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ABSTRACT

By use of a natural extension map and a power series method, we obtain a local
stability theorem for p-Kéhler structures with the (p,p + 1)th mild 90-lemma under
small differentiable deformations.
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1. Introduction

Local stabilities of complex structures are important topics in deformation theory of complex
structures. We will prove local stabilities of p-K&hler structures with the (p,p + 1)th mild
d0-lemma by the power series method, initiated by Kodaira-Nirenberg-Spencer [KNS58] and
Kuranishi [Kur64].

THEOREM 1.1. For any positive integer p < n— 1, any small differentiable deformation X; of an
n-dimensional p-Kéhler manifold X satisfying the (p, p+ 1)th mild 0-lemma is still p-Kéhlerian.

Here the (p, p+ 1)th mild 09-lemma for a complex manifold means that each 0-closed d-exact
(p,p + 1)-form on this manifold is d9-exact, which is a new notion generalizing the (n — 1,n)th
one first introduced in [RWZ16]. A complex manifold is p- Kahlerian if it admits a p- Kdhler form,
i.e., a d-closed transverse (p, p)-form as in Definition 2.5.

Recall the fact that each n-dimensional complex manifold is n-Kéhlerian and the following
two basic properties of p-Kéhlerian structures.

LEMMA 1.2 ([AA87, Proposition 1.15] and also [RWZ16, Corollary 4.6]). A complex manifold
M is 1-Kéhler if and only if M is Kéhler; an n-dimensional complex manifold M is (n—1)-Kahler
if and only if M is balanced, i.e., it admits a real positive (1,1)-form w, satisfying

d(w™ 1) = 0.

Received 20 March 2018, accepted in final form 12 November 2018, published online 7 March 2019.
2010 Mathematics Subject Classification 32G05 (primary), 13D10, 14D15, 53C55 (secondary).
Keywords: deformations of complex structures, deformations and infinitesimal methods, formal methods,
deformations, Hermitian and Kéahlerian manifolds.

Rao is partially supported by NSFC (Grant No. 11671305, 11771339). Zhao is partially supported by China
Postdoctoral Science Foundation and NSFC (Grant No. 2016M592356 and 11801205).
This journal is (© Foundation Compositio Mathematica 2019.

https://doi.org/10.1112/50010437X19007085 Published online by Cambridge University Press


http://www.compositio.nl/
http://www.ams.org/msc/
http://www.compositio.nl/
https://doi.org/10.1112/S0010437X19007085

S. Rao, X. WAN AND Q. ZHAO

Thus, we obtain the following as a direct corollary of Theorem 1.1.

COROLLARY 1.3. Let w : X — B be a differentiable family of compact complex manifolds.

(i) [KS60, Theorem 15] If a fiber X := 7~ (to) admits a Kihler metric, then, for a sufficiently
small neighborhood U of ty on B, the fiber X; := w~1(t) over any point t € U still admits a
Kahler metric, which depends smoothly on t and coincides for t = tg with the given Kahler
metric on Xj.

(ii) [RWZ16, Theorem 1.5] Let X¢ be a balanced manifold of complex dimension n, satisfying
the (n — 1,n)th mild 90-lemma. Then X, also admits a balanced metric for t small.

The first assertion of Corollary 1.3 is the fundamental Kodaira—Spencer’s local stability
theorem of Kahler structure, and motivates the second assertion of Corollary 1.3 and many
other related works on local stabilities of complex structures in [FY11, Voi02, Wu06, AU17,
AU16]. The counter-example of Alessandrini and Bassanelli [AB90] tells us that the result in
the second assertion of Corollary 1.3 does not necessarily hold without the (n — 1,n)th mild
00-lemma, assumption.

In §2, we will study the difference between the (p,q)th mild d9-lemma and other versions
of 90-lemmata in the roles of Theorem 1.1, and the modification stability of the (p, ¢)th mild
00-lemma by Proposition 3.14, which provides us with more classes of complex manifolds to
admit the (p, ¢)th mild 99-lemma. Here the (standard) 90-lemma refers to: for every pure-type
d-closed form on a complex manifold, the properties of d-exactness, J-exactness, 0-exactness
and 00-exactness are equivalent, while its variants are described by §3.1. Obviously, one has the
implication hierarchy on a complex n-dimensional manifold for any positive integer p < n — 1:

the d9-lemma

= the (p,p + 1)th strong 99-lemma (1)
= the (p,p + 1)th mild 9d-lemma (2)
= the (p,p + 1)th weak 90-lemma. (3)

For p = n—1, the implication hierarchy is strict: [AU17, Example 4.10] is one example satisfying
the strong d0-lemma but not the standard one; the nilmanifold endowed with a left-invariant
abelian complex structure of dimension 2n or a left-invariant non-nilpotent balanced complex
structure of complex dimension 3 by [RWZ16, Proposition 3.8 and Corollary 3.4] and [AU16,
Proposition 2.9] distinguishes the mild and strong 9d-lemmata; and the weak 9d-lemma holds
on the complex three-dimensional Iwasawa manifold [RWZ16, Example 3.7] but the mild one
fails. Moreover, we construct a new ten-dimensional balanced nilmanifold in Example 3.8 for the
strictness of implication 2, which satisfies the (4,5)th mild but not strong d9-lemma and also
the deformation variance of the (4, 4)th Bott—-Chern numbers. Motivated by these, it is natural
to ask the following question.

Question 1.4. Find an n-dimensional complex manifold or in particular a p-Kéhler manifold such
that one of implications (1), (2), (3) is strict for each positive integer p < n — 1.

Now let us describe our approach to proving local stability of p-Kahler structures. An
application of Kuranishi’s completeness theorem [Kur64] reduces our power series proof to the
Kuranishi family w : K — T, that is, we will construct a natural p-Kéahler extension @; of the
p-Kéhler form wy on Xo, such that & is a p-Kéhler form on the general fiber w=!(¢) = X;. More
precisely, the extension is given by

etelw L APP(Xo) — APP(Xy), wy — @y = el (w(t)),
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where w(t) is a family of smooth (p, p)-forms to be constructed on Xy, depending smoothly on
t, and w(0) = wp. Here ¢ is the family of Beltrami differentials induced by the Kuranishi family.
The extension map e*#|*# is first introduced in [ZR15, RZ18] and given in Definition 2.2.

This method is developed in [LSY09, Sunl12, SY11, LRY15, ZR13, ZR15, RZ18, RWZ16,
LRW17]. However, we have to solve many more equations in system (11) here than in the
balanced case [RWZ16]; those in system (11) are much more difficult in essence. Fortunately,
we are able to reduce this complicated system to that with only two equations as in (15) by
comparing the types of the forms in the system and the orders in the induction simultaneously.
This crucial consideration is also important in the solution of this system.

In this approach, we will use the following observation crucially.

PROPOSITION 1.5 [RWZ16, Proposition 4.12]. Let w : X — B be a differentiable family of
compact complex n-dimensional manifolds and € a family of real (p,p)-forms with p < n,
depending smoothly on t. Assume that Q) is a transverse (p,p)-form on Xy. Then € is also
transverse on X; for small t.

This proposition actually shows that any smooth real extension of a transverse (p, p)-form
is still transverse. So the obstruction to extend a d-closed transverse (p,p)-form on a compact
complex manifold lies in the d-closedness, to be resolved in Theorem 1.6 in a more general setting.
The detailed proof of main Theorem 1.1 is given in §4.

THEOREM 1.6 (= Theorem 4.1). If X satisfies the (p,q-+1)th and (q,p+1)th mild 90-
lemmata, then there is a d-closed (p, q)-form 2(t) on X; depending smoothly on t with 2(0) = Qg
for any d-closed Qy € AP4(X).

Remark 1.7. The case p = ¢ = n — 1 of Theorem 1.6 implies that the dimension of the space
of d-closed left-invariant (n — 1,7 — 1)-forms on a 2n-dimensional nilmanifold endowed with a
left-invariant abelian complex structure is deformation invariant, where the (n — 1,7n)th mild
00-lemma holds from [RWZ16, Corollary 3.4].

In § 5, inspired by [RZ18], we will use Theorem 1.6 to prove a result on deformation invariance
of Bott—Chern numbers in Theorem 5.1.

This paper will follow the notation in [LRY15, RZ18, RWZ16]. All manifolds in this paper
are assumed to be compact complex n-dimensional manifolds. The symbol AP4(X, E) stands
for the space of the holomorphic vector bundle E-valued (p, ¢)-forms on a complex manifold X.
We will always consider the differentiable family 7 : X — B of compact complex n-dimensional
manifolds over a sufficiently small domain in R¥ with the reference fiber Xq := 771(0) for the
reference point 0 and the general fibers X; := 7= 1(¢).

2. Deformation and p-Kéahler structure

This section is to state some basics of analytic deformation theory of complex structures and the
notion of p-Kéhler structure.

2.1 Deformation theory

For the holomorphic family of compact complex manifolds, we adopt the definition [Kod86,
Definition 2.8]; while for the differentiable one, we adopt the following definition.
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DEFINITION 2.1 [Kod86, Definition 4.1]. Let X be a differentiable manifold, B a domain of R¥
and 7 a smooth map of X onto B. By a differentiable family of n-dimensional compact complex
manifolds we mean the triple 7 : X — B satisfying the following conditions.

(i) The rank of the Jacobian matrix of 7 is equal to k at every point of X.
(ii) For each point t € B, 7~1(¢) is a compact connected subset of X.

(iii) The fiber 7=1(¢) is the underlying differentiable manifold of the n-dimensional compact
complex manifold X; associated to each t € B.

(iv) There is a locally finite open covering {U; | j = 1,2,...} of X and complex-valued smooth
functions C} (p); ..., C}(p), defined on U; such that for each ¢,

{p— (@), D) | WNnr () # 0}

form a system of local holomorphic coordinates of X;.

Beltrami differentials play an important role in deformation theory. A Beltrami differential on
X, generally denoted by ¢, is an element in A%! (X, T)l(’o), where T)l(l0 is the holomorphic tangent
bundle of X. Then ¢, or ¢, denotes the contraction operator with respect to ¢ € A% (X, T)l(’o)
or other analogous vector-valued complex differential forms alternatively if there is no confusion.
We also use the convention -
A=Y
k=0

where #F denotes k-time action of the operator #. As the dimension of X is finite, the summation
in the above formulation is always finite.

We will always consider the differentiable family 7 : X — B of compact complex n-
dimensional manifolds over a sufficiently small domain in R¥ with the reference fiber X := 71(0)
and the general fibers X; := m~!(¢). For simplicity we set £ = 1. Denote by ¢ := (¢5*(2,1)) the
holomorphic coordinates of X; induced by the family with the holomorphic coordinates z := (z*)
of Xo, under a coordinate covering {U;} of X, when t is assumed to be fixed, as the standard
notions in deformation theory described at the beginning of [MKT71, ch. 4]. This family induces
a canonical differentiable family of integrable Beltrami differentials on X, denoted by ¢(z,t),
©(t) and ¢ interchangeably.

In [ZR15, ZR13], the first and third authors introduced an extension map

| —

a (4)

=

e WIGm L AP X)) — API(X,),
to play an important role in this paper.
DEFINITION 2.2. For s € AP9(X), we define
ewt)lbm(s) = Sipeipgiojy (Z(O)) (€O (A2 A+ Adz')) A (%0 (dZ7 A -+ A dZ7)),
where s is locally written as
8 = Siyeipjronjy (2) 2NN NdZP NAFTT N A dE

and the operators e‘¢®, ¢#® follow convention (4). It is easy to check that this map is a real
linear isomorphism as in [RZ18, Lemma 2.8].
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The following proposition is crucial in this paper.

PROPOSITION 2.3 [LRY15, Theorem 3.4], [RZ18, Proposition 2.2]. Let ¢ € A% (X,T3y°) on a
complex manifold X. Then on the space A**(X),

doe =e“(d+ 00ty —1400 — L5¢—(1/2)[¢7¢])’ )

From the proof of Proposition 2.3, we see that (5) is a natural generalization of the Tian—
Todorov lemma [Tia87, Tod89], whose variants appeared in [Fri91, BK98, Li05, LSY09, Cle05]
and also [LR12, LRY15] for vector bundle valued forms.

LEMMA 2.4. For ¢, € A% (X, T)l(’o) and o € A**(X) on an n-dimensional complex manifold X,

[, V]aa = =0(Ya(paa)) — Ya(da0a) + ¢20(Yaa) + Yad(Paa),

where
n

[6,0] =Y (¢' A0 + 4" A D)) 0

ij=1
for o =37, 0" ®0; and ¢ = 32, 9" @ 0;.
2.2 The p-Kahler structures
Let V be a complex n-dimensional vector space with its dual space V*, i.e., the space of complex

linear functionals over V. Denote the complexified space of the exterior m-vectors of V* by
A¢ V*, which admits a natural direct sum decomposition

AVi=2 AV
C r+s=m

where \"*V* denotes the complex vector space of (r,s)-forms on V*. The case m = 1 exactly
reads

1
AV =V eV~
C

where the natural isomorphism V* = /\1’O V*is used. Let ¢ € {1,...,n} and p = n — q. Clearly,
the complex dimension N of /\q’0 V* is equal to the combination number Cj. After a basis
{ﬂi}ﬁ\;l of the complex vector space /\q’0 V* is fixed, the canonical Pliicker embedding as in
[GHT78, p. 209] is given by

b  3(Ar)

Here G(g,n) denotes the Grassmannian of g-planes in the vector space V* and P(A?° V*) is the
projectivization of /\q’0 V*. A g-plane in V* can be represented by a decomposable (g, 0)-form
A € A" V* up to a nonzero complex number, and {Az}f\i , are exactly the coordinates of A

under the fixed basis {Bz}f\il Decomposable (q,0)-forms are those forms in\?° V* that can be
expressed as v A\ --- A vq with v, € V¥ 2 AYV* for 1 <i < g. Set

k=(N-1)-pq

to be the codimension of p(G(g,n)) in P(A®° V*), whose locus characterizes the decomposable
(q7 0)-f01“ms in ]P)(/\‘LO V*)
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Now we list notation for several types of positivity and refer the readers to [HK74, Har75,
Dem12] for more details. A (g, ¢)-form © in AT? V* is defined to be strictly positive (respectively,
positive) if

N
O =0, 08 AP
ij=1
where ©;; is a positive (respectively, semi-positive) hermitian matrix of size N x N with N = C}
under the basis {@}fi | of the complex vector space A“’ V* and o, is defined to be the constant
274(,/=1)7". According to this definition, the fundamental form of a hermitian metric on a

complex manifold is actually a strictly positive (1,1)-form everywhere. A (p, p)-form I" € APP V*
is called weakly positive if the volume form

Aoyt AT

is positive for every nonzero decomposable (g,0)-form 7 of V*, while a (g, ¢)-form T € A?7V*
is said to be strongly positive if T is a convex combination

Y= yeV—Tagi Alsi A AV —=Tagg Alsg,
S

where a,; € V* and v, > 0. As shown in [Dem12, ch. II1.§ 1.A], the sets of weakly positive and
strongly positive forms are closed convex cones, and by definition, the weakly positive cone is
dual to the strongly positive cone via the pairing

p,p q,9
AV x AV —cC.

Then all weakly positive forms are real. An element = in APP V* is called transverse, if the
volume form

HEANOTAT

is strictly positive for every nonzero decomposable (g, 0)-form 7 of V*. There exist many names
for this terminology and we refer to [AB91, Appendix] for a list.

This positivity notation on complex vector spaces can be extended pointwise to complex
differential forms on a complex manifold. Let M be an n-dimensional complex manifold. Then
we have the following definition.

DEFINITION 2.5 ([AA87, Definition 1.11], for example). Let p be an integer, 1 < p < n. Then
M is called a p-Kdahler manifold if there exists a p-Kdhler form, that is a d-closed transverse

(p, p)-form on M.

The readers are referred to [Sul76] for more related concepts (such as differential form
transversal to the cone structure on a real differentiable manifold) to p-Kahler structures.

3. Relevance to mild 89-lemma and modification

We will introduce the so-called (p,q)th mild d0-lemma and its relevance, and also present its
modification stability on compact complex manifolds.
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3.1 The (p, g)th mild 89-lemma and its relevance
This subsection is to study various 99-lemmata related to local stabilities of complex structures,
their properties, differences and roles there in some special case. More details can be found in
[RWZ16, §3.1] and the references therein.

Now we introduce a new notion.

DEFINITION 3.1. We say a complex manifold X satisfies the (p, q)th mild 00-lemma if for any
complex differential (p — 1, g)-form & with 00§ = 0 on X, there exists a (p — 1, ¢ — 1)-form 6 such
that 006 = O¢.

So we can state our main theorem.

THEOREM 3.2. For any positive integer p < n — 1, any small differentiable deformation X; of a
p-Kéhler manifold Xy satistying the (p,p + 1)th mild 00-lemma is still p-Kahlerian.

According to Lemma 1.2, Theorem 3.2 unifies the local stabilities of K&hler structures [KS60,
Theorem 15] and balanced structures under the (n — 1,n)th mild 99-lemma [RWZ16, Theorem
1.5], which is an obvious generalization of Wu’s result [Wu06, Theorem 5.13] that the balanced
structure is stable under small deformation when the d9-lemma holds, to p-Kihler mild 90-
structures for 1 <p < n— 1.

Let X be a compact complex manifold of complex dimension n with the following
commutative diagram.

HP q
| me
'Bé.ar Hp+q LaR,A p q X) (6)

P
M

Hp d
Recall that Dolbeault cohomology groups Hg'(X ) of X are defined by

B ker 9

. i
im0

with H*(X) similarly defined, while Bott—Chern and Aeppli cohomology groups are defined as

ker @ N ker 0 ker 00

HO(X) = 2O hd HY(X) = —2 9

e (X) moo A=
respectively. The dimensions of Hg;q(X), Hg’q(X), HEA(X), HYY(X) and HSY(X) over C are
denoted by byiq(X), h2?(X), hgd(X), h?(X) and h?(X), respectively, and the first four of
them are usually called (p + g)th Betti numbers, (p, q)-Hodge numbers, Bott-Chern numbers and
Aeppli numbers, respectively. So the (standard) 00-lemma is equivalent to the injectivities of the

mappings
tBear * HBA(X) — Hip!(X)

for all p, g, or to the isomorphisms of all the maps in diagram (6) by [DGMS75, Remark 5.16].
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Notice that the (1, 2)th mild 85—lemnia is different from the d9-lemma on a complex manifold.
It is easy to see that the (1,2)th mild d0-lemma amounts to the injectivity of the mapping

1,2 | r71,2 1,2
lpCo Hyo(X) — Hy*(X).

Then by [AK17, Tables 5 and 6 in Appendix A] and [Kas13, the case B in Example 1], we have
the following example.

Example 3.3 [RWZ16, Example 1.7]. Let X be the manifold in case (ii) of the completely-
solvable Nakamura manifold as given in [AK17, Example 3.1]. Then the manifold X satisfies
the (1,2)th mild dd-lemma, but not the d9-lemma.

There are another three similar conditions relating to the local stabilities of complex
structures. The (p,p+ 1)th weak dd-lemma on a compact complex manifold X, first introduced
by Fu and Yau [FY11] for (p,p+ 1) = (n — 1,n), says that for any real (p, p)-form 1 such that
O is D-exact, there is a (p — 1, p)-form 6, satisfying

006 = 0.

And the (p, q)th strong 00-lemma on X, first proposed by Angella-Ugarte [AU17] in the case
(p,q) = (n — 1,n), states that the induced mapping (s 5 : Hgd(X) — HR?(X) by the identity
map is injective, which is equivalent to the statement that for any d-closed (p, ¢)-form T" of the
type I' = 9¢ + v, there exists a (p — 1,q — 1)-form 6 such that

000 =T.

Angella—Ugarte [AU17, Proposition 4.8] showed the deformation openness of the (n — 1,n)th
strong d0-lemma. Besides, the condition that the induced mapping Lgég : HEA(X) — Hg’q(X )
by the identity map is injective, is first presented by Angellangafte [AU16] in the case
(p,q) = (n — 1,n) to study local conformal balanced structures and global ones, which we may
call the (p, q)th dual mild 0-lemma.

After a simple check, we have the following observation.

Observation 3.4. The compact complex manifold X satisfies the (p, ¢)th strong 99-lemma if and
only if both of the mild and dual mild ones hold on X.

All these four ‘O0-lemmata’ hold if the compact complex manifold X satisfies the standard
00-lemma. And either the (p,p + 1)th mild or dual mild d-lemma implies the weak one, while
[RWZ16, Corollary 3.9] implies that the (n — 1,n)th mild d0-lemma and the dual mild one are
unrelated.

By [AB90], a small deformation of the Iwasawa manifold, which satisfies the (2, 3)th weak
00-lemma but does not satisfy the mild one from Example 3.5, may not be balanced. Thus, the
condition ‘(n — 1, n)th mild 9-lemma’ in Corollary 1.3(ii) cannot be replaced by the weak one.

Ezample 3.5 [RWZ16, Example 3.7]. The complex structure in category (i) of [UV15, Proposition
2.3], i.e., the complex parallelizable case of complex dimension 3, satisfies the (2,3)th weak
00-lemma and the dual mild one, but does not satisfy the mild one. The Iwasawa manifold
belongs to category (i).
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The next example shows that neither the (n — 1,n)th weak d9-lemma nor the mild one is
deformation open. And it shows that the condition in [FY11, Theorem 6] is not a necessary one
for the deformation openness of balanced structures as mentioned in [UV15, the discussion ahead
of Example 3.7]. Recall that [FY11, Theorem 6] says that the balanced structure is deformation
open, if the (n — 1,n)th weak dd-lemma holds on the general fibers X; for ¢ # 0. Fortunately,
Corollary 1.3(ii) can be applied to this example. See also [AU17, Remark 4.7], where Corollary
1.3(ii) can also be applied.

Ezample 3.6 [UV15, Example 3.7]. Ugarte—Villacampa constructed an explicit family of nil-
manifolds with left-invariant complex structures I for A € [0,1) (of complex dimension 3), with
the fixed underlying manifold the Iwasawa manifold. The complex structure of the reference fiber
Iy is abelian and admits a left-invariant balanced metric, satisfying the (2,3)th mild 99-lemma
by [RWZ16, Proposition 3.8]. The complex structures of I for A # 0 are nilpotent from [CFP0G,
Corollary 2], but neither complex-parallelizable nor abelian. Thus, they do not satisfy the (2, 3)th
weak 00-lemma by [UV15, Proposition 3.6]. However, the nilmanifolds I, for A # 0 admit
balanced metrics.

Meanwhile, a 2n-dimensional nilmanifold endowed with a left-invariant abelian complex
structure satisfies the (n — 1,n)th mild d-lemma but never satisfies the (n — 1, n)th dual mild
00-lemma. It shows that the deformation openness of balanced structures with the reference
fiber a nilmanifold endowed with a left-invariant abelian balanced Hermitian structure is easily
obtained by Corollary 1.3(ii), but not from [AU17, Theorem 4.9], which says that if X, admits
a locally conformal balanced metric and satisfies the (n — 1,n)th strong 99-lemma, then X; is
balanced for small ¢.

Moreover, the deformation invariance of the (n — 1,n — 1)th Bott—Chern numbers
hie L= 1(Xt) can assure the deformation openness of balanced structures as shown in
[AU17, Proposition 4.1]. Inspired by Wu’s result [Wu06, Theorem 5.13], we have the following
generalization.

THEOREM 3.7 [RWZ16, Theorem 1.9]. For any positive integer p < n — 1, any small differentiable
deformation X; of a p-Kéhler manifold X satisfying the deformation invariance of (p,p)-Bott—
Chern numbers is still p-Kahlerian.

Nevertheless, Corollary 1.3(ii) may be applied to some cases with deformation variance of
the (n—1,n—1)th Bott—Chern numbers. The newly constructed example that follows is one case
among nilmanifolds, while the manifold in [AU17, Example 4.10], satisfying the (2,3)th strong
d0-lemma, is a solvable manifold but not a nilmanifold by [RWZ16, Corollary 3.9].

Ezample 3.8. Let G be the simply connected nilpotent Lie group determined by a ten-
dimensional 3-step nilpotent Lie algebra g endowed with a left-invariant abelian complex
structure J, satisfying the structure equation

dy' = dy? = dy* =0,

dfy4 — 713

d’y5 — ,}/34_1
where the natural decomposition with respect to J yields

sc=gerC=g @} gt=g"orC=g""ag",

{’yi}?zl is the basis of g*(19) and the convention v!3 = 41 A~3 is used here and afterwards. Define
a lattice I" in G, determined by the rational span of {'yi,’_yi}?zl. Then M :=T\G is a compact
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nilmanifold with the abelian complex structure J given above. It is easy to check that

12341234 123512 1245124 1345134 2345234
Q:’Yg 3_1_,Y 35 35+,y 5 5_‘_,}/3535_’_73535

is a left-invariant balanced metric on (g, .J), descending to M. Denote the basis of g'? dual to

¥ y e equation dw —w(|0, or w € g and 60,0" € gc, establishes the
{v'}>_, by {6;}>_,. Th dw (6,9 (6,0 £ * and 0,0’ blishes th
equalities - -

[05,61] = 64, [04,05] = 65.

According to [CFP06, Theorem 3.6], the linear operator d on g'¥, defined in [CFP06, §3.2],
amounts to

0: gt - g*(o’l) g0V =7"® [0;, V]l’o for V e g'?

which induces an isomorphism H'(M,T ]%4’0) = H%(gl’o). Therefore, from Kodaira—Spencer’s
deformation theory, an analytic deformation M; of M can be constructed by use of the integrable
left-invariant Beltrami differential

©(t) = (171 + 127°) ® 2 + (t37* + t47°) ® b5

for t = (t1,t2,t3, 1) and |t4| < 1, which satisfies Op(t) = 1[ip(t), (t)] and the so-called Schouten-
Nijenhuis bracket [-, -] (cf. [CFP06, Formula (4.1)]) works as

F®0,7 0= Ngdi@0+5Awdy @0 for v,y € g0,0,0 € g"?

Then the general fibers M; are still nilmanifolds, determined by the Lie algebra g with respect
to the decompositions

— — . _ (1 ) *(0,1)
gc=9g®rC=g ()@glp(t)a gc =90 ®rC= g(p(t) g o(t)

where the basis of g:;(éso) is given by ' (t) = e'»® (y") = (1 + o(t))y* for 1 < i < 5. Hence, the

structure equation of {vi(t)}s,l is

vH(t) = dyi(t) =0,

VA (t) = _1’73 t) — tay™3(t),

v(t) = 3( )

Vo(t) = () — tay®l(t) — tay* (),

where v31(t) denotes v3(t) A v1(t), similarly for others. It is well known from [CF01, Rol09,
Ang13] that the Bott—Chern cohomologies of nilmanifolds with abelian complex structures and
their small deformation can be calculated via left-invariant differential forms. Remark 1.7 tells
us that the dimension of the space of the d-closed left-invariant (4,4)-forms is invariant along
the deformation M;, which is equal to 21. And one can calculate the 90-exact terms directly by
use of the structure equation

0n(a205")
_< (1+| |2) 12341234() |t |2 13451345—|—t % 13451234(t)—I—t4¥2’712341345(t),
71235123 ( ) ’t ‘2 13451345( ‘t ‘2 12341234( )+t1f3’)’13451234(t) _i_t?jl,y12341345(t)7
—t 713451234( )+t 713451 ( )+t 712341234@) t ’Y12341235(t),
7 712341345( )+t ,712351 ( )+t 712341234( ) I 712351234(75» )

It is clear that dim 85(93( ’ )) = 2 and dim 8t5t(g;((t’) )) = 4 for general t. Therefore, the Bott—

Chern number h%’é(Mt) varies from 19 to 17 along the deformation M;.
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It may not be difficult to find an example of a non-Kéahler p-Kéhler manifold in the Fujiki
class for 1 < p < n — 1 in the literature, and thus it satisfies the (p, p+ 1)th mild d9-lemma, for
example [AB92, §4|. However, motivated by Example 3.8, we ask the following question.

Question 3.9. Is it possible to find an n-dimensional nilmanifold with a left-invariant complex
structure of complex dimension n, which admits a left-invariant p-Kahler metric for 1 <p <n—1
and satisfies the (p, p+1)th mild d9-lemma, but the (p, p)-Bott—Chern number varies along some
deformation? This example would not satisfy the standard 99-lemma.

Finally, from the perspective of Corollary 1.3(ii), we may have a clear picture of Angella—
Ugarte’s result [AU17, Theorem 4.9]. Actually, Observation 3.4 tells us that the (n—1,n)th
strong 00-lemma decomposes into the mild one and the dual mild one. A locally conformal
balanced metric can be transformed into a balanced one by the (n — 1,n)th dual mild §0-
lemma, from [AU16, Theorem 2.5]. Then the (n — 1,n)th mild dd-lemma assures the deformation
openness of balanced structures originally from the transformed balanced metric on the reference
fiber, thanks to Corollary 1.3(ii).

3.2 Modification stabilities
We consider the modification on a compact complex manifold defined as follows and refer the
reader to [UenT75, § 2] for its general definition on complex spaces.

DEFINITION 3.10. A modification of an n-dimensional compact complex manifold M is a
holomorphic map

w:M— M
so that:

(i) M is also an n-dimensional compact complex manifold;

(ii) there exists an analytic subset S C M of codimension greater than or equal to 1 such that
,u |J\?I\;r1(S): M\p=1(S) — M\S is a biholomorphism.

It is a classical result, [Par66] or [DGMS75, Theorem 5.22|, that if the modification of a
complex manifold is a @0-manifold, then so is this manifold. Therefore, each compact complex
manifold in the Fujiki class C (i.e. admitting a Kihler modification) is a d9-manifold. The
converse is an open question as in [Alel7, Introduction]: Is the modification of a d9-manifold
still a d0-manifold? A recent result [YY17, Theorem 1.3] of S. Yang and X. Yang, by means
of a blow-up formula for Bott—Chern cohomologies and the characterizations by Angella and
Tomassini [AT13] and Angella and Tardini [AT17] of dd-manifolds, and also [RYY17, Main
Theorem 1.1] by S. Yang, X. Yang and the first author confirm this question in dimension three,
that is, the modification of a 0-threefold is still a d0-threefold. See also, more recently, [ASTT17,
Theorem 2.1]. These results provide us with more classes of complex manifolds satisfying mild
d0-lemmata. Moreover, it is natural to ask the following analogous question.

Question 3.11. Does the modification of a complex manifold satisfying the mild (p, ¢)th 90-
lemma still satisfy the mild (p, ¢)th 99-lemma for each p, ¢7

Now we present a modification stability of (p,¢)th mild d9-lemma on a compact complex
manifold. Let M be a complex manifold. One has the K-valued de Rham complex (A®*(M)k,d)
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for K € {R,C}. Fixing a d-closed 1-form ¢ € A'(M)xk, we consider another complex. Namely,
define
Cl¢ =d+ L¢,

where Ly := ¢ A o. The cochain complex
(A* (M), dg)

can be regarded as the de Rham complex with values in the topologically trivial flat bundle
M x K with the connection form ¢. We study cohomologies and Hodge theory for general
complex manifolds with twisted differentials. More precisely, for 61,0 € Hllg’g(M ), consider the
bi-differential Z-graded complex

(A*(M)c, D9, 0,) 0 (0,,02))
where

8(91792) =0+ L92 + LE,

8(91792) =0 — L@ + Ly, .
It is easy to check that

8(91792)8(91,92) = 5(91,92)5(91792) = 8(91:92)5(91792) + 5(91792)8(91792) =0.

Angella and Kasuya [AK14] investigated cohomological properties of this bi-differential complex
and considered (more than) two cohomologies:

. . — — ker89’9 ﬂkergg’g
H*(A (M)(C;8(91792),6(91792);8(91792)8(91792)) = : ( 1a 2) = (61,02)
1 O(6,,62)9(61,62)

and ka

o €T U9, ,0,)
HHA(M)e: Qon0) = 5 =
(A*(M)c: 9oy 00)) = %0,,02)

which are simply denoted by Hy (M, 01, 02) and H5(M, 61, 02), respectively. If one sets 0; = 0 =
0, H(M, 01,05) and HS(M, 01,0) are just the ordinary Bott—Chern cohomology HyS (M) and
HZ*(M) of M, respectively.

Following Wells in [Wel74, Theorem 3.1], Angella and Kasuya proved the following
proposition.

PROPOSITION 3.12 [AK14, Theorem 2.4]. Let 4 : M — M be a modification of a compact
complex manifold M. Then the induced maps

pisc : Hyo(M, 01, 05) — Heo (M, 1601, 1*6s),
py s Hy(M,01,02) — HS(M, " 01, 11" 62)

are injective.
We reformulate Definition 3.1 for the (p, ¢)th mild 9d-lemma as follows.

DEFINITION 3.13. For any positive integers p,q < n, an n-dimensional complex manifold X
satisfies the (p,q)th mild 00-lemma if the induced map it 5« Hpd(X) — Hp?(X) by the
identity map is injective.
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PROPOSITION 3.14. With the notation in Proposition 3.12, if M satisfies the (p, q)th mild 8-
lemma, then so does M.

Proof. Taking 61 = 63 = 0, we have the following commutative diagram.

By the (p, ¢)th mild 09-lemma assumption on M, the map (5 , for M is injective and so are
U, 1 by Proposition 3.12. So the map 3¢, 5 for M is injective, i.e., M satisfies the (p,¢)th
mild §0-lemma. a

4. Power series proof of main result

This section is used to prove main Theorem 3.2. Let us sketch Kodaira—Spencer’s proof of the
local stability theorem [KS60]. Let F; be the orthogonal projection to the kernel Iy of the first
4th order Kodaira—Spencer operator (also often called Bott—Chern Laplacian)

Opc.t = 0,0,0,0; + 0,0; 0,0, + 0, 0,0; 01 + 09,0, 0, + 9,01 + 0; 0, (7)
and G; the corresponding Green’s operator with respect to oy on X;. Here
ap = \/jlgij(ga t) d¢' A de
is a hermzcian metric on X; depending differentiably on ¢ with «ag being a Kéhler metric on
Xo, and 8, (respectively, 8F) is the dual of 8; (respectively, d;) with respect to ay. By a

cohomological argument with the upper semi-continuity theorem, they prove that F; and Gy
depend differentiably on ¢. Then they can construct the desired Kéhler metric on X; as

6[,5 = %(Ftat + FtOét).

See also [Vo0i02, §9.3].
Our proof is quite different. As explained in § 1, to prove Theorem 3.2, it suffices to prove
the special case p = ¢ of the following theorem.

THEOREM 4.1. If Xq satisfies the (p,q + 1)th and (q,p + 1)th mild d0-lemmata, then there is
a d-closed (p,q)-form Q(t) on X; depending smoothly on t with Q(0) = Qo for any d-closed
Qo € Ap,q(XO)'

We first reduce the local stability Theorem 4.1 to the Kuranishi family since the family
of Beltrami differentials induced by this Kuranishi family plays an important role in the
construction of the family of d-closed (p, g)-forms Q(¢).
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4.1 Kuranishi family and Beltrami differentials
We introduce some basics on the Kuranishi family of complex structures in this subsection, which
is extracted from [RZ18, RWZ16| and obviously originally from [Kur64].

By (the proof of) Kuranishi’s completeness theorem [Kur64], for any compact complex
manifold Xy, there exists a complete holomorphic family w : X — T of complex manifolds
at the reference point 0 € T in the sense that for any differentiable family 7= : X — B with
7 1(s0) = @ 1(0) = X, there exist a sufficiently small neighborhood E C B of sg, and smooth
maps ¢ : Xgp — K, 7: E — T with 7(sg) = 0 such that the diagram

Xp—2 %

(E,s0) —= (T.0)

commutes, ® maps 7~ !(s) biholomorphically onto w~1(7(s)) for each s € E, and
71 (s0) = Xo = w 1(0) = Xo

is the identity map. This family is called Kuranishi family and is constructed as follows. Let
{n,}"_| be a base for H*!(Xj, T)lg(?), where some suitable hermitian metric is fixed on Xy and
m > 1. Otherwise the complex manifold Xy would be rigid, i.e., for any differentiable family
kM — P with sp € P and k !(sg) = Xp, there is a neighborhood V' C P of sy such that
Kk : k~1(V) — V is trivial. Then one can construct a holomorphic family

oo oo
o(t) = Z ort! == ngj(t), I'=(i1,...,0m),t = (t1,...,tm) € C™,
[7]=1 7=1

for [t| < p a small positive constant, of Beltrami differentials as follows:

m
o1(t) = Z Ly
v=1

and for |I]| > 2,
1
p1=50G > leseLl.
J+L=I
It is clear that o(t) satisfies the equation

p(t) = o1+ 30 G[e(t), o(t)).
Let
T = {t [ Hlp(t), o(t)] = 0}
So for each t € T', p(t) satisfies
do(t) = 3le(t), o (1),
and determines a complex structure X; on the underlying differentiable manifold of Xy. More
importantly, ¢(t) represents the complete holomorphic family w : X — T of complex manifolds.
Roughly speaking, the Kuranishi family @ : KX — T contains all sufficiently small differentiable
deformations of Xj.

By means of these, one can reduce the local stability Theorem 4.1 to the Kuranishi family by
shrinking F if necessary, that is, it suffices to construct a p-Kéahler metric on each X;. From now
on, we use ¢(t) and ¢ interchangeably to denote this holomorphic family of integrable Beltrami
differentials, and assume m = 1 for simplicity.
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4.2 Obstruction equation and construction of power series
Now we begin to prove the d-closed smooth extension of (p, ¢)-forms as in Theorem 4.1 by using
the power series method.

As both e't-#¢)"'¢ and e‘¢ are invertible operators when ¢ is sufficiently small, it follows
that for any Q € AP?(X)),

etele (Q) = e 0 e 1-30) 18 0 ¢ L1-39) 16 o g7l o lelte (Q) (8)

Set

Q) = e t0-p0)"le 0 g v o elelte (Q), 9)

where Q and  apparently have a one-to-one correspondence. Here we follow the notation:
D = @, 1 is the identity operator defined as

1 (&, 0 .0
]I_W(Zdz ® 5 —i—;dz ®8zi>

i

when it acts on (p, ¢)-forms of a complex manifold, and similarly for others. And it is easy to
check that the operator

e_LUl*@D)*l@ oe ¢ o eL‘P‘L‘/_’

preserves the form types and thus € is still a (p, q¢)-form. In fact, for any (p,q)-form a on Xj,
we will find

e ta-g0)" 1 o e t% o eb‘/’lL@ (a)
=a, .= dZV A ANdZP A (L — @) adF A A (L — Pp)adFie € APY(X),

i1ipi1- g

where o = o, . — —dz"'A---Adz A dZ7L A - - A dZPe. Together with (8) and (9), Proposition 2.3
Mt i1ipg1 g
implies that

d(e*1%(Q)) = d o €' o e" 122712 (())
=€ 0 (0+ (0,1 +0)o e -2 12 (Q)

—+00
=% (D, +0) ) Ay
k=0
et <8¢A0 +Y (04, + ag,AkH)), (10)
k=0

where

isa (p+ k,q — k)-form and

Thus, d(e‘1*»(Q)) = 0 amounts to

0,A0 =0, O0Ag+ 0,451 =0, k=0,1,2,....
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PROPOSITION 4.2. For any given (p, q)-form 2,
d(e*!(Q)) =0

is equivalent to

00 B Lk_l Lk
Z(ao (k“"_l)' +aok“‘;>An_p_(l_k) =0, (11)
k=0 ’ ’

where max{1l,n —p — ¢} <! < min{2n —p —¢,n+ 1}, LZZ:Ofork<Oand0!:1.

Proof. Recall that Q = e “(-##)"1% 0 ¢~*» 0 e*l*¢ (Q) and then

d(ebwl% (Q)) =doe*o eL('ﬂ*W)*@(Q)
= (5 oe®oet-22)"'¢ + Joe o eL(ll—@w)—l@)(Q)
ko

“+oo kl kl L _ _

_ } : 5 Lo Lo (1—39)~1¢ /&

- <8Okl!+8ok1!>okz!(m'
k1,ko=0

Note that the part of degree (+(n —p—1+1),—(n —p—1)) in the operator d o e'# o e"1-%») 7%
is

> -t i L?ﬂ_pfl;“k
3 —¢9)'e G
g(ao(ki1)!+aoﬁ>o(n_p_l+k)!(ﬂ) (12)
(+(n—p—1+1),—(n—p—=0)=mn—-p—1+k)(1,=1) + (k—1)(=1,1) + (0,1)
= (n—p—1+k)(1,—1)+k(-1,1)+ (1,0).

This is exactly the left-hand side of (11). So d(e'#1*#(Q)) = 0 is equivalent to the vanishing of
(12) for each [ such that

(paQ) +(+(n_p_l+1)a_(n_p_l)) € [O,TL] X [O,TL],
ie, max{l,n —p—¢q} <! <min{2n —p—q,n + 1}. O

Remark 4.3. We consider two special cases of Proposition 4.2.

(i) For p=¢=mn—1, (11) is reduced to

DAy + (0 +0ouy)Ar =0,
(5+80L¢)A0+(50@74—%80@)141:0,

which is exactly the system of obstruction equations given in [RWZ16, (3.8)].
(ii) For p=¢ =1, (11) is reduced to

O — 00 15,(Q) + (D + D ouy)0s(2) =0,
(04 001p)(Q = 15p(Q)) + (D 01y, + 50 012)15(2) = 0,
0015(Q2) =0.
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Since —tpy + Ly 0Ly = —Lypg + Lz 0 Ly and 21, 0 Lp,a = Li
in [RWZ16, Proposition 2.6], we have
ON =00 (tpp — Ly 013)(Q) — Do 1,(Q),
O =00 (tpp — L5 0 1y)(Q) — Do 15(),
d015(2) =0,

o1z(a) for (1,1)-form o as shown
90( ) ( ) )

which is exactly the system of obstruction equations given in [RWZ16, Proposition 2.7].

Unfortunately, the system (11) of obstruction equations consists of too many equations, and
is difficult to solve. We try to reduce it to one with only two equations as in Proposition 4.5.

We will use the homogenous notation for a power series here and henceforth. Assuming that
a(t) is a power series of (bundle-valued) (p, ¢)-forms, expanded as

o0
Oé(t) = Z Z Oéi,jtltv,
k=01i+j=Fk

we use the notation

o0
a(t) = Z ag,
k=0
A = Z Oéid'tifj,
i+j=k

where g, is the k-order homogeneous part in the expansion of a(t) and all a;; are smooth
(bundle-valued) (p, ¢)-forms on Xy with «(0) = ag .

LEMMA 4.4. If d(e*!*»(Q))n, = 0 for any Ny < N, then
(5@140)1\[1 =0, (8Ak + 5¢Ak+1)N1 =0, k=0,1,2,...
for any N1 < N.

Proof. From (10), it follows that

+oo
e2d(e'?(Q)) = 0,40 + > _(0A) + 0p A1)
k=0
For any N7 < N,
0= (e*‘ﬂoal(e“f’“@(Q)))N1 = (0,A0)N, + Z(@Ak + 0pAky1) N, -
k=0
By comparing degrees, we complete the proof. O

As for (10), one can also have
(et (@) = et o (e7174 0 et o ([8, 1] + O + D) 0 e o el (a)).
A long local calculation shows that
d(e'!? (@) = el (1 = o)™ = (1 = @) ') ([0, 14 + 0+ 0)(1 — P + @) ). (13)

Here we use the notation d, first introduced in[RWZ16, §2.1], to denote the simultaneous
contraction on each component of a complex differential form. For example, (1 — ¢p + ¢)da
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means that the operator (1 — @y + @) acts on a simultaneously as

(L= @@+ @) fiyijrgod?™ Ao N2 A A A dZP)

= firiro 5o (L= @0+ @)adz A A (1L = G + p)adz™
AL —@p+@)udzt A A (1 — @p+ @)adz’,

if « is locally expressed by

a= f'lmipj*lmﬂdz” A NdZ" NdZEPN - NdE

7

This new simultaneous contraction is well defined since ¢(t) is a global (1,0)-vector valued
(0,1)-form on Xy (see [MKT71, pp. 150-151]) as reasoned in [RZ18, Proof of Lemma 2.8].
Moreover, we know that

min{q,n—p}

el oot = (L —gp) ! — (L—@p) lg)d: AP9(Xg) > @D AT (Xy).
=0

Thus, by carefully comparing the types of forms in both sides of (13), we have
Di(e"?1? () = e (1 — @) ([0, 1] + I)(1 — Pp) dav). (14)

See [RZ18, Proposition 2.13] and [RWZ16, (2.14)] for more details of (14).
Here and henceforth we denote by («)P? the (p,q)-type part of a (p + ¢)-degree complex
differential form c.

PROPOSITION 4.5. The obstruction equation d(e*#!*#(Q)) = 0 is also equivalent to

o s k—1 k ke
Z(ao b +aow>om—ww(g):0,

2\ - ! Kl

o] Lk_l Lk Lfl_l@(p)71@ _ (15)
= @ @ - _

=0

Proof. From the proof of Proposition 4.2, it is easy to see that the left-hand side of the first
equation in (15) is (d(e‘¢1%»(Q)))?*14, while the other one is (d(e*¢!* (Q)))P9*1. Thus, (15) holds
if d(etel(Q)) = 0.

Conversely, we assume that (15) holds. By (14) and (10), we compare types of forms to get

dyete e () = etele o (1 — @) 140, A0

. - . ~+00 Lk+1 _
= etele o (1 - @p)~4 ((d(eLW“’(Q)))p’qH - kgo (k:j— 01 (0A; + &pAk—H))- (16)
Similarly, we get
| | | STy vy e
Lpllp — Lplyplte _ —\—1 Lp|lp +1’ o 2] a
) = e o (1 — )l @ 3 s PR F Bk )

where @ in the last term means that 9,0, ¢, @ are replaced by 0,0, @, ¢, respectively, while
takes no conjugation.
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If (15) holds, i.e., (d(e*#!*(€)))PT19 = 0 and (d(ev**(€)))P9+! = 0, we will prove
(el () = 0
by induction on orders. Obviously,
(e (€))o = dp = 0.
Now we assume that for any N; < N, d(e*¢!“»(Q))n, = 0. By Lemma 4.4, we have
(0,40)N, =0, (0Ag + 0pAri1)n, =0, k=0,1,2,...
for any Ny < N. For the (N + 1)th order, (16) and the induction assumption for any Ny < N
imply
(Bee 12 () w1 = (1 0 (1 = pp) ™')™ 0 Fyetl? (2)) w41

) R )
— (d(edev(Q)))?\ﬁ_l — (kzzo (k) n 1)'(8Ak +8¢Ak+1)>

N+1
= 0.

Similarly, we have (d;e*%»(Q))n41 = 0. So
d(e"? () vs1 = (Dpe" 2 (Q)) w1 + (0pe"e1? () y11 = 0.
Thus, we complete the proof. O

Remark 4.6. For p = q = 1, if solving deslt# (©Q) = 0 for the orders < N, we proceed to the
(N + 1)th order. It is necessary to prove

B(pa) N1 = (Detsl? ()X, = (de#l# ()32, = 0.

From (10), we have

+o00 k+2 3
develie ()03 ( (94, + 8,4 > =<”%aa> —0,
( ( ))N+1 kz (k+2)( k /C-l—l) Nt 3| (SOJ ) N1

where the last equality follows from Lemma 4.4.

Now we begin to solve (15) with two more lemmas. For the resolution of d9-equations, we
need a lemma due to [Popl5, Theorem 4.1] (or [RWZ16, Lemma 3.14]).

LEMMA 4.7. Let (X,w) be a compact Hermitian complex manifold with the pure-type complex
differential forms x and y. Assume that the d0-equation

00r =y (17)
admits a solution. Then an explicit solution of the dd-equation (17) can be chosen as
(80)*Gpey,
which uniquely minimizes the L?-norms of all the solutions with respect to w. Besides, the

equalities
Gpc(00) = (00)Ga and (00)*Gpc = Ga(00)*

hold, where Gpc and Gp are the associated Green’s operators of Upc and [a, respectively.
Here Opc is defined in (7) and Oy is the second Kodaira—Spencer operator (often also called
Aeppli Laplacian)

Ox = 0% 00 + 000*0" + 00*09" + 00 90" + 09" + 9O*.
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Sketch of Proof for Lemma 4.7. We shall use the Hodge decomposition of Opc on X,
AP9(X) = ker Opc @ Im(99) & (Im §* +Im d"),

whose three parts are orthogonal to each other with respect to the L?-scalar product defined by
w, combined with the equality

1 = Hpc + UpcGae,

where Hpc is the harmonic projection operator. Then two observations follow:

(1) Opcdd(99)* = 09(99)* Upc;
(2) Gpcdd(09)* = 99(09)*Gpc.

It is clear that (1) implies (2), while the statement (1) is proved by a direct calculation,
Ocdd(93)" = (00)(09)* (99)(99)* = 53(99)* .
Hence, we have
(09)(99)*Gpcy = Gpc(09)(99)"y = GpclUpcy = (1 — Hpe)y = v,

where y € Im 90 due to the solution-existence of the d0-equation.

To see that the solution (99)*Gpcy is the unique L?-norm minimum, we resort to the Hodge
decomposition of the operator [y,

AP(X) =kerOx @ (Im 0 + Im d) @ Im(99)*, (18)

where ker [y = ker(99) Nker 0* Nker 8. Let z be an arbitrary solution of the 9-equation (17),
which decomposes into three components z; 4+ z2 + 23 with respect to the Hodge decomposition
(18) of Oa. And we are able to obtain that

z3 = GA(00)*y = (00)*Gpcy.

Therefore,
1212 = lzll® + 12201 + ll2s]® > llz3]1* = [(90)*Greyl?,

and the equality holds if and only if 21 = 25 = 0, i.e., 2 = 23 = (09)*Gpcy. O

LEMMA 4.8. Let X be a complex manifold satisfying the (p,q + 1)th and (q,p + 1)th mild
00-lemmata. Consider the system of equations

0r = 0(,
_ > 19
{83: = 0¢, (19)
where (,§ are (p+1,q—1)- and (¢+ 1,p — 1)-forms on X, respectively. The system of equations
(19) has a solution if and only if
90¢ = 0,
00€ = 0.
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Proof. This lemma is inspired by [RWZ16, Observation 2.11]. The lemmata assumption will
produce p € AP~ and v € AP~14, satisfying the system of equations

9o = ¢,
00v = O¢.
The combined expression B
op + ov
is our choice for the solution of the system (19). O

By Lemmata 4.7 and 4.8, we have the following proposition.

PRrOPOSITION 4.9. With the same notation as in Lemmata 4.7 and 4.8, the system of equations
(19) has a canonical solution

v = D(80)*Gpcd — 8(98)* GpedE.

Now we assume that Xy is a complex manifold that satisfies the (¢,p+1)th and (p, ¢+ 1)th
mild 0-lemmata. The obstruction (15) can be rewritten as

N~ (q, Y 2 L’Eﬂ—¢¢)‘1¢ S
8Q+kz<8o(k_1)!+8o>o Q) =0,
=1

k! k!
00 k-1 N Lk:—l . (20)
50 a Ho ¢ Yo o =800 Y .
KMt 0014 H;@" o1 0° k!) * o W=0
Set
PR - Lf; La-p0)-1o ¢
Vi=Q+) 5o .
k=1 )
Then (20) becomes
/ e Llsz_l L](Cﬂ—eoeo) 16 &
09 =-0 D) (),
k=1
o~ © Lk+1 Lkﬂ = \—175 ~
89, — *82 P o (1-pyp) @(Q)
| |
— (k+1)! k!
In order to use the (g, p + 1)th and (p,q + 1)th mild d0-lemmata, we need to prove
I LI(CH—W)”@ 5
WY Gome w =0
k=1
o k+1 k (21)

_ L 2 ~ =15  ~
) (1-gp)~1p _
aakz Grni® T R =0
=0

at the (IV + 1)th order if it has been solved for the orders < N.
Now we prove (21). Firstly, note that

0o k1 Lkﬂ_f L _
Y Gemio (@) = (v oo @)ttt = (el @)ttt
k=0 ' '
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Thus,
2, Rt W “15 ~ _
(03 g e @), =00 @t
= (D0 (@R
= (0des > (@)L
= O(de = ()

since the obstruction equation is solved for the orders < N, i.e., d(e*l**(Q))y, = 0 for any
N; < N. By Lemma 4.4, we have

(apAO)Nl =0, (8Ak +0 Ak+1) =0, k=0,1,2,...

for any N1 < N. It follows from (10) that

+00 k+2
— L _
(dew|L¢>(Q))§’w}iq+2 = < § : ¥ '(3Ak + aapAk-i-l)) =0.
= (k+2) Nt

So

00 k+1 JF
La-gp)1p _ tolig p—lg+2 _
(aaz P - (Q))N+1 = 0(de'ele ()R 0.

Hence, we have proved the second equation of (21). Similarly, by the same argument (i.e., replace
all ¢ (respectively, ¢) by @ (respectively, ¢)), the first equation of (21) also holds.
By Proposition 4.9, one obtains a formal solution of (20) by induction

o) k—1 k
11 PP) 7P & _ AAaF* 3 bo L-p0)-16
<Z o e @) ) —(en) GBca(; e @)
_ > Lk+1 Lk_— 1 o~
+8(88)*G308<Z (ki I a 7;? ‘P(Q)>
k=0 ) ) l

min{q,n—p} e szﬂ 5015 min{q,n—p} -1 LI(CIL 50)~ 15
© —30)"1p & B/ AAN* = o —0) 1P &
_( 3 mom(m)l —9(89) GBca< > T <9)>l

k=1 k=1
min{g,n—p} et L](Cﬂ "
) ® —50) 716
+0(00) GBcﬁ( kE_O G 1 o X (Q))l (22)

Remark 4.10. We are possibly able to obtain this (formal) solution (22) of (20) backwards by
the invertibility of some operator in small ¢ as shown in [LRW17, Remark 4.6], but it seems that
to figure out this solution explicitly by the power series method is indispensable in this process.

4.3 Regularity argument
Here we adopt a strategy for a convergence argument [LZ18] suggested by Liu, which simplifies
our argument involved in [RWZ16, RZ18].
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From the induction expression (22), one obtains the formal expression of Q

} min{q,n—p} Li LZ@_— 16, ~ o 7min{q,n—p} Li_l Léﬂ—_ 1 =
G=— Y 2o () -9(00)Gecd Y (ifnv o (%)
i=1 ' ' i=1 . '
B min{q,n—p} i+l Ll@_f 1~
Set
min{q,n—p} i+1 7
_ L b1—gp)-15
r_ ” © (I-pp)~ '@
0(00)"Gaod ; G+ 0Tl
min{q,n—p} ; i
B PR
7! 7!
i=1
min{q,n—p} i1 LZ@ )15
B/ aF* = © -pp)7 o
9(09)*Gpcd ; T
and write 3
Qo = (1 — F)Q. (24)

We claim that Q(t) converges in Holder norm as ¢ — 0 by use of the following two a priori
elliptic estimates: for any complex differential form ¢,

10" llk—1.0 < 114

k,a

and
IGecdllka < Crall®lli—1.q

where k£ > 3 and C} , depends only on k and «, not on ¢ (cf. [Kod86, Appendix.Theorem 7.4]
for example). And we note that ¢(t) converges smoothly to zero as ¢ — 0. Thus, by (24), we
estimate

10llk0 = (1= €,0) [Qlkas

where 0 < €, o < 1 is some constant depending on k, c.

Finally, we proceed to the regularity of Q(t) since there is possibly no uniform lower
bound for the convergence radius obtained as above in the C*“norm when k converges to
+oo. This argument lies heavily in the elliptic estimates [Kod86, Appendix 8], [DN55] and
also [RWZ16, §3.2].

Without loss of generality, we just consider the equation

) min{q,n—p} J Ll&,* NI . 7min{q,n—p} L1 Ll&,* REp
00=-0 ) e E(0) — 90°0(00) Gecd Y (kiw o T ()
k=1 ’ ' k=1 ' '
min{g,n—p} g1 k
FOO)Gacd 3 e o azenteg)
P (k+1)! k!

by applying the d-Laplacian [ = 80 + 08" to the expression formula (23) and omitting the
lower-order term [ in this expression. By replacing the roles of

1
Lp O l1-pp)~1pr  L1-gp)lr Lo T 3lp Ol O l(1-gp)~1g
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in the analogous strongly elliptic second-order pseudo-differential equation in the regularity
argument of [RWZ16, § 3.2]

OQ(t) = ~D(tg © taa—pp)15(2(t))) — %*5(35)*GB05~(%1—@7)*1¢(Q(t»)
+00(99)* Gpcd((Lp + Ftp 0 Ly © La—ap) 1)),

by
min{g,n—p} ; i min{g,n—p} ;1 i min{g,n—p} ;411 i
3 L ta-ep)le 3 N ) 3 o ta-ee)le
1] 1] ’ i —1)! i ’ (i +1)! i ’
~ i! pot (¢ ! i! — i ! i!
respectively, we prove the following result. For each [ = 1,2,..., choose a smooth function 7'(t)
with values in [0, 1]
f < 1 L :
1 or |t| NS 5 + F T,

n'(t) = -
0 for |t| > (2 + 21)7‘,

where r is a positive constant to be determined. Inductively, by Douglis—Nirenberg’s interior
estimates [Kod86, Appendix.Theorem 2.3], [DN55], for any [ = 1,2,..., n?H1Q(t) is CFbe,
where 7 can be chosen independent of 1. Since n**+1(t) is identically equal to 1 on [t| < 7/2,

which is independent of I, Q(t) is C°° on Xg with |t| < 7/2. Then Q(t) can be considered as a
real analytic family of (p, ¢)-forms in ¢ and thus is smooth on .

5. Deformation invariance of Bott—Chern numbers

The main goal of this section is to study deformation invariance of Bott—Chern numbers on
complex manifolds.

THEOREM 5.1. If the reference fiber X satisfies the (p, ¢+ 1)th and (q, p + 1)th mild d9-lemmata
and the deformation invariance of the (p — 1,q — 1)-Aeppli number h% "7'(X;) holds, then
hi&(Xy) are deformation invariant.

The following is a direct corollary.

COROLLARY 5.2. If the reference fiber X satisfies the (p,1)th mild d0-lemma, then h%’g(Xt)
and hOB’% (X};) are deformation invariant.

Resorting to the calculations for the Hodge and Bott—Chern numbers of manifolds in the
Kuranishi family of the Iwasawa manifold (cf. [Angl3, Appendix]), we find the following example
where neither the deformation invariance of the (p,0)- nor (0,p)-Bott—Chern numbers is true
when the condition of the (p, 1)th mild 99-lemma does not hold on the reference fiber in Corollary
5.2. It indicates that the condition involved may not be omitted in order for the deformation
invariance of (p,0)- and (0, p)-Bott—Chern numbers.

Let I3 be the Iwasawa manifold of complex dimension 3 with n',n?,73 denoted by the basis
of the holomorphic one form H(I3, Q') of I3, satisfying the relation

dn' =0, dn*=0, dn’=-—n"An’.

And the convention 171213 =n' An? AT AT will be used for simplicity.
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Ezample 5.3 (The cases (p,q) = (2,0) and (0,2)). The injectivity of L%’éa does not hold on I3

and in these cases hé’g (X¢) and hOB’é (X¢) are deformation variant.

Proof. Tt is easy to check that the left-invariant (2, 1)-form

stands for a non-trivial Bott—Chern class but a trivial class in H;’l(ﬂg), which indicates non-
injectivity of L%’é 5- The deformation variance of hQB’g (X:) and h%’é (X:) can be got from [Angl3,
Appendix]. O

Now let us describe our basic philosophy to consider the deformation invariance of Bott—
Chern numbers briefly. The Kodaira—Spencer’s upper semi-continuity theorem [KS60, Theorem 4]
tells us that the function

is always upper semi-continuous for ¢ € B and thus, to approach the deformational invariance of
h&(Xy), we only need to obtain the lower semi-continuity. Here our main strategy is a modified
iteration procedure, originally from [LSY09] and developed in [Sunl2, SY11, ZR13, LRY15],
which is to look for an injective extension map from HLE(Xo) to HRA(X,). More precisely, for
the unique harmonic representative og of the initial Bott—Chern cohomology class in H}g’g (Xo),
we try to construct a convergent power series

oo
o =00+ Z tktjakj € AP9(Xy),
k=1

with oy varying smoothly on ¢ such that for each small ¢:
(i) el®(o;) € AP9(X;) is d-closed with respect to the differential structure on X; with the
induced family ¢ of Beltrami differentials;
(i) the extension map HEE(Xo) — HRL(X:) : [o0]a = (eI (0y)]q is injective.

Obviously, (i) amounts to Theorem 4.1. To guarantee (ii), it suffices to prove the following
proposition.

PROPOSITION 5.4. If the d-extension of HL¢(Xo) as in Theorem 4.1 holds for a complex manifold
Xo, then the deformation invariance of hi_l’q_l(Xt) assures that the extension map

HEL(Xo) — HEL(X1) : [o0)a = [e% (00)]a
is injective.
Proof. Here we follow an idea in [RZ18, Proposition 3.15]. Let us fix a family of smoothly

varying Hermitian metrics {w;},.p for the infinitesimal deformation 7 : X — B of X,. Thus, if

the Aeppli numbers h‘g_l’q_l(Xt) are deformation invariant, the Green’s operator G, ;, acting on
the AP~1971(X}), depends differentiably with respect to ¢ from [KS60, Theorem 7] by Kodaira
and Spencer. Using this, we ensure that this extension map cannot send a nonzero class in
HEA(Xo) to a zero class in HRA(X,).
If we suppose that
¢ ? 015w (0,) = 0,0
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for some 7; € AP~1971(X;) when t € B\{0}, the Hodge decomposition of Bott—Chern Laplacian
and the commutativity

Gpc(00) = (00)Ga
in Lemma 4.7 yield that

GLv(t)‘LW(Ut) = 8t5t77t = (HBC,t + DBC,tGBC,t)atgt(nt)
= GBC,tDBC,tatgt(nt)
= GBC,tatgtgz 5;‘ 8t5t(77t)
= 8,0,G x40, 0} (e %@ (0)),

where Hpc ¢, Upc,¢ are the harmonic projectors and the Bott—Chern Laplacian with respect to
(Xt,we), respectively. Let ¢ converge to 0 on both sides of the equality

e O1@ (5) = 8,0,G p 4,0, 05 (¢ %@ (),

which turns out that oq is d0-exact on the reference fiber X. Here we use the fact that the
Green’s operator Ga ; depends differentiably with respect to ¢. |
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