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Microfluidic systems consisting of a square microchannel with an orthogonal side branch
are promising tools to enrich or sort suspensions of deformable capsules. To allow their
operating control, we numerically consider a train of initially spherical identical capsules,
equally spaced along the axis of the feeding channel. The capsules have a strain-hardening
membrane, an internal fluid viscosity identical to that of the external fluid and a size
comparable to that of the channel. We study the influence of the interspacing on the
capsule path selection at the channel bifurcation using a three-dimensional immersed
boundary–lattice Boltzmann method. Our objectives are to establish a phase diagram and
identify the critical interspacing above which hydrodynamic interaction between capsules
no longer affects their path selection. We find two main regimes. At low interspacing,
strong capsule interaction leads to an unsteady regime for which the capsule path selection
follows either a periodic or a disordered state. Above a critical initial interspacing dct, a
steady regime is achieved where interaction between capsules is too weak to affect their
path selection. The capsules then follow an identical steady trajectory. We find that the
dependence of the interspacing dct, normalised by the capsule radius, on the flow split ratio
falls onto a universal curve regardless of the flow strength, capsule size and membrane
shear elasticity. We also compare the path selection of a capsule train with that of a
two-capsule system, and discuss applications of the present results in controlling capsule
trains in microfluidic suspension enrichment devices.
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1. Introduction

There is considerable interest in the design of microfluidic systems to enrich very dilute
suspensions of particles such as cancer cells or high value-added drugs or reagents
(Hur et al. 2011; Kok, Segers & Versluis 2015; Warkiani et al. 2015; Nivedita et al.
2017; Wang et al. 2017). One class of devices relies on the use of a bifurcating channel
where the particles are sent into one specific branch by means of hydrodynamic forces.
Correspondingly, a number of numerical models have focused on the path selection of
a capsule (a liquid drop enclosed by an impermeable deformable membrane) suspended
in an external fluid flowing through a straight microchannel with a side branch (Barber
et al. 2008; Woolfenden & Blyth 2011; Wang et al. 2016; Villone et al. 2017; Wang
et al. 2018). Considering a capsule allows us to model a wide variety of particles from
cells to encapsulated drugs. The path selection of a single capsule has been found to be
dependent on the flow rate split between the two branches, capsule deformation (Villone
et al. 2017), capsule position in the feeding channel (Barber et al. 2008), flow inertia
(Wang et al. 2016) and bifurcation geometry (Wang et al. 2018). This indicates that such
a bifurcated channel is promising as a microfluidic tool for suspension enrichment or for
sorting deformable capsules/cells. However, the above studies mostly considered a single
capsule: this corresponds to a very dilute system where capsules are so far apart in the
bifurcation that the hydrodynamic interaction between them is too weak to affect their
individual trajectory. The question which arises in practice is how dilute the suspension
should be for the interactions between capsules to be negligible and the separation system
to be fully under control.

Relevant to hydrodynamic interaction between capsules, extensive research has
concerned the flow of dense red blood cell suspensions at a bifurcation (Pries et al.
1990; Hyakutake & Nagai 2015; Shen et al. 2016; Balogh & Bagchi 2017; Ye & Peng
2019), as a model for blood flows in the microcirculation. The primary focus of these
studies was on the overall cell partitioning at the bifurcation. In dense suspensions,
hydrodynamic interactions between multiple cells are strong, complicated and difficult
to control. Therefore, a dense suspension may not be an ideal situation for sorting or
enrichment using the aforementioned microfluidic geometry.

Studies of the hydrodynamic interaction between capsules in a branched microchannel
in a dilute suspension are very limited. Barber, Restrepo & Secomb (2011) pioneered the
research of two-dimensional (2-D) capsules at a symmetric Y-shaped bifurcation. It was
found that the existence of a capsule in a downstream branch could block the entrance of
the following one into the same branch, when the distance between capsules is sufficiently
small. However, the work was limited to a pair of capsules in 2-D flows, which is a strong
limitation because capsules are three-dimensional objects.

The present study aims to systematically consider, for the first time, the hydrodynamic
interaction and path selection of a train of three-dimensional (3-D) initially spherical
capsules flowing in a microfluidic asymmetric bifurcation consisting of a straight square
channel with an orthogonal side branch of the same cross-section. The capsules are
identical, initially equally spaced, and their size is comparable to the cross-sectional
dimension of the channel. They are enclosed by a strain-hardening membrane and the
internal fluid has the same viscosity as the external fluid. The capsules are centred along
the feeding channel axis by hydrodynamic forces or by some flow-focusing devices.
The objectives of the present study are two-fold: first, to uncover the influence of the
initial interspacing between capsules in the feeding channel on the path selection phase
diagram of capsules at the channel bifurcation region; second, to establish the threshold in
initial interspacing above which hydrodynamic interactions become too weak to affect
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A train of capsules in a branched microchannel
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Figure 1. Geometry of the branched channel used in the 3-D simulation. The shadow represents the
bifurcation region. Top left inset shows the geometry in three dimensions.

the capsule path selection (i.e. a capsule destination is identical to that of a single
non-interacting capsule).

The paper is organised as follows: the flow geometry of the branched channel, the
governing equations and the main parameters are presented in § 2; the numerical method
and validations are presented in § 3. To facilitate the understanding of the results of a
capsule train, we first consider the path selection of two capsules at the channel bifurcation
in § 4. The results of a capsule train are then presented in § 5, where we focus on the
path selection phase diagram and the critical initial interspacing dct above which capsule
interactions have negligible effects on capsule path selection. In § 6, we discuss the
relationship between a capsule train and a two-capsule system, and the implications of
the present results to practical capsule enrichment experiments. Finally we summarise our
findings in § 7.

2. Problem statement

We consider a train of equally spaced liquid-core capsules flowing through a straight
channel with an orthogonal side branch. The channel geometry is shown in figure 1. Both
the straight channel and the side branch have the same square cross-section with a side
length of 2l. The length of the upstream parent channel is 20l and the length of both
daughter channels is 10l. The side branch and the straight channel are centre-connected,
their joining corners are rounded, as is usually the case in microchannels fabricated using
soft lithography. We choose a curvature radius of 0.4l and study the influence of this value
in the numerical validation in § 3. A 3-D Cartesian coordinate system is defined with
the x-axis along the axis of the straight channel, z-axis along the side branch axis and
x = y = z = 0 at the bifurcation centre.

All the capsules are initially spherical with radius a. Each capsule is enclosed by
a hyperelastic membrane with a small bending stiffness. The fluids inside and outside
the capsule are incompressible Newtonian liquids with identical viscosity μ and density
ρ. Capsules are regularly released on the centreline of the parent channel within the
cross-section Sc, which is at a distance 2l from the entrance S0 (figure 1). The release
of a new capsule occurs when the mass centre of the capsule ahead arrives at the plane
S′

c which is at a distance d downstream from Sc. Such an approach allows us to consider a
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train of capsules with an initial interspacing d without using a very long parent channel.
We identify quantities related to the ith capsule with the index i.

The fluid motion in the channel is governed by the Navier–Stokes equations. A no-slip
boundary condition is imposed at the channel wall. Fully developed laminar channel flow
profiles are set at the inlet S0 and the two outlets S1 and S2 with flow rates Q0, Q1 and
Q2, such that Q0 = Q1 + Q2. The velocity profile at the inlet square cross-section S0 is
(Pozrikidis 1997; Hu, Salsac & Barthès-Biesel 2012)

u( y, z) =
πV

∑ [
1
n3 − cosh nπy/2l

n3 cosh nπ/2

]
sin nπ(z/2l + 1/2)

2
[
π4

96
− ∑ tanh nπ/2

n5π/2

] n = 1, 3, . . . , (2.1)

where V is the mean flow velocity. The present flow-rate-control set-up models
microfluidic applications where flow is controlled by multiple syringe pumps. The fluid
also has a no-slip boundary condition at both sides of the membrane of each capsule. The
load q on the membrane, which arises from the viscous traction jump, is balanced by the
in-plane elastic tension tensor T and bending force f b. Thus the membrane equilibrium
equation is

q + ∇s · T + f b = 0, (2.2)

where ∇s = (I − nn) · ∇ is the surface gradient operator with n representing the unit
normal vector to the deformed surface.

The shear deformation and membrane dilatation of the capsule membrane are modelled
by the strain-hardening Skalak’s (SK) law (Skalak et al. 1973), with strain energy density
W per unit undeformed surface area given by

W = 1
4 Gs(I2

1 + 2I1 − 2I2) + 1
4 CGsI2

2, (2.3)

where Gs is the surface shear elastic modulus and the area dilation modulus is Ks = (1 +
2C)Gs . The deformation invariants I1 = λ1

2 + λ2
2 − 2 and I2 = (λ1λ2)

2 − 1 are defined
in terms of the two principal extension ratios λ1 and λ2. The SK law allows us to modulate
the resistance to area dilation through the value of C. The SK law with C = 1 has been
found to appropriately model artificial capsules with a polymerised albumin membrane
subjected to compression between two parallel plates (Carin et al. 2003; Risso & Carin
2004; Rachik et al. 2006) or to pore flow in a microfluidic channel (Hu et al. 2013). We
thus set C = 1 in this study. The principal elastic tensions τ1 and τ2 in the membrane plane
are given by

τ1 = Gsλ1

λ2
(λ2

1 − 1 + Cλ2
2I2), τ2 = Gsλ2

λ1
(λ2

2 − 1 + Cλ2
1I2). (2.4a,b)

Bending resistance of the membrane is modelled using Helfrich’s bending energy
formulation (Zhong-Can & Helfrich 1989):

Eb = kc

2

∫
A
(2H − c0)

2 dA, (2.5)

where kc is the bending modulus, A is the surface area, H is the mean curvature and c0 is
the spontaneous curvature that is set to zero. The bending force density obtained from the
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A train of capsules in a branched microchannel

bending energy function is (Zhong-Can & Helfrich 1989; Guckenberger & Gekle 2017)

fb = kc[(2H − c0)(2H2 − 2κg + c0H) + ∇s · ∇s(2H − c0)]n, (2.6)

where κg is the Gaussian curvature and n is the outwards unit normal vector. A small
bending resistance kc = 0.0008Gsl2 is used in the present study to prevent the formation
of membrane wrinkles. The present model is therefore valid mainly for capsules with a
thin membrane, where the membrane bending has negligible effect on global deformation
of the capsules (Dupont et al. 2015). Our results suggest that when kc is in the range of
[0.0002, 0.0032]Gsl2, capsule trajectories (i.e. the paths of the mass centres of capsules)
under the same flow conditions are visually identical (not shown).

The problem parameters are:

(i) the branch flow ratio q = Q2/(Q1 + Q2);
(ii) the Reynolds number Re = 2ρVl/μ, where V is the mean velocity at the inlet S0;

(iii) the capsule confinement ratio a/l;
(iv) the capillary number Ca = μV/Gs, which measures the relative deformability of the

capsule; and
(v) the initial interspacing d/l (or d/a) between two neighbouring capsules in the parent

channel.

An important result of the numerical simulation, which will prove to be crucial to
understand the path selection of capsules in a train, is the residence time ti of the ith
capsule in the bifurcation region. It is defined as the time interval during which there
is at least one membrane node of the ith capsule that lies within the bifurcation region
(−1.4l � x � 1.4l, −l � y � l, −l � z � 1.4l, as shown by the shadowed domain in
figure 1). As we will see in the following, it is useful to compare ti with t0, which represents
the residence time of a single capsule under the same flow condition.

3. Numerical method and its validation

The capsule fluid interaction problem is solved by an immersed boundary–lattice
Boltzmann (LB) method (Sui et al. 2008; Wang et al. 2016). The fluid flow is solved
by a three-dimensional nineteen-velocity (D3Q19) LB model with a grid size �x =
�y = �z = 0.04l. At the walls of the branched channel, the no-slip boundary condition
is applied using a second-order bounce-back scheme based on interpolation (Bouzidi,
Firdaouss & Lallemand 2001). A second-order non-equilibrium extrapolation method
(Guo, Zheng & Shi 2002) is employed to impose the velocity boundary conditions at the
inlet and outlets of the channel.

The 3-D capsule membrane is discretized into flat triangular elements. The membrane
elastic force acting at the discrete nodes is calculated though a finite element membrane
model (Sui et al. 2008) from the elastic tensions and constitutive law given in (2.3) and
(2.4a,b). To calculate the bending force (2.6), the required curvatures are determined using
the method of Meyer et al. (2003). The interaction between the fluid and the capsule is
modelled using the immersed boundary method of Peskin (1977). More details on the
numerical framework can be found in Appendix C.

The 3-D capsule surface is discretized into 8192 flat triangular elements with 4098
nodes. The membrane mesh size is therefore of the same order as the LB grid size �x,
with a maximum element edge length �Lc ∼ 0.046l and a ratio �Lc/�x < 1.15. For each
simulation, the flow field is computed first. All the capsules reach their steady-state shapes
after travelling a distance of approximately 5l for the starting point. A capsule is removed
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Figure 2. (a) Trajectories of two capsules with a/l = 0.6 flowing in the branched channel at Re = 10, Ca =
0.1, q = 0.50, d = 3.33a = 2l. Different grid resolutions are used: �x = 0.0625l (dash line); �x = 0.04l
(dash–dotted line); �x = 0.03125l (solid line). The symbols

�
and � denote the trajectories of the first

(grey colour) and second (red colour) capsules, respectively. Here, t1, t2, t3 represent three time instances.
(b) Normalised residence time ti/t0 as a function of capsule index i for a/l = 0.6, Re = 10, Ca = 0.1, q = 0.45
and d = 10.33a = 6.2l.

Mesh Single First Second
capsule capsule capsule

�x = 0.0625l 7.29 6.25 5.38
�x = 0.040l 7.30 6.26 5.39
�x = 0.03125l 7.30 6.26 5.39

Table 1. Normalised capsule residence time tiV/l obtained from simulations with different grid resolutions.

from the computational domain, when its centre is at a distance of 2l from an outlet.
The flow field at the outlets is therefore not significantly perturbed by the presence of the
capsules.

The method has been verified extensively for a single capsule in a branched
tube or channel flow in our previous studies (Wang et al. 2016, 2018). Here
we further examine the effect of fluid grid size on the dynamics of multiple
capsules flowing in the branched channel. We first consider two capsules with
a/l = 0.6 and d = 2l at Re = 10, Ca = 0.1 and q = 0.50. Three levels of LB meshes
with grid size �x = 0.0625l, �x = 0.04l and �x = 0.03125l are tested. The trajectories
of the mass centres of the two capsules are shown in figure 2(a). The first capsule enters
the side branch and blocks the second capsule, which consequently enters the downstream
straight channel. The trajectories from the two fine meshes �x = 0.04l, �x = 0.03125l are
almost identical. We also consider the residence time of the two capsules, and the results
from simulations with the different mesh resolutions are presented in table 1. As a second
test, we study a train of capsules with a/l = 0.6 and d = 6.2l at Re = 10, Ca = 0.1 and
q = 0.45. This case will be described and discussed in detail in § 5.1 and Appendix A.
The capsule path selection is unsteady where the destinations of the capsules in the train
alternate periodically between the two downstream branches. The normalised capsule
residence time as a function of capsule index, from simulations with the three resolutions,
is presented in figure 2(b). The results suggest that a mesh resolution of �x = 0.04l is
sufficient to give reasonably accurate results.
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A train of capsules in a branched microchannel

The present simulation is based on the immersed boundary method. Accordingly, a
Dirac delta function distributes the membrane force over a band of surrounding Eulerian
fluid grids with a thickness of approximately 2�x on each side of the membrane (see
Appendix C). As a result, when the distance between two capsules or a capsule and the
channel wall approaches 2�x, the present method is not able to resolve the flow in the
gap. This tends to happen in the channel bifurcation when capsules have a short initial
interspacing. In the present study we have limited our simulations to cases with d � 2.5a
for which the minimum thickness of the gap is larger than ∼2�x. Our main aim is to
identify the critical interspacing d above which interaction between capsules is too weak
to affect their path selection. The limitation of the numerical method therefore does not
affect our results.

We also consider the effect of the length of the channels. After being released, a capsule
deforms and reaches a steady shape before its centre of mass has travelled a distance of
approximately 5l from its initial position in Sc. Because the maximum initial interspacing
between adjacent capsules d is 14.5l in the present study, the length of 20l of the parent
channel is sufficiently long to allow at least two adjacent capsules to reach steady shape
before entering the channel bifurcation. Therefore the present set-up serves as a good
approximation of a long parent channel where there is a train of equally spaced capsules.
We have also examined the effect of the lengths of both downstream channels, and found
extending them to 14l had no visible effect on the trajectories of capsules at the channel
bifurcation.

We have tested the effect of the curvature radius of the rounded corner on capsule path
selection by considering smaller radii of 0.1l and 0.2l. We find that the changes do not
affect the results presented in this paper. For example, for capsules with a/l = 0.6 and 0.2,
the critical flow split ratio for a single capsule and the critical initial interspacing at which
a second capsule is blocked by the first one and enters a different downstream branch (in
two-capsule simulations) are the same at the three values of the corner radius considered.

It should be noted that Bryngelson & Freund (2016, 2018) found that a train of red blood
cells flowing along the centreline of a capillary tube may become unstable and break into
an irregular flow. In the present study we consider initially spherical capsules and have not
observed any instability when capsules are in the feeding channel.

4. Path selection of two capsules

We first consider the path selection of two identical capsules at various initial interspacing.
Such a problem has not been systematically studied so far. A thorough understanding of
two-capsule interactions will provide a foundation for understanding the path selection of
a capsule train.

4.1. Path selection of a single capsule
We first recall the path selection of a single capsule at the channel bifurcation. Such
a problem has been extensively studied by Wang et al. (2016, 2018) in the limit of
relatively small confinement ratio with a/l � 0.4 in bifurcations with sharp corners. In
the rounded corner channel, capsules can flow through the bifurcation region without
getting too close to the corner wall because of high lubrication forces. It is therefore
possible to consider a large capsule confinement ratio a/l = 0.6. For a/l = 0.6 we find
that the results are qualitatively similar to those of smaller confinement ratio: the capsule
path selection is primarily determined by the flow split ratio q. Figure 3(a) shows the
trajectories of a capsule centre of mass at different flow split ratios for Re = 10 and
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Figure 3. (a) Trajectories of a single capsule at different flow split ratios q. (b) Residence time of the capsule
as a function of q. Parameters are a/l = 0.6, Ca = 0.1, Re = 10. Dash–dotted line in (b) marks the critical
branch flow split ratio qc.

Ca = 0.1 (supplementary movies 1 and 2 available at https://doi.org/10.1017/jfm.2021.
571). In this case, the critical flow split ratio qc = 0.49, which is taken as the average of
the two successive branch flow ratios q wherein a capsule enters the side branch for the
higher or remains in the main channel for the lower. The value of qc is determined within
±0.01 in the present study, and is presented in table 2 of Appendix B. The critical flow
split ratio qc depends on the flow strength, capsule size and membrane shear elasticity, as
well as the channel geometry.

The residence time t0 of the capsule in the bifurcation region, non-dimensionalized
by l/V is shown in figure 3(b) at different q. It appears that the dimensionless residence
time Vt0/l → ∞ when q → qc, which suggests that a capsule gets stuck in the bifurcation
region when q = qc. Therefore, we can expect a pile-up of capsules at the bifurcation when
q ∼ qc. The above results can help us understand the path selection of two capsules, which
we present in the following section.

4.2. Two modes of interaction: following or blocking
We consider the influence of the initial interspacing d on the path selection of two capsules
(capsule 1 followed by capsule 2) at the bifurcation for various values of flow strength,
membrane shear elasticity and capsule size. For all the cases considered, the destination of
capsule 1 is not changed. However, capsule 2 either follows capsule 1 into the same branch
(following mode) or gets blocked by capsule 1 and enters a different branch (blocking
mode). The two modes of interaction are illustrated in figure 4 for two capsules with a/l =
0.6 at different initial interspacing for Ca = 0.1, Re = 10, q = 0.55. At such a flow split,
a single capsule flows into the side branch, which is the path taken by capsule 1. The path
of capsule 2 depends strongly on what happens when it reaches the bifurcation. We define
t2 as the time at which the centre of mass of capsule 2 is at x = 0. For a small initial
separation (d = 3.33a = 2l), when capsule 2 arrives at the bifurcation, capsule 1 is still
around. A high lubrication pressure then builds up between the two capsules, as appears
clearly from the pressure field contours shown in figure 4(a) at time t2. This high pressure
blocks the upwards motion of capsule 2, which can therefore only enter the downstream
main channel (supplementary movie 3). At a longer initial interspacing (d = 6.67a = 4l),
capsule 1 has almost left the bifurcation at time t2 when capsule 2 arrives (figure 4b).
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A train of capsules in a branched microchannel
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Figure 4. Illustration of the two interaction modes (a/l = 0.6, Ca = 0.1, Re = 10, q = 0.55). The two
capsules are shown at different times t1 and t3 before and after passing the bifurcation, respectively, and
at time t2, when the mass centre of capsule 2 is at x = 0. The solid and dash lines are the trajectories of
capsule 1 (grey) and capsule 2 (red). The colour contour represents the pressure field pl/μV in plane y = 0
at time t2. (a) Blocking mode (d = 3.33a = 2l, Vt1/l = −1.3, Vt2/l = 2.7, Vt3/l = 5.9); (b) following mode
(d = 6.67a = 4l, Vt1/l = −0.1, Vt2/l = 3.8, Vt3/l = 7.1). Here we define t = 0 as the time when the first
capsule reaches the bifurcation region.

The large separation leads to interactions which are too weak to prevent the second capsule
from entering the side branch (supplementary movie 4).

The strength of the interaction between capsules can also be evaluated by the relative
change in residence time, compared with the single capsule case. Figure 5 presents the
effect of the initial interspacing d on the residence time of the two capsules, normalised
by the residence time t0 of a single capsule under the same flow conditions. It is quite
interesting to see that the interaction between the two capsules has very little effect on
capsule 1, whose normalised residence time is only slightly reduced compared with the
single capsule case. This is true even for d = 3.33a where the strong interaction leads to
blocking. The trajectories of the mass centre of capsule 1 at different d can be found in
figure 6(a), and time evolutions of the z-axis position of the mass centre of capsule 1 are
shown in figure 6(c). The results of the two figures confirm that the motion of the first
capsule is not significantly affected by the other capsule. The fine details of figure 6(c)
indicate that at a same time t, the z-axis position of the mass centre of capsule 1 is larger
when the initial interspacing between capsules is shorter. This arises from the fact that a
shorter initial interspacing leads to a stronger interaction.

Compared with the first capsule, the hydrodynamic interaction, however, has a stronger
effect on the motion of capsule 2. This can be seen in figure 5, where the residence time
of capsule 2 is doubled when a blocking mode takes place at d = 3.33a. The interaction
also causes the trajectory of the mass centre of capsule 2 to move further towards the
downstream main channel (figure 6b) until the transition from following to blocking
happens at a small initial interspacing. At the same instance, the z-coordinate of the mass
centre of capsule 2 decreases when d decreases (figure 6d).

4.3. A typical phase diagram
A typical phase diagram of capsule interaction is presented in figure 7 for two capsules
with a/l = 0.6 at Re = 10, Ca = 0.1. In figure 7, the dash–dotted line marks the critical
branch flow ratio (qc = 0.49) of a single non-interacting capsule. The following mode is
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Figure 5. Residence time of the two capsules as a function of initial interspacing d at a/l = 0.6, Ca = 0.1,
Re = 10, q = 0.55. The blocking mode takes place at d = 3.33a and the following mode prevails at d � 5a.

20

tV/l

z

1816141210 20

tV/l
1816141210
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2
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1

2

(a)

(c)

(b)

(d)

Single

d = 3.33a
d = 5a
d = 6.67a
d = 8.33a
d = 10a

Figure 6. Trajectories of the (a) first and (b) second capsule at the channel bifurcation at different initial
interspacing (a/l = 0.6, Ca = 0.1, Re = 10, q = 0.55). The solid lines in (a,b) are the trajectories of a single
capsule. Time evolution of the z-axis position of the mass centre of the (c) first and (d) second capsule when it
is travelling through the bifurcation region. The solid lines in (c,d) are the results of a single capsule.

represented by circles and the blocking mode by triangles. The blocking mode tends to
take place when the initial interspacing d is small and/or the flow split ratio is close to the
critical branch flow ratio.
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Figure 7. Typical phase diagram of the interaction modes of two capsules for a/l = 0.6, Ca = 0.1, Re = 10.
Triangles, blocking mode; circles, following mode; dash–dotted line, critical branch flow ratio qc for a single
capsule. The dash lines represents the critical interspacing dc2 at which the blocking-to-following transition
occurs.

The critical interspacing dc2, which corresponds to the blocking-to-following transition
for a two-capsule system (hence the index 2 in dc2), increases sharply when |q − qc|
decreases. This is linked to the fact that the residence time of a single capsule at the
bifurcation region (figure 3b) increases when |q − qc| decreases. Consequently, when q is
near qc, the first capsule spends a long time in the bifurcation region, and is therefore likely
to interact with the second capsule at the corner. To avoid blocking, it is thus advisable to
use a flow split ratio q < 0.4 or q > 0.6, depending on to which branch the capsules are to
be sent.

It should be noted that when Barber et al. (2011) studied the interaction of
two-dimensional capsules at a symmetric Y-shaped bifurcation, they not only observed
following and blocking modes, but also identified a herding mode in which the destination
of the first capsule was changed owing to interaction with the second capsule. Herding
happens when the two capsules are almost in touch and are off-centred before they arrive
at the bifurcation. Herding is not observed in the present study, possibly owing to the
present larger capsule interspacing d � 3.33a or 2l.

Except for the herding mode, our results are qualitatively similar to those of Barber
et al. (2011). However, in the present study, we consider a 3-D system. We have provided
a detailed analysis of the mode transition and a phase diagram relating the path-selection
modes to the flow split ratio.

5. Path selection of a capsule train

The two-capsule interaction process leads to an increase of the residence time of the
second capsule, which depends on the initial interspacing (figure 5). A natural question
that arises is whether the increase of residence time will accumulate for a train of capsules,
leading eventually to a blocking mode. We thus consider the influence of the initial
interspacing d between adjacent capsules on the path selection of a capsule train consisting
of identical capsules at various flow strength for capsules with different membrane shear
elasticity and sizes.
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Figure 8. Normalised residence time ti/t0 as a function of capsule index i with decreasing initial capsule
interspacing d for a/l = 0.6, Re = 10, Ca = 0.1, q = 0.55. Full black squares, capsules that enter the side
branch; empty red squares, capsules that enter the straight branch.

5.1. Steady and unsteady regimes
For all the cases considered, we find, for a given value of q, that the path selection of a
capsule train is steady and stable for a sufficiently large initial interspacing d but becomes
unstable when d decreases. This phenomenon is best illustrated for a/l = 0.6, Re = 10 and
Ca = 0.1, a situation for which a single capsule has a critical flow split ratio qc = 0.49.
Figures 8 and 9 show the effect of the initial capsule interspacing d on the normalised
residence time ti/t0 and destination of the ith capsule at flow split ratio q = 0.55 and 0.45,
respectively. Note that a single capsule flows into the side branch at q = 0.55 but enters
the downstream main channel at q = 0.45.

When d is above a threshold interspacing dct (where the index t refers to ‘train’), the path
selection of capsules in a train reaches a steady regime, as shown in figure 8(a) for capsules
with d = 7.5a at q = 0.55, and figure 9(a) for d = 11.67a at q = 0.45 (supplementary
movie 5). For such large values of d, the hydrodynamic interactions are too weak to affect
the path selection of the capsules, which all take the same path as a single one would, but
the trajectory is slightly different from that of a single capsule (figure 10). We then have a
situation which is analogous to the following regime observed for two capsules. Compared
with a single capsule, the steady-state residence time of capsules in the train has been
increased by 24 % and 5 %, as shown in figures 8(a) and 9(a), respectively. Clearly the
increase of residence time does not accumulate to lead to a blocking event.

When the capsule initial interspacing d is below the threshold dct, which is
approximately 7a for the cases of figure 8 at q = 0.55 and 11a for figure 9 at q = 0.45,
the path selection of the capsule train becomes unsteady with a succession of periodic
and disordered states when d is decreased. In the periodic state, the residence time of
individual capsules oscillates periodically with respect to the capsule index (figures 8(b)
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Figure 9. Normalised residence time ti/t0 as a function of capsule index i with decreasing initial capsule
interspacing d for a/l = 0.6, Re = 10, Ca = 0.1, q = 0.45. Full black squares, capsules that enter the straight
branch; empty red squares, capsules that enter the side branch.

Single

d = 11.67a
Single

d = 7.5a

(a) (b)

Figure 10. Comparison of the steady trajectory of a capsule train with the trajectory of a single capsule at the
same flow split for a/l = 0.6, Ca = 0.1, Re = 10: (a) q = 0.45, d = 11.67a; (b) q = 0.55, d = 7.5a.

and 9(b), supplementary movie 6). In the disordered state, the residence time oscillates
irregularly with respect to the capsule index and can increase by more than two-fold from
the residence time of a single capsule having the same flow conditions (figures 8(c) and
9(c), supplementary movie 7). The path selection is also erratic. This unsteady regime is
somewhat different from the blocking situation of two capsules: indeed, it is difficult to
predict the path of a given capsule when d is smaller than dct. More details regarding the
unsteady regime can be found in Appendix A.

5.2. Phase diagram
The phase diagram of path-selection state as a function of capsule initial interspacing
and flow split ratio is shown in figure 11 for a capsule train with a/l = 0.6 at Ca = 0.1,
Re = 10. The threshold interspacing dct between the following and unsteady regimes
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Figure 11. Path-selection states for a capsule train as a function of capsule initial interspacing and flow split
ratio for a/l = 0.6, Ca = 0.1, Re = 10. Squares, following; triangles, periodic; and circles, disordered states.
Black solid lines, minimum initial interspacing dct for following regime; dash–dotted line, critical branch flow
ratio qc of a single capsule.

increases sharply when the flow split q approaches the critical branch flow ratio qc. This
can be expected from the results of two-capsule interaction. Note that for d < dct, it is very
difficult to predict which regime (periodic or disordered) will occur as a very small change
in d for a given q can lead to a change of state.

We have conducted an extensive study on the effects of capsule size, flow strength and
capsule membrane shear elasticity on the capsule interspacing threshold dct. The results
are summarised in figure 12, where dct/a is plotted as a function of q − qc, where qc is
the critical flow split ratio for a single capsule. The values of qc for all cases in the present
study are presented in table 2 in Appendix B. From figure 12 it is very interesting to find
that all the data points collapse reasonably well onto a single master curve. We have also
carried out simulations of capsules with a strain-softening neo-Hookean (NH) membrane
(Green & Adkins 1960), with a strain energy function given by

W = 1
2

Gs

(
I1 − 1 + 1

I2 + 1

)
. (5.1)

Compared with the SK membrane, the NH law leads to slightly larger capsule deformation
(not shown). However, as shown in figure 12, the results of capsule interspacing threshold
dct can still be well predicted by the master curve.

We also consider the threshold interspacing dct normalised by the length scale t0Vc,
where Vc is the steady velocity of a capsule in the feeding channel and t0 is the capsule
residence time in the bifurcation. Figure 13 shows that dct/t0Vc is always below unity. An
initial interspacing of t0Vc can, therefore, be used to guarantee that the capsules in the
train are in the steady regime. It corresponds to the case where a capsule arrives in the
bifurcation region when the previous one leaves the region. We thus conclude that capsule
interactions are too weak to affect their path selection when there is only one capsule in
the bifurcation region at any time.
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Figure 12. Master curve of the threshold interspacing dct as a function of q − qc.
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Figure 13. Threshold interspacing dct normalised by the length scale t0Vc as a function of q − qc. Symbols in
the figure are the same as those in figure 12.

6. Discussion

6.1. Comparison with a two-capsule system
The threshold interspacing dct of a capsule train is compared with the critical dc2 of a
two-capsule system for the same flow conditions (a/l = 0.6 at Re = 10 and Ca = 0.1) in
figure 14. Because dct is always higher than dc2, it would be misleading to use the results
from the two-capsule model to determine the minimum interspacing necessary to obtain a
following regime in a train. This shows that the full capsule train analysis is necessary to
be able to control the path selection of a train.

6.2. Relevance to experiments
The present study provides practical guidelines for experiments, in which bifurcated
channels are used for capsule sorting or enrichment. We find that using a straight channel
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Figure 14. Comparison of the threshold initial interspacings of the two-capsule system and the capsule train
(a/l = 0.6, Re = 10 and Ca = 0.1). Black solid line, dct for a capsule train; dash line, dc2 for two capsules;
dash–dotted line, qc of a single capsule.

with a right-angled side branch is robust as long as hydrodynamic interactions between
capsules in the train are too weak to affect the path-selection process. The model presented
in the previous section will be useful to experimentalists to estimate the minimum
interspacing to set between capsules in the feeding channel and ensure that capsules with
the same properties have the same destination.

To maximize the number of capsules, it will be interesting to run the process with a
capsule interspacing as close as possible to the critical value dct. Indeed, the volume
fraction of capsules in the suspension is a direct function of d. Many microfluidic cell
enrichment devices (Hur et al. 2011; Warkiani et al. 2016) are typically operated with a cell
volume concentration much lower than 1 % to avoid cell interactions. However, our study
shows that the present bifurcated channel can be run at much higher volume fractions.
For instance, if one enriches a capsule suspension in a microchannel such that a/l = 0.6,
Ca = 0.1, Re = 10 and q = 0.55, the 3-D LB simulations predict dct = 7.58a, which
corresponds to a capsule volume fraction in the feeding channel of 8.3 %. This shows the
potential offered by a device as simple as a microfluidic channel with a right-angled side
branch for sorting or enrichment applications. Note that various techniques, such as surface
acoustic waves (Wood et al. 2008) or inertial flows (Lee et al. 2010; Kahkeshani, Haddadi
& Di Carlo 2016), have been developed to organise particles following in a microchannel
into trains with controlled interspacing. These techniques can be employed with the present
branched channel platform to process suspensions with high concentration of capsules.

When enriching capsule suspensions, it is also desirable to operate the microfluidic
device at a flow split ratio close to qc, so that capsules can be captured with as little
suspending fluid as possible in the chosen daughter branch. However, if q ∼ qc, the master
curve of dct, provided in figure 12, shows that a long initial capsule interspacing is needed
to avoid capsule interaction at the bifurcation. There is thus a compromise to be found
when choosing the flow split ratio q and the capsule interspacing d to optimize the capsule
concentration in the chosen daughter branch and thus the device throughput. Let φ be
the fraction of capsules of the train that enter the side channel. Figure 15 shows different
values of d and q under the same conditions as those of figure 11 (a/l = 0.6, Ca = 0.1 and
Re = 10), for which a single capsule has a critical flow split ratio qc = 0.49. When q is
close to qc, the capsule fraction φ remains constant over a large range of values of d. It then
quickly reaches zero or unity depending on q, when d � dct − 3a. When the flow split ratio
is far away from qc, φ, however, changes almost linearly with the capsule interspacing d.
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Figure 15. Fraction φ of capsules entering the side channel as a function of the initial interspacing d at
a/l = 0.6, Ca = 0.1, Re = 10. Full symbols correspond to the steady states; empty symbols correspond to
the unsteady states.

Figure 15 will help experimentalists choose the values of q and d depending on the capsule
fraction that can be tolerated in the other branch.

Most simulations of the present study have been conducted at a flow Reynolds number
Re = 10 where there is a finite inertial effect. The condition is relevant to the flow of
artificial capsules with a polymerized albumin membrane, which typically have a radius
in the range of 30–200 μm (Lefebvre et al. 2008; Chu et al. 2011; de Loubens et al.
2014; Gubspun et al. 2016). If we flow such capsules with a = 60 μm in a channel
with a half-side length of l = 100 μm (a/l = 0.6), using a fluid with μ = 0.01 Pa s
and ρ = 1000 kg m−3, a flow Reynolds number of Re = 10 can be achieved when the
flow speed averages 0.5 m s−1. In a straight channel, this corresponds to a pressure
drop of 35.2 kPa per centimetre channel length. For polymerised albumin capsules with
a = 60 μm, a reasonable value of membrane shear elasticity is Gs ∼ 0.05 Nm−1 (Chu
et al. 2011; de Loubens et al. 2014), which leads to Ca/Re = 0.01. We have also considered
flows with Re = 1 and 40. Note that our earlier work (Wang et al. 2016, 2018) has suggested
that at Re = 1 the effect of inertia on capsule path selection is negligible. As shown in
figure 12, which plots dct/a as a function of q − qc, inertia does not significantly affect the
master curve when Re � 40.

It is also worth mentioning that in channel flow, inertia has been found to cause
suspended rigid or deformable particles to migrate from the channel centreline (Chun &
Ladd 2006; Di Carlo 2009; Kilimnik, Mao & Alexeev 2011). The off-centre motion is less
pronounced for deformable particles because deformation enhances a lift force that drives
particles towards the channel centreline. In the present study, we have considered capsules
that are initially centred on the channel centreline. In experiments this can be achieved by
using some upstream flow-focusing modules (Nawaz et al. 2014; Vesperini et al. 2017). We
have not observed any off-centre migration in the parent channel in all cases considered.

7. Conclusion

The present work is the first systematic 3-D computational study of the path selection
of a train of spherical capsules flowing through a branched microfluidic channel.
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Figure 16. Periodic state: (a) trajectories of individual capsules forming a periodic group for a/l = 0.6, Ca =
0.1, Re = 10, q = 0.45, d = 10.33a, corresponding to figure 9(b). The figure inset shows the evolution of the
capsule residence time ti/t0 with respect to capsule index; (b) time evolution of the z-coordinate of the mass
centres of capsules in (a).
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Figure 17. Capsule profiles when the (a) 19th, (b) 20th, (c) 21st, (d) 22nd, (e) 23rd and ( f ) 24th capsule leaves
the channel bifurcation, in the periodic state shown in figure 16. The time instances for (a–f ) are 79.2, 81.5,
86.1, 90.2, 95.1 and 97.9, respectively.

To understand the hydrodynamic interaction between capsules and interpret the path
selection of a capsule train, we have also considered a pair of capsules in the same channel
bifurcation. We find that capsule interaction crucially depends on the capsule interspacing
in the feeding channel and the flow rate split ratio at the bifurcation. Generally a shorter
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Figure 18. Disordered state: (a) trajectories of individual capsules for a/l = 0.6, Ca = 0.1, Re = 10, q = 0.45,
d = 9a, which corresponds to figure 9(c). The figure inset shows the evolution of the capsule residence time
ti/t0 with respect to capsule index; (b) time evolution of the z-coordinate of the mass centres of capsules in (a).
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Figure 19. Capsule profiles when the 22nd or 23rd capsule is near the channel bifurcation in the disordered
state shown in figure 18. The time instances for (a–d) are 82.4, 84.2, 87.8 and 92.1, respectively.

capsule interspacing and a flow split ratio that is closer to the critical value at which a
capsule becomes stuck at the bifurcation will lead to stronger capsule interaction in the
channel bifurcation region. Interestingly, our results suggest that the interaction has little
effect on the first capsule of the pair, however, it can significantly retard the motion of
the second capsule. This can be quantified by the ratio of a capsule residence time in
the channel bifurcation to that of a single non-interacting capsule. With the decrease of
the capsule interspacing, the ratio of the residence time of the second capsule increases,
which suggests a stronger retarding effect, till the second capsule gets blocked by the first
one and enters a different downstream branch. This interesting phenomenon provides the
foundation to understand the path selection of a capsule train in the channel bifurcation.

For a capsule train flowing through the bifurcation, a natural question that arises
is whether the retarding effect from capsule interaction on a following capsule will
accumulate in the capsule train. Our path selection phase diagrams, obtained from
extensive numerical simulations covering capsules with different sizes, membrane laws
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and shear elasticity, capsule interspacing, and at various flow strength and flow split ratios,
suggest that there are mainly two path-selection regimes. The regimes are separated by a
critical initial interspacing dct, which depends on flow conditions and capsule properties.
When the initial interspacing is above dct, capsule interaction is not strong and its effect
does not accumulate. The capsules adapt to a new steady trajectory which is very close
to that of a single non-interacting capsule. Therefore capsule interaction does not have
any effect on capsule destination. However, when the capsule interspacing is below qc, the
effect of strong capsule interaction accumulates and leads to an unsteady regime where
capsules are frequently blocked by those flowing ahead and enter a different downstream
branch.

Interestingly we find that the interspacing threshold dct, normalised by the capsule
radius, at various flow split ratios and strength, for capsules with different sizes and
membrane shear elasticity, falls into the same master curve. We also find that the critical
interspacing dct is always less than the length scale of t0Vc. The present study provides
useful guidelines to avoid strong capsule interaction in experiments where branched
microchannel bifurcations are used for sorting or enriching suspensions.

Supplementary movies. Supplementary movies are available at https://doi.org/10.1017/jfm.2021.571.
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Appendix A. Unsteady path-selection regime of the capsule train

The unsteady regime of the capsule train arises from an accumulation of the effect of
capsule interaction. Compared with a non-interacting capsule, a longer residence time ti
of the ith capsule in a train results from the hydrodynamic interaction with the (i − 1)th
capsule, which causes an apparent reduction of the initial interspacing between the ith and
(i + 1)th capsules. This leads to an even longer residence time of the (i + 1)th capsule. The
increase of residence time accumulates, until the triggering of a blocking event, which is
the feature of the unsteady path-selection regime of the capsule train.

In the unsteady regime, the path selection of the capsule train may be periodic or
disordered. Figure 16(a) shows the trajectories of individual capsules in the periodic state
for a/l = 0.6, Ca = 0.1, Re = 10, q = 0.45, d = 10.33a, which corresponds to figure 9(b).
The five represented capsules (i.e. from the 20th to the 24th) form a periodic group
and their normalised residence time increases with the capsule index, as can be seen
from the small figure inset. The time evolution of the z-coordinate of the capsule mass
centres are presented in figure 16(b). From the 20th to the 23rd capsule, the trajectory of
the capsule moves gradually towards the side branch. The highest z-coordinate that the
mass centre of a capsule can reach also increases with the capsule index. Figure 17(a–f )
presents the instantaneous profiles of the capsules starting from the 19th one, when they
are leaving the bifurcation region. It is clear from figure 17(b–e) that the distance between
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one capsule leaving the bifurcation and the following one is decreasing, which results
in stronger capsule interaction in the bifurcation region. Not surprisingly this leads to a
blocking event, which takes place on the 24th capsule. Note that the gradual decrease of
the interspacing between capsules near the bifurcation in figure 17(b–e) arises from the
increase in residence time of the capsule that is leaving the bifurcation.

Figure 18(a,b) shows the capsule trajectories and z-coordinate of their mass centres
in the disordered state for a/l = 0.6, Ca = 0.1, Re = 10, q = 0.45, d = 9a, which
corresponds to figure 9(c). Similar to the previous case, the 20th to 22nd capsules form a
group on track to a following-to-blocking transition. However, two capsules (the 22nd and
23rd) are this time trapped at the bifurcation, which affects the motions of the following
few capsules (see figure 18 and the instantaneous capsule profiles in figure 19) and disrupts
the regularity of the path selection of the capsule train.

Appendix B. Values of qc

Parameters qc

Ca = 0.1, Re = 10, a/l = 0.6 0.49
Ca = 0.01, Re = 10, a/l = 0.6 0.51
Ca = 0.1, Re = 10, a/l = 0.2 0.55
Ca = 0.1, Re = 10, a/l = 0.4 0.53
Ca = 0.01, Re = 1, a/l = 0.6 0.49
Ca = 0.4, Re = 40, a/l = 0.6 0.49
Ca = 0.1, Re = 10, a/l = 0.6 (NH law) 0.49

Table 2. Values of qc of all cases.

Appendix C. Immersed boundary–lattice Boltzmann method

In the lattice Boltzmann method (LBM), fluid is treated as fictive particles that collide and
spread along discrete directions at each spatial position. The distribution function fi(x, t)
is the main quantity in LBM. It gives the probability of finding a particle having lattice
velocity ei at position x and time t. The discrete lattice Boltzmann equation for the D3Q19
model used in this study reads (Bhatnagar, Gross & Krook 1954; Guo et al. 2002)

fi(x + ei�t, t + �t) − fi(x, t) = −1
τ

[ fi(x, t) − f eq
i (x, t)] + �tFi, (C1)

where �t is the time step, f eq
i (x, t) is the equilibrium distribution function, τ is the

non-dimensional relaxation time related to the fluid viscosity and Fi is the forcing term
related to the fluid body force density f (x, t) (Guo et al. 2002). The macroscopic quantities
(e.g. velocity, pressure) can be obtained from the particle distribution function. The lattice
Boltzmann equation can recover the incompressible Navier–Stokes equations through the
Chapman–Enskog expansion.

The immersed boundary method (IBM) of Peskin (1977) has been used to solve
the fluid–capsule interaction. In IBM, the no-slip boundary condition on the capsule
membrane is satisfied by letting the membrane nodes move at the same velocity as the
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fluid around it. This will cause the capsule to deform. The body force density induced by
the membrane on the fluid is obtained from distributing membrane forces by

f (x, t) =
∫

S
( f e + f b)δ(x − x′) dx′, (C2)

where f e and f b are the elastic and bending force densities of the capsule membrane,
respectively. The terms x′ and x represent the coordinates of the membrane and fluid
nodes, respectively. The 3-D smoothed Dirac delta function is chosen to be

δ(x − x′) = δ(x − x′)δ( y − y′)δ(z − z′), (C3)

where

δ(r) =
⎧⎨
⎩

1
4

(
1 + cos

(
π|r|
2�x

))
|r| � 2�x.

0 otherwise.
(C4)

The same Dirac delta function is used to obtain the velocity of capsule membrane nodes
by interpolating the local fluid velocity.

In the present simulations the volume change of individual capsules is always less than
1 %. We have not used any additional algorithm to conserve the capsule volume.
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