, a) can be found in Section 1.

PROOF. Let / e So, k = 1,2, By the total mathematical expectation formula,

Vk(n, i) = E

|X0 = i, Ao = a

The proposition is obviously true for i=Q.

Let M,(n) = (-1)'+1 V,(n), n G n , / = 0, 1, 2 , . . . , where V,(n) is a vector and
its i-th component is Vi(n, i), i e S.

Let M"(n) = (M0(n), Af,(jr),... , Mk(n)), n e n , jfc = 1, 2 , . . . .

DEnNTTlON2.2. Let k > 1, 7r,, 7r2 € n . M*(7r,) > M*(7r2) <=>• 3n, 1 < « < *,
such that M((^i) = Mi(n2) for/ < n and Af,,^) > Mn(n2).

or Mk(nx) = Mk(n2).Mk(nx) >

DEFINITION 2.3. Let k > 1, ^* € n . If A/*(n-*) > Mk(jt) for VTT € n , then n* is
called a fc-moment optimal policy in n .

If n* is a /:-moment optimal policy in n for all jfe > 1, then n* is called a moment-
optimal policy in FI.
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The set of the k-moment optimal policies in FI is denoted by Tl(k)(k > 1). Let
n(0) = FT. The set of the moment optimal policy in FI is denoted by n(oo).

Obviously, FI (oo) = n n (k). It is easy to see by the definition that n (k) c FI (k -1),

k > 1.

DEFINITION 2.4. Let M*(i) = - 1 , 11(0, i) = U, i e S and define M*(i) and
FI(n, i)(i e S, n > 1) as follows. If FI(n - 1, i) ^ 0, then

M*n(i)= sup Mn(n,i),
nen(n-l,i)

- 1, i)\Mn(n, i) = M*n(i)},

where Mn(jt, i) = (-1)"+1 Vn(n, i).

It is easy to see that U{n, 0) = n, n = 0, 1, 2 , . . . . By (2.1),

|AfB*(i)| < (2M)"D(a, iV, n), i e S, n = 1, 2 , . . . . (2.2)

DEFINITION 2.5. Let

Rn(i,a) = (-1)"

i e S , a € A, n = 1,2,... .

Let A*(i) = A, i e S and define A*(i) (i e S, n > 1) as follows. If A*_t(i) # 0
and n(n - 1, j) ^ 0 for all j € 5, then

= L e

= sup /?„(/, a)

I t i s e a s y to s e e t h a t R n ( 0 , a) = 0, a e A , n = 1 , 2 , . . . ; a n d /4*(0) = A , n
0 , 1 , 2 , . . . .

THEOREM 2.2. Letk> 1.

(1) Lef A*_, (0 ^ 0/or a// / 6 5, then

sup j Rk(i, a) + V ^01', «)M;O) I = M*k(i) for all i e S.
^-i(0 I ;eS JaeA]
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(2) / / / ( / ) € A*k(i)forall i e S, then f°° e D Tl(k, i).

(3) Let A*_,(y) ± 0 for all j e 5. Let i e"s, n e T\{k, i). Ifno(a\i) > 0, then
a 6 A*k(i).

(4) Let AJ_,(y) # Id for all j e S. Let i € S,n e T\(k,i). If hn = (j .On.'i .
a i , . . . , /„) € //n(n > Y) is a realizable history under the policy n, then n (hn) e
n(k,in).

PROOF. (Apply induction to k). We know that proposition (Theorem 2.2) is true for
k = 1 by Theorem 1.1, Corollary 1.1 and Corollary 1.2.

Inductive hypothesis I: the proposition (Theorem 2.2) is true for 1 < k < / — 1.
(1) Let A;_!(J) # 0 for all i e S. We take / ( i ) e A,*_,(0 for W e S. By the

inductive hypothesis I and (2) in Theorem 2.2, f°° e D T\ (I -1, i). So n (/ - 1 , /) ^ 0
ieS

for all i e S.
For V/ e 5, V7r e n(/ - 1, i), by Theorem 2.1,

^ {i, a), y) 1 .
JjeS

By the inductive hypothesis I and (4) in Theorem 2.2, n(i, a) e Fl(/ — 1, j) when
no(a\i)q(j\i,a) > 0. So

aeA

/-I

aeA

7ro(a|i)>O

= J2
^o(a|0>0

and

7io(a\i)>0

That is,

7io(a\i)Ri(i,

jeS

a)

p=0

i-\

p=0

, U)

jeS
q(j\i,a)>0

i, a) +
jeS
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By the inductive hypothesis I and (3) in Theorem 2.2, a e A*_,(/) when jro(a|/) >
0. Therefore we have

M,(n, i) < sup I R,(i, a) + 53$U|i, a)M?(j) •

By definition,

Af*(i) < sup |/?;(«, a ) + 53401 ' . aW*0')} > i € S. (2.3)

For each e > 0, we take / ( / ) e A*_, (/) for Vj € 5 such that

(2.4)

PROPOSITIONAl. Let/ e 50. Then

m - l

n=0 ine50 ime50

> M;(i) - — 5 3 5 3 P/=o{Xn = in\X0 = i], m = 1, 2,....
" n=0 ineSo

PROOF OF PROPOSITION Al. This follows immediately on applying induction to m (or
see the proof of (2.2) in [11]).

PROPOSITION A2. Ifg(i) e A*_x(i) for all i e S, then

m — 1

Afi(*°°, o = 5 3 2 ps°°{Xn = in]X°= '}/?/('n'g(in))

n=0 ineS

PROOF OF PROPOSITION A2. By inductive hypothesis I and (2) in Theorem 2.2, g°° e
D n( / - 1, i). By Theorem 2.1,

ieS

, y), i 6 5. (2.5)
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By (2.5), we can prove that Proposition A2 is true by applying induction to m.
By Propositions Al, A2 and Lemma 1.2,

Y, °, im) - M,*0m)),

/ e So, m = 1,2,... .

By Lemma 1.1 and (2.1), (2.2)

M / ( / 0 O , / )>M;( / ) -e -2( l -a ) l m / A ' ] (2M) 'D(a ,N, / ) ) i € 50, m = N, N+l,... .

Let m -> oo. We have M,(/°°, i) > M ; ( J ) - e, i G 50.
So, by (2.5), (2.4)

M;(«) > M,(/°°, 0 = /?,(/, /(i)) + £>(./1'\ f(i))M,(f°°, j)

> sup j R,(i, a) + J^qUM, a)M;<J) - ^ - e, i 6 S.

That is,

Mf(i) > sup </?/(«,«)-

If we let e -» 0, we see that (1) is true for k = / combining (2.3).

(2) Let f(i) e A;(Q for all i e 5. Obviously / ( / ) e A;_,(i) for all / e 5. By the
definition of A*(0,

f(i))M*(j)= sup </?,(i,a)+y^^(,/|/,a)M,*0')J , i e S.
j€S ae^*_iO) [ yes J

We have from the above proof of (1) that

Mi(f°°,i) > M*(i), i € 5. (2.6)

By inductive hypothesis I and (2) in Theorem 2.2, f°° e n n ( / — 1,/). So

A/((/°°, i) < M;(0, i e 5. From (2.6) we have f°° e D ri(/, i), that is, (2) is

true for it = /.
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(3) Let A;_,0) ^ 0 for all j e S. Let i e S, n e n( / , / ) . Obviously n €
n( / — 1, /). By inductive hypothesis I and (3) in Theorem 2.2, a e A*_t(i) when
no(a\i) > 0. So

7ro(fl|i) j R,(i,

no(a\i) sup \Ri(i,a) + y,qU\i,a)M?(J)\ , a e A. (2.7)

We know from the above proof of (1) that

M,*(0 = M,(n, i) <

<^7ro(a | / ) sup | R,(i,t

jeS

So

= sup

aeA [ jzS

$3 sup
a6 /t ae^;.,(i

By (2.8) and (2.7),

no(a\i) j *,(i\<i)

= w o ( a | i ) s u p | R , ( i , a) + Y ) q U \i , a)M;(J) , a e A .

Therefore, when no(a\i) > 0, we have a e A*_, (i) and

U)= sup

that is, a 6 A*(i). So (3) is true for k = /.
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(4) Let A,*_,O") # 0 for all j e S. Let i € 5 , n e FI(/, i ) and hn = (/, do, / i ,

a i , . . . , in) (n > 1) be a realizable history under the policy n. We shall prove that

n(hn)en(l,in).
(Applying induction to n). Let n = 1 and h\ = (i, ao, »i) be a realizable history

under the policy n. Obviously n € II (/ — 1, i). We have from the above proofs of
(1) and (3),

; ( I ) = M,(n, i) =
aeA [ jeS

o(a\0 Rid,a)
aeA [ jzS

Therefore

J2 2 > $ > ; ( . / ) . (2.9)

By inductive hypothesis I and (4) in Theorem 2.2, n(i,a) G FI(/ — 1,7) when
^o(a\i)q(j\i,a) > 0. So

no(a\i)q(j\i,a)M,(7T(i, a), j) <iro(a\i)q(j\i,a)Af;U), a e A, j e S. (2.10)

By (2.9) and (2.10),

Jro(a\i)q(j\i, a)M,(n(i, a), j) = no(a\i)q(j\i, a)M*{j), aeAJeS.

So, when Ji0(ao\i)q(.ii \i, aQ) > 0, we have n(i, a o ) e n ( / - l , ix) and Mi(n(i, OQ), /,)
= M*{i\), that is, 7r(/*i) e n ( / , ij). The proposition is true for n = 1.

Suppose the proposition is true for n. Let /in + ) = (1, a0, i\,a\,... , in+\) be a
realizable history under the policy n. It is easy to see that hn = (i, a0, iu au ... , in)
is also a realizable history under the policy n. By the supposition that n(hn) €
n( / , in), it is also easy to see that nn(an\hn)q(in+l |in, an) > 0, that is, (in,an, in+\) is
a realizable history under the policy n(hn). Applying the result for n = 1, we have
n(hn+i) = n(hn)(in, an) € FI(/, in+\), that is, the proposition is also true for n + 1.
So (4) is true for k = /.

COROLLARY 2.1. Lerfc > 1, A*k_x(J) ^ Q for all j e 5. Le*/ e 5, n(jt, /) ^ 0.
A:O) # 0.

PROOF. This follows immediately from Theorem 2.2(3).
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COROLLARY 2.2. Let k > 1. //A*k(i) ^ 0y»r all i € S, then n n(&, i) j ^ 0.
ieS

PROOF. This follows immediately from Theorem 2.2(2).

COROLLARY 2.3. Let n > 1. Then

U(n, j) ^ 0 for all j e 5 <̂ =» A*(j) ^ 0 for all j G 5.

PROOF. (•<=) This follows immediately from Corollary 2.2.
(=>) (Apply induction to n). The proposition is true for n = 1 by Corollary 2.1.
Suppose it is true for n. Let n (n + 1 , j) ^ 0 for all j e 5. Obviously n (n, y) ^ 0

for all j € 5. So ^ ( y ) ^ 0 for all y € 5. By Corollary 2.1, A*+1(y) ^ 0 for all
y € 5. That is, the proposition is also true for n + 1.

THEOREM 2.3. Let k > 0, A£(0 ^ 0/or a//1 6 S. 77ien Ve > 0, 3 / 0 0 swc/i
/ ( / ) e A*k{i) for all i e Sand

PROOF. The case for k = 0 corresponds to Theorem 2.2 in [11]. We know that the
proposition is true for k > 1 from the proof of Theorem 2.2(1).

THEOREM 2.4. Let k > 1, AJ_,(y) 7̂  0 for all j e S. Let i G 5. Then n €
I~I(&, i ) t=> Vn > 0, i / / i n = {i,ao,ix,a\,... ,in) is a realizable history under the

policy n and nn(a\hn) > 0, then a € A*k{in).

PROOF. (=•) Let n > 1. By Theorem 2.2(4), n(hn) € n()t,jn). Let 7t(hn) =
(TTQ, n[, n'2,...). It is easy to see that 7To(a|/n) = nn(a\hn), a € A. By Theorem
2.2(3), a € A*k{in) when 7rn(a|fcn) > 0.

Let n = 0. By Theorem 2.2(3), a € A*k(i) when 7T0(a|0 > 0.
(«=) (Apply induction to fc). The proposition is true for k = 1 by Theorem 1.2.

Suppose the proposition is true for 1 < k < / — 1. We consider the case that k = I.
Let A*_,(y) ^ 0 for all y e 5 and let i e 5. By the inductive hypothesis and the

sufficiency supposition, n e Il(/ — 1, /). We have from the proof of Theorem 2.2(1)
that

M,(n, i) = £ > 0 ( a |0 R,(i, a) + £9 t f l» . fl)^i(»(i, a), » • (2.11)
oe/4 I yeS J

Let m > 0. By Theorem 2.2(4), when P^{A0 = a0, Xx = /,, A, = a , , . . . , Xm+, =
= i] > O,wehaven-(i,ao, ii.fli, . . . ,im,am) 6 n ( / - l , i m + 1 ) . So, by (2.11),
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when Pn[A0 = OQ, X, = iu A, = au ... , Xm+1 = im+AX0 = i] > 0, we have

M/(7r(/, OQ, i\, d\,... , im, om), im+i)

q(im+2\im+\,am+x)M,{n(i, ao,iuax,... , im,am)(im+i,am+l), im+2)

\

Therefore, we have

D f A V " A - ^ V ' I V * 1

(i, ao, i i . f l i , . . . , im,am), /m + 1)

p^{Ao = ao, X\ = i\, A\ = ax,... , Xm+X = im+x\Xo = /} x

a\£A im+ieS

m+i(fim+i\i, ao, i\,a\, ... , im+\)R/(im+i, am+\)

+/ , nm+l(am+l\i,ao,iuai,... , im+i)90m+2l«m+i, am+i) x

Mi(Tt(i, ao, i\,a\,... , im, am, im+\, am+\), im+2) t

-l = im+i, A m + i = am+i\Xo = i}Ri(im+i,am+\)

JI{AO — flo, X\ — i\, A\ — a\,... , Xm+2 — im+2|Xo — i) x

s

2O,ii,al,...,im+i,am+i),im+2), m>0. (2.12)

By (2.11) and (2.12), it is easy to prove by induction that

n=0 i'neS,aneA

+ ^ ^ { A o = ao, X, = / , , A, = a , , . . . , X m + 1 = i m + i |X 0 = i} x

a,eA im+i'eS

Mi(n(i,ao,ii,ai,... ,im,am),im+i), m = 0, 1,2
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By the sufficiency supposition, a € A*(i) when 7ro(a|/) > 0. So, by Theorem 2.2(1),

0(a|0 I *,(i, a) + J^qU\i, a)M;(j) , (2.13)
aeA [ j<=S )

Let m > 0. By the sufficiency supposition, when P^{A0 = a^, X{ = *i, Ai =
a\ Xm+i = im+,\X0 = i} > 0, if 7 r m + i ( a m + i | / , ao , i\,au... , im+i) > 0, then
am+i € A*(im+i). So, by Theorem 2.2(1), when P^{A0 — OQ, XX = / , , A , =
a , , . . . , Xm+i = im+i \X0 = i} > 0, we have

M*(im+i)= ^ nm+l(am+l\i, ao,iucii /m

jeS J

Therefore, we have

D^{A0 = OQ, X\ = I'I, Ai = a\,... , Xm+i = /m +i |X0 = i]M*

a,eA i*+\eS

Pjr{A0 = OQ, Xx — i'i, Ai = au ... , Xm+i = im+i|X0 =
ac,eA,i,eS,

teA i m + i 6

,ao, i\,a\, ... , im+i) I Ri(im+i, am+x)

—7 'n{Xm+\ — 'm+i) Am+i — am+i|Ao — i}Ri(im+i, om+\)

°n{A0 = ao,Xi=il,Ai=au..., Xm+2 = im+2\X0 = i}M*(im+2),

m > 0. (2.14)

By (2.13) and (2.14), it is easy to prove by induction that

P*i*n = in, An = an\X0 = i}R,(in, an)
1 = 0 in

Pn{Ao = floi -^I = ' i . Ai = ai,... , Xm+i = /m+i|Xo = i)

a\€A,...,im+l€S

m =0,1,2,... .
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So, when i € 5b, by (2.1), (2.2) and Lemma 1.1,

Xm+l = im+1\X0 = /} 2(2M)'D(a, N, I)

PAXm+i = im+l\X0 = i}2(2M)'D(a, N,I)

< (1 - a)|m+1/A"2(2M)'D(a, N, I), m = N,N+ 1, ... .

Let m -> oo. We have M,(n, i) = M*(i). So n e Tl(l, i) (if i = 0, then n e n =
n(/, 0) obviously). The proposition is also true for k = I.

Obviously Theorem 2.4 is an extension of Theorem 1.2.

THEOREM 2.5. Letk>0. Then T\(k) = nil(k, i).
ieS

PROOF. (Apply induction to k.) The proposition is true for k = 0 obviously. Suppose
the proposition is true for 0 < it < / — 1.

Let n € FI(/). It is easy to see that n e Fl(/ — 1). By the inductive hypothesis,
n € n n( / - 1, i). By Corollary 2.3, A*_x(i) =£ 0 for all i G 5. By Theorem 2.3,
Ve >0, 3/°° such that / ( / ) e A*_x(i) for all i e S and

Af/(/°°, i) > M*{i) -e, / e S.

By Theorem 2.2(2) and the inductive hypothesis, f°° € Tl(l - 1). Since n, f°° €
n(/ - 1), therefore M'-l(n) = M'-\f°°). Since n e n(/) , therefore M'{n) >
M'(f°°). Hence M,(n, i) > M,(/°°, i) for all i € 5, that is,

M,(n,i)>M;(i)-€, i e 5.

Let € -»• 0. We have M,(n,i) = M*{i) for all i e 5. So 7r e n n ( / , / ) , that is,

ieS

Letn e n n ( / , / ) . It is easy to see that n e n n ( / - l , i ) . By the inductive
ie5 ieS

hypothesis, it € FI(/ - 1). Choose any if e l l . Obviously M'~x(n) > M'~\n). If
M'-\n) > M'-\n), then

> M'(n). (2.15)

If M'~\n) = M'-l(n), then n € n(/ - 1). By the inductive hypothesis, n e

M'(n) > M'(n). (2.16)

D n( / - 1, i). Since 7r e n n(/ , /), we have Af;(n-) > Mt(n). Hence
165 I6S
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y (2.15) and (2.16), M'(TT) > M'(n). ThereforeTT e n(/),th

To sum up, we know that the proposition is true for k = I.

By (2.15) and (2.16), M'(TT) > M'(n). ThereforeTT e n(/),thatis, n n ( / , i ) C n(/).
/ Go

THEOREM 2.6. Letk> 1. Then i e l l ( l t ) <=*• Vn > 0 ifhn = (I'O, OQ, iu a{,... , /„)
is a realizable history under the policy n and Ttn{a\hn) > 0, then a € A*k(in).

PROOF. (=>•) Let n e T\(k). By Theorem 2.5, it e HU(k, i). By Corollary 2.3,
A*k(i) ^ 0 for all i € S. Obviously n e T\(k, i0). By Theorem 2.4,if hn =
O'o, «o. 'if O\,... , in) (n > 0) is a realizable history under the policy n and7Tn(a|/in) >
0, then a e A*k(in).

(<=) Choose any i € 5. We take a e A such that 7ro(a|O > 0. By the sufficiency
supposition, a G A*k{i). So A*k(j) ^ 0 for all j e S. By the sufficiency supposition
and Theorem 2.4, n e U(k, i) for all i e 5. By Theorem 2.5,7r e n(it).

Obviously this theorem is an extension of Theorem 2.4 in [11].

COROLLARY 2.4. n e n(oo) «=» Vn > 0, ifhn = (J0, ao, i\,au... , in) is a realiz-

able history under the policy n and nn(a\hn) > 0, then a e fl A*k(in).

PROOF. This follows immediately from Theorem 2.6.

THEOREM 2.7. (1) Letk > 1. //n(/k) / 0, then 3/°° e n(ifc).
(2) / / n (oo)^0 , then3f°° e n(oo).

PROOF. (1) By Theorem 2.5 and Corollary 2.3, A*(0 ^ 0 for all / G 5. We take
/ ( i ) e A*(j) for all j e 5. By Theorem 2.2(2) and Theorem 2.5, f°° e n(jfc).

(2) We take n e n(oo) and V7 e 5 takea e A such that no(a\i) > 0. By Corollary

2.4, a e n A*(i). That is, n A*k(i) # 0 for all i e 5. We take / ( i ) e n A*k(i) for all

i € 5. By'Corollary 2.4, f°° € n(oo).

THEOREM 2.8. (1) Ler k > 1. T/"/00 w a k-moment optimal policy in T\d
s (that is,

Mk(f°°) > Mk(g°°)forallg°° € Tld
s), then f°° e Tl(k).

(2) 7/"/00 w a moment optimal policy in Tld, then f°° G n(oo).

PROOF. (1) (Apply induction to k.) The proposition is true for k = 1 by Theorem 1.3
and Theorem 2.5. Suppose the proposition is true for 1 < k < I — 1.

Let f°° be a /-moment optimal policy in Yld. It is easy to see that f°° is a
(Z — l)-moment optimal policy in Fl̂ . By the inductive hypothesis and Theorem 2.5,
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f°° e FI(/ - 1) = n n(/ - 1, /). By Corollary 2.3, A;_,(i) ^ 0 for all i e S. By

Theorem 2.3, Ve > 0, 3g°° such that g(i) € A;_,(i) for all i e 5 and

M,(g°°, i) > A/;(0 - 6, i e S.

By Theorem 2.2(2) and Theorem 2.5, g°° e n(/ - 1). So M'-'tg00) = M'-'(/°°).
By the supposition, M'(/°°) > M'(g°°). So M,(/00,«) > M,(g°°, i), i € 5. Hence

M,(/°°, i) > M,*(i)-e, I € 5 .

Lete - • 0. WehaveM,(/°°, i) = Af,*(i), i € S. By Theorem 2.5, /°° e n n(/ , i) =
1 Go

n (/). That is, the proposition is true for k = I. The proof of (1) is complete.
(2) This follows immediately from (1).

Theorems 2.7 and 2.8 state that the problems of the existence and calculation of a
it-moment optimal policy (or a moment optimal policy) in Fl can be changed into the
same problems in n^.

THEOREM 2.9. If A is nonempty and finite, then 3/°° e n(oo).

PROOF. Let A be nonempty and finite. By the definition of A*k(i) and Corollary 2.3,
A*(i) # 0 for Vj e 5, Vfc > 1. Because A is finite and A*k(i) C A*_,(/), i e 5, k > 1,

it is easy to see that Q AJ(i) ^ 0 for all i e 5. We take / ( / ) e n A^(j) for all i 6 5.

By Corollary 2.4, /°° e FI(oo).

THEOREM2.10. Fork > 1, let f°° eU(k- 1). / /

M*(/°°, i) = sup Rk(i, a) + Y]q(j\i, a)Mk(f°°, j) for all i e 5,

then f°° e n(it).

PROOF. By Theorem 2.5 and Corollary 2.3, /4*_,(i) ^ 0 for all i e 5. By Theorem
2.3, Ve > 0, 3g°° such that g(i) € /4^_,(i) for all i e 5 and

Mk(g°°, i) > M*k(i) -e, ie S.

By the supposition,

X] °. 7) < Mk(f°°, i), i 6 S.
jeS
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Imitating the proof of Theorem 2.2(1), we have

Mk(f°°, i) > Mk(g°°, i), / € 5,

that is,
Mk(f°°, i) > M*k(i) -e, i € 5.

Let e -*• 0. We have
Mk{fco,i)>M*k(.i), i e 5 .

By Theorem 2.5, f°° e nTl(k-l,i). So, by Theorem 2.5, f°° e nn(k,i) = Tl(k).

3. Algorithm

We shall now give an algorithm of policy-improvement type for finding a k-
moment optimal stationary policy. In this section we suppose that 5 and A are finite.
By Theorem 2.9, there exists a f°° which is a moment-optimal policy. Obviously, f°°
is also a k(> l)-moment optimal policy.

THEOREM 3.1. Let k > 1, f°° e Tl(k - 1). The equation

RkU, /(/)) + J]?0'l«, f(i)WU) = V(i), i € 5b, (3.1)

possesses a unique solution V(i) = Mk(f°°, i), i € So-

PROOF. By Theorem 2.1 and 2.5, {Mt(/°°, i) : / € 50} is a solution of (3.1). By
Lemma 1.3, the solution of (3.1) is unique.

By solving (3.1), we can find Mk(f°°, i), i € 5.

THEOREM 3.2 (Policy improvement). Fork > 1, let f°° € Tl(k-\). Ifg(i) € A;_,(i)
for all i € S and

Rk(i, g(i)) + £ > 0 l ' \ giOWdf00, j) > Mk(f°°, i) for all i 6 S,
jeS

then Mk(g°°) > Mk(f°°).

PROOF. The proof is similar to that of Theorem 2.2(1). Note that, by Theorem 2.5 and
Corollary 2.3, A*_, (i) # 0 for all i e S.
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Let k > 1. By Theorem 2.9, 3/°° e n(k - 1). We take /0°° e U{k - 1). By
Theorem 2.5 and Corollary 2.3, A*k_x{i) # 0 for all i e S. /n°°(/i = 1, 2 , . . . ) is
defined as follows: Vj e 5, we take /„(/) 6 A*k_x(i) such that

max \Rk(i,a)

= **('", /„(')) + 2>(./l«, fn«))Mk(fn°°_v j). (3.2)

THEOREM 3.3. Letk>\. For /n°° (n = 0, 1, 2 , . . . ) defined above, we have

(1) M*(/~)>M*(/~,) , /2 = l , 2 , . . . .
(2) 3n0 > 0 ™c/, f/zar M,( /~) = M*(/~+1).
(3) / /M, ( /~) = M*(/~+1), f/ten / ~ e

PROOF. (1) By Theorem 2.2(2) and Theorem 2.5, /n°° G Yl(k - 1), n > 0. By
Theorem 2.6, /B(i) G A*_!(i), i € S, n >0. By Theorem 3.1 and 3.2, (1) is
true.

(2) Because 5 and A are finite, n^ is finite. Condition (2) is true from (1).
(3) From Theorem 3.1 and Theorem 2.10, (3) is true.

Let k > 1. An iteration algorithm for finding a ̂ -moment optimal stationary policy
is stated as follows:

(1) / «= 1. Choose any /0°° € FT?.
(2) By (3.2), with the policy improvement iteration starting from /0°°(replace k

by / in (3.2)), we can find g°° € n(/) (see Theorem 3.3). By Theorem 2.5,
M,(s°°, i) = M;(0, i 6 5.

(3) If / = k, then stop. We have g°° e U(k). If / < k, then go to (4).
(4) By the definition of A*(i), we find A*(i), i e S. Obviously A*(i) ^ 0 , i e 5.
(5) / <= / + 1. Let /0 = g. Go to (2).

oo

By the above algorithm, we can find A*k(i), i 6 5, k > 1. We take / ( / ) € n A*k(i)

for all / e 5, then f°° e n(oo) (see the proof of Theorem 2.9).
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