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Abstract

By use of a natural extension map and a power series method, we obtain a local
stability theorem for p-Kähler structures with the (p, p + 1)th mild ∂∂-lemma under
small differentiable deformations.
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1. Introduction

Local stabilities of complex structures are important topics in deformation theory of complex
structures. We will prove local stabilities of p-Kähler structures with the (p, p + 1)th mild
∂∂̄-lemma by the power series method, initiated by Kodaira–Nirenberg–Spencer [KNS58] and
Kuranishi [Kur64].

Theorem 1.1. For any positive integer p 6 n− 1, any small differentiable deformation Xt of an
n-dimensional p-Kähler manifoldX0 satisfying the (p, p+ 1)th mild ∂∂-lemma is still p-Kählerian.

Here the (p, p+ 1)th mild ∂∂-lemma for a complex manifold means that each ∂-closed ∂-exact
(p, p+ 1)-form on this manifold is ∂∂-exact, which is a new notion generalizing the (n− 1, n)th
one first introduced in [RWZ16]. A complex manifold is p-Kählerian if it admits a p-Kähler form,
i.e., a d-closed transverse (p, p)-form as in Definition 2.5.

Recall the fact that each n-dimensional complex manifold is n-Kählerian and the following
two basic properties of p-Kählerian structures.

Lemma 1.2 ([AA87, Proposition 1.15] and also [RWZ16, Corollary 4.6]). A complex manifold
M is 1-Kähler if and only if M is Kähler; an n-dimensional complex manifold M is (n−1)-Kähler
if and only if M is balanced, i.e., it admits a real positive (1, 1)-form ω, satisfying

d(ωn−1) = 0.
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Thus, we obtain the following as a direct corollary of Theorem 1.1.

Corollary 1.3. Let π : X → B be a differentiable family of compact complex manifolds.

(i) [KS60, Theorem 15] If a fiber X0 := π−1(t0) admits a Kähler metric, then, for a sufficiently
small neighborhood U of t0 on B, the fiber Xt := π−1(t) over any point t ∈ U still admits a
Kähler metric, which depends smoothly on t and coincides for t = t0 with the given Kähler
metric on X0.

(ii) [RWZ16, Theorem 1.5] Let X0 be a balanced manifold of complex dimension n, satisfying
the (n− 1, n)th mild ∂∂-lemma. Then Xt also admits a balanced metric for t small.

The first assertion of Corollary 1.3 is the fundamental Kodaira–Spencer’s local stability
theorem of Kähler structure, and motivates the second assertion of Corollary 1.3 and many
other related works on local stabilities of complex structures in [FY11, Voi02, Wu06, AU17,
AU16]. The counter-example of Alessandrini and Bassanelli [AB90] tells us that the result in
the second assertion of Corollary 1.3 does not necessarily hold without the (n − 1, n)th mild
∂∂-lemma assumption.

In § 2, we will study the difference between the (p, q)th mild ∂∂-lemma and other versions
of ∂∂-lemmata in the roles of Theorem 1.1, and the modification stability of the (p, q)th mild
∂∂-lemma by Proposition 3.14, which provides us with more classes of complex manifolds to
admit the (p, q)th mild ∂∂-lemma. Here the (standard) ∂∂̄-lemma refers to: for every pure-type
d-closed form on a complex manifold, the properties of d-exactness, ∂-exactness, ∂̄-exactness
and ∂∂̄-exactness are equivalent, while its variants are described by § 3.1. Obviously, one has the
implication hierarchy on a complex n-dimensional manifold for any positive integer p 6 n− 1:

the ∂∂-lemma

=⇒ the (p, p+ 1)th strong ∂∂-lemma (1)

=⇒ the (p, p+ 1)th mild ∂∂-lemma (2)

=⇒ the (p, p+ 1)th weak ∂∂-lemma. (3)

For p = n−1, the implication hierarchy is strict: [AU17, Example 4.10] is one example satisfying
the strong ∂∂-lemma but not the standard one; the nilmanifold endowed with a left-invariant
abelian complex structure of dimension 2n or a left-invariant non-nilpotent balanced complex
structure of complex dimension 3 by [RWZ16, Proposition 3.8 and Corollary 3.4] and [AU16,
Proposition 2.9] distinguishes the mild and strong ∂∂-lemmata; and the weak ∂∂-lemma holds
on the complex three-dimensional Iwasawa manifold [RWZ16, Example 3.7] but the mild one
fails. Moreover, we construct a new ten-dimensional balanced nilmanifold in Example 3.8 for the
strictness of implication 2, which satisfies the (4, 5)th mild but not strong ∂∂̄-lemma and also
the deformation variance of the (4, 4)th Bott–Chern numbers. Motivated by these, it is natural
to ask the following question.

Question 1.4. Find an n-dimensional complex manifold or in particular a p-Kähler manifold such
that one of implications (1), (2), (3) is strict for each positive integer p < n− 1.

Now let us describe our approach to proving local stability of p-Kähler structures. An
application of Kuranishi’s completeness theorem [Kur64] reduces our power series proof to the
Kuranishi family $ : K → T , that is, we will construct a natural p-Kähler extension ω̃t of the
p-Kähler form ω0 on X0, such that ω̃t is a p-Kähler form on the general fiber $−1(t) = Xt. More
precisely, the extension is given by

eιϕ|ιϕ : Ap,p(X0) → Ap,p(Xt), ω0 → ω̃t := eιϕ|ιϕ(ω(t)),
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where ω(t) is a family of smooth (p, p)-forms to be constructed on X0, depending smoothly on
t, and ω(0) = ω0. Here ϕ is the family of Beltrami differentials induced by the Kuranishi family.
The extension map eιϕ|ιϕ is first introduced in [ZR15, RZ18] and given in Definition 2.2.

This method is developed in [LSY09, Sun12, SY11, LRY15, ZR13, ZR15, RZ18, RWZ16,
LRW17]. However, we have to solve many more equations in system (11) here than in the
balanced case [RWZ16]; those in system (11) are much more difficult in essence. Fortunately,
we are able to reduce this complicated system to that with only two equations as in (15) by
comparing the types of the forms in the system and the orders in the induction simultaneously.
This crucial consideration is also important in the solution of this system.

In this approach, we will use the following observation crucially.

Proposition 1.5 [RWZ16, Proposition 4.12]. Let π : X → B be a differentiable family of
compact complex n-dimensional manifolds and Ωt a family of real (p, p)-forms with p < n,
depending smoothly on t. Assume that Ω0 is a transverse (p, p)-form on X0. Then Ωt is also
transverse on Xt for small t.

This proposition actually shows that any smooth real extension of a transverse (p, p)-form
is still transverse. So the obstruction to extend a d-closed transverse (p, p)-form on a compact
complex manifold lies in the d-closedness, to be resolved in Theorem 1.6 in a more general setting.
The detailed proof of main Theorem 1.1 is given in § 4.

Theorem 1.6 (= Theorem 4.1). If X0 satisfies the (p, q+ 1)th and (q, p+ 1)th mild ∂∂̄-
lemmata, then there is a d-closed (p, q)-form Ω(t) on Xt depending smoothly on t with Ω(0) = Ω0

for any d-closed Ω0 ∈ Ap,q(X0).

Remark 1.7. The case p = q = n − 1 of Theorem 1.6 implies that the dimension of the space
of d-closed left-invariant (n − 1, n − 1)-forms on a 2n-dimensional nilmanifold endowed with a
left-invariant abelian complex structure is deformation invariant, where the (n − 1, n)th mild
∂∂̄-lemma holds from [RWZ16, Corollary 3.4].

In § 5, inspired by [RZ18], we will use Theorem 1.6 to prove a result on deformation invariance
of Bott–Chern numbers in Theorem 5.1.

This paper will follow the notation in [LRY15, RZ18, RWZ16]. All manifolds in this paper
are assumed to be compact complex n-dimensional manifolds. The symbol Ap,q(X,E) stands
for the space of the holomorphic vector bundle E-valued (p, q)-forms on a complex manifold X.
We will always consider the differentiable family π : X → B of compact complex n-dimensional
manifolds over a sufficiently small domain in Rk with the reference fiber X0 := π−1(0) for the
reference point 0 and the general fibers Xt := π−1(t).

2. Deformation and p-Kähler structure

This section is to state some basics of analytic deformation theory of complex structures and the
notion of p-Kähler structure.

2.1 Deformation theory
For the holomorphic family of compact complex manifolds, we adopt the definition [Kod86,
Definition 2.8]; while for the differentiable one, we adopt the following definition.
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Definition 2.1 [Kod86, Definition 4.1]. Let X be a differentiable manifold, B a domain of Rk
and π a smooth map of X onto B. By a differentiable family of n-dimensional compact complex
manifolds we mean the triple π : X → B satisfying the following conditions.

(i) The rank of the Jacobian matrix of π is equal to k at every point of X.

(ii) For each point t ∈ B, π−1(t) is a compact connected subset of X.

(iii) The fiber π−1(t) is the underlying differentiable manifold of the n-dimensional compact
complex manifold Xt associated to each t ∈ B.

(iv) There is a locally finite open covering {Uj | j = 1, 2, . . .} of X and complex-valued smooth
functions ζ1

j (p), . . . , ζnj (p), defined on Uj such that for each t,

{p → (ζ1
j (p), . . . , ζnj (p)) | Uj ∩ π−1(t) 6= ∅}

form a system of local holomorphic coordinates of Xt.

Beltrami differentials play an important role in deformation theory. A Beltrami differential on
X, generally denoted by φ, is an element in A0,1(X,T 1,0

X ), where T 1,0
X is the holomorphic tangent

bundle of X. Then ιφ or φy denotes the contraction operator with respect to φ ∈ A0,1(X,T 1,0
X )

or other analogous vector-valued complex differential forms alternatively if there is no confusion.
We also use the convention

e♠ =

∞∑
k=0

1

k!
♠k, (4)

where ♠k denotes k-time action of the operator ♠. As the dimension of X is finite, the summation
in the above formulation is always finite.

We will always consider the differentiable family π : X → B of compact complex n-
dimensional manifolds over a sufficiently small domain in Rk with the reference fiberX0 := π−1(0)
and the general fibers Xt := π−1(t). For simplicity we set k = 1. Denote by ζ := (ζαj (z, t)) the

holomorphic coordinates of Xt induced by the family with the holomorphic coordinates z := (zi)
of X0, under a coordinate covering {Uj} of X, when t is assumed to be fixed, as the standard
notions in deformation theory described at the beginning of [MK71, ch. 4]. This family induces
a canonical differentiable family of integrable Beltrami differentials on X0, denoted by ϕ(z, t),
ϕ(t) and ϕ interchangeably.

In [ZR15, ZR13], the first and third authors introduced an extension map

e
ιϕ(t)|ιϕ(t) : Ap,q(X0) → Ap,q(Xt),

to play an important role in this paper.

Definition 2.2. For s ∈ Ap,q(X0), we define

e
ιϕ(t)|ιϕ(t)(s) = si1···ipj1···jq(z(ζ))(eιϕ(t)(dzi1 ∧ · · · ∧ dzip)) ∧ (e

ι
ϕ(t)(dzj1 ∧ · · · ∧ dzjq)),

where s is locally written as

s = si1···ipj1···jq(z) dz
i1 ∧ · · · ∧ dzip ∧ dzj1 ∧ · · · ∧ dzjq

and the operators eιϕ(t) , e
ι
ϕ(t) follow convention (4). It is easy to check that this map is a real

linear isomorphism as in [RZ18, Lemma 2.8].
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The following proposition is crucial in this paper.

Proposition 2.3 [LRY15, Theorem 3.4], [RZ18, Proposition 2.2]. Let φ ∈ A0,1(X,T 1,0
X ) on a

complex manifold X. Then on the space A∗,∗(X),

d ◦ eιφ = eιφ(d+ ∂ ◦ ιφ − ιφ ◦ ∂ − ι∂φ−(1/2)[φ,φ]). (5)

From the proof of Proposition 2.3, we see that (5) is a natural generalization of the Tian–
Todorov lemma [Tia87, Tod89], whose variants appeared in [Fri91, BK98, Li05, LSY09, Cle05]
and also [LR12, LRY15] for vector bundle valued forms.

Lemma 2.4. For φ, ψ ∈ A0,1(X,T 1,0
X ) and α ∈ A∗,∗(X) on an n-dimensional complex manifold X,

[φ, ψ]yα = −∂(ψy(φyα))− ψy(φy∂α) + φy∂(ψyα) + ψy∂(φyα),

where

[φ, ψ] :=
n∑

i,j=1

(φi ∧ ∂iψj + ψi ∧ ∂iφj)⊗ ∂j

for ϕ =
∑

i ϕ
i ⊗ ∂i and ψ =

∑
i ψ

i ⊗ ∂i.

2.2 The p-Kähler structures
Let V be a complex n-dimensional vector space with its dual space V ∗, i.e., the space of complex
linear functionals over V . Denote the complexified space of the exterior m-vectors of V ∗ by∧m

C V
∗, which admits a natural direct sum decomposition

m∧
C
V ∗ =

∑
r+s=m

r,s∧
V ∗,

where
∧r,s V ∗ denotes the complex vector space of (r, s)-forms on V ∗. The case m = 1 exactly

reads
1∧
C
V ∗ = V ∗ ⊕ V ∗,

where the natural isomorphism V ∗ ∼=
∧1,0 V ∗ is used. Let q ∈ {1, . . . , n} and p = n− q. Clearly,

the complex dimension N of
∧q,0 V ∗ is equal to the combination number Cqn. After a basis

{βi}Ni=1 of the complex vector space
∧q,0 V ∗ is fixed, the canonical Plücker embedding as in

[GH78, p. 209] is given by

ρ : G(q, n) ↪→ P
(q,0∧

V ∗
)

Λ 7→ [. . . ,Λi, . . .].

Here G(q, n) denotes the Grassmannian of q-planes in the vector space V ∗ and P(
∧q,0 V ∗) is the

projectivization of
∧q,0 V ∗. A q-plane in V ∗ can be represented by a decomposable (q, 0)-form

Λ ∈
∧q,0 V ∗ up to a nonzero complex number, and {Λi}Ni=1 are exactly the coordinates of Λ

under the fixed basis {βi}Ni=1. Decomposable (q, 0)-forms are those forms in
∧q,0 V ∗ that can be

expressed as γ1
∧
· · ·
∧
γq with γi ∈ V ∗ ∼=

∧1,0 V ∗ for 1 6 i 6 q. Set

k = (N − 1)− pq

to be the codimension of ρ(G(q, n)) in P(
∧q,0 V ∗), whose locus characterizes the decomposable

(q, 0)-forms in P(
∧q,0 V ∗).
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Now we list notation for several types of positivity and refer the readers to [HK74, Har75,
Dem12] for more details. A (q, q)-form Θ in

∧q,q V ∗ is defined to be strictly positive (respectively,
positive) if

Θ = σq

N∑
i,j=1

Θij̄βi ∧ β̄j ,

where Θij is a positive (respectively, semi-positive) hermitian matrix of size N ×N with N = Cqn
under the basis {βi}Ni=1 of the complex vector space

∧q,0 V ∗ and σq is defined to be the constant

2−q(
√
−1)q

2
. According to this definition, the fundamental form of a hermitian metric on a

complex manifold is actually a strictly positive (1, 1)-form everywhere. A (p, p)-form Γ ∈
∧p,p V ∗

is called weakly positive if the volume form

Γ ∧ σqτ ∧ τ̄

is positive for every nonzero decomposable (q, 0)-form τ of V ∗, while a (q, q)-form Υ ∈
∧q,q V ∗

is said to be strongly positive if Υ is a convex combination

Υ =
∑
s

γs
√
−1αs,1 ∧ ᾱs,1 ∧ · · · ∧

√
−1αs,q ∧ ᾱs,q,

where αs,i ∈ V ∗ and γs > 0. As shown in [Dem12, ch. III.§ 1.A], the sets of weakly positive and
strongly positive forms are closed convex cones, and by definition, the weakly positive cone is
dual to the strongly positive cone via the pairing

p,p∧
V ∗ ×

q,q∧
V ∗ −→ C.

Then all weakly positive forms are real. An element Ξ in
∧p,p V ∗ is called transverse, if the

volume form

Ξ ∧ σqτ ∧ τ̄

is strictly positive for every nonzero decomposable (q, 0)-form τ of V ∗. There exist many names
for this terminology and we refer to [AB91, Appendix] for a list.

This positivity notation on complex vector spaces can be extended pointwise to complex
differential forms on a complex manifold. Let M be an n-dimensional complex manifold. Then
we have the following definition.

Definition 2.5 ([AA87, Definition 1.11], for example). Let p be an integer, 1 6 p 6 n. Then
M is called a p-Kähler manifold if there exists a p-Kähler form, that is a d-closed transverse
(p, p)-form on M .

The readers are referred to [Sul76] for more related concepts (such as differential form
transversal to the cone structure on a real differentiable manifold) to p-Kähler structures.

3. Relevance to mild ∂∂-lemma and modification

We will introduce the so-called (p, q)th mild ∂∂̄-lemma and its relevance, and also present its
modification stability on compact complex manifolds.
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3.1 The (p, q)th mild ∂∂-lemma and its relevance

This subsection is to study various ∂∂-lemmata related to local stabilities of complex structures,
their properties, differences and roles there in some special case. More details can be found in
[RWZ16, § 3.1] and the references therein.

Now we introduce a new notion.

Definition 3.1. We say a complex manifold X satisfies the (p, q)th mild ∂∂̄-lemma if for any
complex differential (p− 1, q)-form ξ with ∂∂̄ξ = 0 on X, there exists a (p− 1, q− 1)-form θ such
that ∂∂̄θ = ∂ξ.

So we can state our main theorem.

Theorem 3.2. For any positive integer p 6 n− 1, any small differentiable deformation Xt of a
p-Kähler manifold X0 satisfying the (p, p+ 1)th mild ∂∂-lemma is still p-Kählerian.

According to Lemma 1.2, Theorem 3.2 unifies the local stabilities of Kähler structures [KS60,
Theorem 15] and balanced structures under the (n− 1, n)th mild ∂∂̄-lemma [RWZ16, Theorem
1.5], which is an obvious generalization of Wu’s result [Wu06, Theorem 5.13] that the balanced
structure is stable under small deformation when the ∂∂-lemma holds, to p-Kähler mild ∂∂-
structures for 1 6 p 6 n− 1.

Let X be a compact complex manifold of complex dimension n with the following
commutative diagram.

Hp,q
∂ (X)

ιp,q∂,A

%%
Hp,q

BC(X)

ιp,qBC,∂

99

ιp,q
BC,∂ %%

ιp,qBC,dR// Hp+q
dR (X)

ιp,qdR,A // Hp,q
A (X)

Hp,q

∂
(X)

ιp,q
∂,A

99 (6)

Recall that Dolbeault cohomology groups H•,•
∂

(X) of X are defined by

H•,•
∂

(X) :=
ker ∂

im ∂
,

with H•,•∂ (X) similarly defined, while Bott–Chern and Aeppli cohomology groups are defined as

H•,•BC(X) :=
ker ∂ ∩ ker ∂

im ∂∂
and H•,•A (X) :=

ker ∂∂

im ∂ + im ∂
,

respectively. The dimensions of Hp+q
dR (X), Hp,q

∂
(X), Hp,q

BC(X), Hp,q
A (X) and Hp,q

∂ (X) over C are

denoted by bp+q(X), hp,q
∂

(X), hp,qBC(X), hp,qA (X) and hp,q∂ (X), respectively, and the first four of

them are usually called (p+ q)th Betti numbers, (p, q)-Hodge numbers, Bott–Chern numbers and
Aeppli numbers, respectively. So the (standard) ∂∂-lemma is equivalent to the injectivities of the
mappings

ιp,qBC,dR : Hp,q
BC(X) → Hp+q

dR (X)

for all p, q, or to the isomorphisms of all the maps in diagram (6) by [DGMS75, Remark 5.16].
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Notice that the (1, 2)th mild ∂∂-lemma is different from the ∂∂-lemma on a complex manifold.
It is easy to see that the (1, 2)th mild ∂∂-lemma amounts to the injectivity of the mapping

ι1,2BC,∂ : H1,2
BC(X) → H1,2

∂ (X).

Then by [AK17, Tables 5 and 6 in Appendix A] and [Kas13, the case B in Example 1], we have
the following example.

Example 3.3 [RWZ16, Example 1.7]. Let X be the manifold in case (ii) of the completely-
solvable Nakamura manifold as given in [AK17, Example 3.1]. Then the manifold X satisfies
the (1, 2)th mild ∂∂-lemma, but not the ∂∂-lemma.

There are another three similar conditions relating to the local stabilities of complex
structures. The (p, p+ 1)th weak ∂∂-lemma on a compact complex manifold X, first introduced
by Fu and Yau [FY11] for (p, p + 1) = (n − 1, n), says that for any real (p, p)-form ψ such that
∂ψ is ∂-exact, there is a (p− 1, p)-form θ, satisfying

∂∂θ = ∂ψ.

And the (p, q)th strong ∂∂-lemma on X, first proposed by Angella–Ugarte [AU17] in the case
(p, q) = (n− 1, n), states that the induced mapping ιp,qBC,A : Hp,q

BC(X) → Hp,q
A (X) by the identity

map is injective, which is equivalent to the statement that for any d-closed (p, q)-form Γ of the
type Γ = ∂ξ+ ∂ψ, there exists a (p− 1, q − 1)-form θ such that

∂∂θ = Γ.

Angella–Ugarte [AU17, Proposition 4.8] showed the deformation openness of the (n − 1, n)th
strong ∂∂-lemma. Besides, the condition that the induced mapping ιp,q

BC,∂
: Hp,q

BC(X) → Hp,q

∂
(X)

by the identity map is injective, is first presented by Angella–Ugarte [AU16] in the case
(p, q) = (n − 1, n) to study local conformal balanced structures and global ones, which we may
call the (p, q)th dual mild ∂∂-lemma.

After a simple check, we have the following observation.

Observation 3.4. The compact complex manifold X satisfies the (p, q)th strong ∂∂-lemma if and
only if both of the mild and dual mild ones hold on X.

All these four ‘∂∂-lemmata’ hold if the compact complex manifold X satisfies the standard
∂∂-lemma. And either the (p, p+ 1)th mild or dual mild ∂∂-lemma implies the weak one, while
[RWZ16, Corollary 3.9] implies that the (n− 1, n)th mild ∂∂-lemma and the dual mild one are
unrelated.

By [AB90], a small deformation of the Iwasawa manifold, which satisfies the (2, 3)th weak
∂∂-lemma but does not satisfy the mild one from Example 3.5, may not be balanced. Thus, the
condition ‘(n− 1, n)th mild ∂∂-lemma’ in Corollary 1.3(ii) cannot be replaced by the weak one.

Example 3.5 [RWZ16, Example 3.7]. The complex structure in category (i) of [UV15, Proposition
2.3], i.e., the complex parallelizable case of complex dimension 3, satisfies the (2, 3)th weak
∂∂-lemma and the dual mild one, but does not satisfy the mild one. The Iwasawa manifold
belongs to category (i).
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The next example shows that neither the (n − 1, n)th weak ∂∂-lemma nor the mild one is
deformation open. And it shows that the condition in [FY11, Theorem 6] is not a necessary one
for the deformation openness of balanced structures as mentioned in [UV15, the discussion ahead
of Example 3.7]. Recall that [FY11, Theorem 6] says that the balanced structure is deformation
open, if the (n − 1, n)th weak ∂∂-lemma holds on the general fibers Xt for t 6= 0. Fortunately,
Corollary 1.3(ii) can be applied to this example. See also [AU17, Remark 4.7], where Corollary
1.3(ii) can also be applied.

Example 3.6 [UV15, Example 3.7]. Ugarte–Villacampa constructed an explicit family of nil-
manifolds with left-invariant complex structures Iλ for λ ∈ [0, 1) (of complex dimension 3), with
the fixed underlying manifold the Iwasawa manifold. The complex structure of the reference fiber
I0 is abelian and admits a left-invariant balanced metric, satisfying the (2, 3)th mild ∂∂-lemma
by [RWZ16, Proposition 3.8]. The complex structures of Iλ for λ 6= 0 are nilpotent from [CFP06,
Corollary 2], but neither complex-parallelizable nor abelian. Thus, they do not satisfy the (2, 3)th
weak ∂∂-lemma by [UV15, Proposition 3.6]. However, the nilmanifolds Iλ for λ 6= 0 admit
balanced metrics.

Meanwhile, a 2n-dimensional nilmanifold endowed with a left-invariant abelian complex
structure satisfies the (n− 1, n)th mild ∂∂-lemma but never satisfies the (n− 1, n)th dual mild
∂∂-lemma. It shows that the deformation openness of balanced structures with the reference
fiber a nilmanifold endowed with a left-invariant abelian balanced Hermitian structure is easily
obtained by Corollary 1.3(ii), but not from [AU17, Theorem 4.9], which says that if X0 admits
a locally conformal balanced metric and satisfies the (n − 1, n)th strong ∂∂-lemma, then Xt is
balanced for small t.

Moreover, the deformation invariance of the (n − 1, n − 1)th Bott–Chern numbers
hn− 1,n− 1

BC (Xt) can assure the deformation openness of balanced structures as shown in
[AU17, Proposition 4.1]. Inspired by Wu’s result [Wu06, Theorem 5.13], we have the following
generalization.

Theorem 3.7 [RWZ16, Theorem 1.9]. For any positive integer p6 n− 1, any small differentiable
deformation Xt of a p-Kähler manifold X0 satisfying the deformation invariance of (p, p)-Bott–
Chern numbers is still p-Kählerian.

Nevertheless, Corollary 1.3(ii) may be applied to some cases with deformation variance of
the (n−1, n−1)th Bott–Chern numbers. The newly constructed example that follows is one case
among nilmanifolds, while the manifold in [AU17, Example 4.10], satisfying the (2, 3)th strong
∂∂-lemma, is a solvable manifold but not a nilmanifold by [RWZ16, Corollary 3.9].

Example 3.8. Let G be the simply connected nilpotent Lie group determined by a ten-
dimensional 3-step nilpotent Lie algebra g endowed with a left-invariant abelian complex
structure J , satisfying the structure equation

dγ1 = dγ2 = dγ3 = 0,

dγ4 = γ13̄,

dγ5 = γ34̄,

where the natural decomposition with respect to J yields

gC = g⊗R C = g1,0
J ⊕ g0,1

J ; g∗C = g∗ ⊗R C = g
∗(1,0)
J ⊕ g

∗(0,1)
J ,

{γi}5i=1 is the basis of g∗(1,0) and the convention γ13̄ = γ1∧γ3 is used here and afterwards. Define

a lattice Γ in G, determined by the rational span of {γi, γ̄i}5i=1. Then M := Γ\G is a compact
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nilmanifold with the abelian complex structure J given above. It is easy to check that

Ω = γ12341234 + γ12351235 + γ12451245 + γ13451345 + γ23452345

is a left-invariant balanced metric on (g, J), descending to M . Denote the basis of g1,0 dual to

{γi}5i=1 by {θi}5i=1. The equation dω(θ, θ′) = −ω([θ, θ′]) for ω ∈ g∗C and θ, θ′ ∈ gC, establishes the
equalities

[θ̄3, θ1] = θ4, [θ̄4, θ3] = θ5.

According to [CFP06, Theorem 3.6], the linear operator ∂ on g1,0, defined in [CFP06, § 3.2],
amounts to

∂ : g1,0
→ g∗(0,1) ⊗ g1,0 : ∂V = γ̄i ⊗ [θ̄i, V ]1,0 for V ∈ g1,0,

which induces an isomorphism H1(M,T 1,0
M ) ∼= H1

∂
(g1,0). Therefore, from Kodaira–Spencer’s

deformation theory, an analytic deformation Mt of M can be constructed by use of the integrable
left-invariant Beltrami differential

ϕ(t) = (t1γ̄
4 + t2γ̄

5)⊗ θ2 + (t3γ̄
4 + t4γ̄

5)⊗ θ5

for t = (t1, t2, t3, t4) and |t4| < 1, which satisfies ∂ϕ(t) = 1
2 [ϕ(t), ϕ(t)] and the so-called Schouten-

Nijenhuis bracket [·, ·] (cf. [CFP06, Formula (4.1)]) works as

[γ̄ ⊗ θ, γ̄′ ⊗ θ′] = γ̄′ ∧ ιθ′dγ̄ ⊗ θ + γ̄ ∧ ιθdγ̄′ ⊗ θ′ for γ, γ′ ∈ g∗(1,0), θ, θ′ ∈ g1,0.

Then the general fibers Mt are still nilmanifolds, determined by the Lie algebra g with respect
to the decompositions

gC = g⊗R C = g1,0
ϕ(t) ⊕ g0,1

ϕ(t); g∗C = g∗ ⊗R C = g
∗(1,0)
ϕ(t) ⊕ g

∗(0,1)
ϕ(t) ,

where the basis of g
∗(1,0)
ϕ(t) is given by γi(t) = eιϕ(t)(γi) = (1+ ϕ(t))yγi for 1 6 i 6 5. Hence, the

structure equation of {γi(t)}5i=1 is
dγ1(t) = dγ3(t) = 0,

dγ2(t) = −t1γ31̄(t)− t2γ43̄(t),

dγ4(t) = γ13̄(t),

dγ5(t) = γ34̄(t)− t3γ31̄(t)− t4γ43̄(t),

where γ31̄(t) denotes γ3(t) ∧ γ1(t), similarly for others. It is well known from [CF01, Rol09,
Ang13] that the Bott–Chern cohomologies of nilmanifolds with abelian complex structures and
their small deformation can be calculated via left-invariant differential forms. Remark 1.7 tells
us that the dimension of the space of the d-closed left-invariant (4, 4)-forms is invariant along
the deformation Mt, which is equal to 21. And one can calculate the ∂∂-exact terms directly by
use of the structure equation

∂t∂t(g
∗(3,3)
ϕ(t) )

= 〈−(1 + |t4|2)γ12341234(t)− |t2|2γ13451345 + t2t4γ
13451234(t) + t4t2γ

12341345(t),

− γ12351235(t)− |t1|2γ13451345(t)− |t3|2γ12341234(t) + t1t3γ
13451234(t) + t3t1γ

12341345(t),

− t1γ13451234(t) + t2γ
13451235(t) + t3γ

12341234(t)− t4γ12341235(t),

− t1γ12341345(t) + t2γ
12351345(t) + t3γ

12341234(t)− t4γ12351234(t)〉 .

It is clear that dim ∂∂(g
∗(3,3)
J ) = 2 and dim ∂t∂t(g

∗(3,3)
ϕ(t) ) = 4 for general t. Therefore, the Bott–

Chern number h4,4
BC(Mt) varies from 19 to 17 along the deformation Mt.
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It may not be difficult to find an example of a non-Kähler p-Kähler manifold in the Fujiki
class for 1 < p < n− 1 in the literature, and thus it satisfies the (p, p+ 1)th mild ∂∂-lemma, for
example [AB92, § 4]. However, motivated by Example 3.8, we ask the following question.

Question 3.9. Is it possible to find an n-dimensional nilmanifold with a left-invariant complex
structure of complex dimension n, which admits a left-invariant p-Kähler metric for 1 < p < n−1
and satisfies the (p, p+1)th mild ∂∂-lemma, but the (p, p)-Bott–Chern number varies along some
deformation? This example would not satisfy the standard ∂∂-lemma.

Finally, from the perspective of Corollary 1.3(ii), we may have a clear picture of Angella–
Ugarte’s result [AU17, Theorem 4.9]. Actually, Observation 3.4 tells us that the (n− 1, n)th
strong ∂∂-lemma decomposes into the mild one and the dual mild one. A locally conformal
balanced metric can be transformed into a balanced one by the (n − 1, n)th dual mild ∂∂-
lemma, from [AU16, Theorem 2.5]. Then the (n− 1, n)th mild ∂∂-lemma assures the deformation
openness of balanced structures originally from the transformed balanced metric on the reference
fiber, thanks to Corollary 1.3(ii).

3.2 Modification stabilities
We consider the modification on a compact complex manifold defined as follows and refer the
reader to [Uen75, § 2] for its general definition on complex spaces.

Definition 3.10. A modification of an n-dimensional compact complex manifold M is a
holomorphic map

µ : M̃ → M

so that:

(i) M̃ is also an n-dimensional compact complex manifold;

(ii) there exists an analytic subset S ⊆M of codimension greater than or equal to 1 such that
µ |M̃\µ−1(S): M̃\µ

−1(S) → M\S is a biholomorphism.

It is a classical result, [Par66] or [DGMS75, Theorem 5.22], that if the modification of a
complex manifold is a ∂∂̄-manifold, then so is this manifold. Therefore, each compact complex
manifold in the Fujiki class C (i.e. admitting a Kähler modification) is a ∂∂̄-manifold. The
converse is an open question as in [Ale17, Introduction]: Is the modification of a ∂∂̄-manifold
still a ∂∂̄-manifold? A recent result [YY17, Theorem 1.3] of S. Yang and X. Yang, by means
of a blow-up formula for Bott–Chern cohomologies and the characterizations by Angella and
Tomassini [AT13] and Angella and Tardini [AT17] of ∂∂̄-manifolds, and also [RYY17, Main
Theorem 1.1] by S. Yang, X. Yang and the first author confirm this question in dimension three,
that is, the modification of a ∂∂̄-threefold is still a ∂∂̄-threefold. See also, more recently, [ASTT17,
Theorem 2.1]. These results provide us with more classes of complex manifolds satisfying mild
∂∂̄-lemmata. Moreover, it is natural to ask the following analogous question.

Question 3.11. Does the modification of a complex manifold satisfying the mild (p, q)th ∂∂̄-
lemma still satisfy the mild (p, q)th ∂∂̄-lemma for each p, q?

Now we present a modification stability of (p, q)th mild ∂∂-lemma on a compact complex
manifold. Let M be a complex manifold. One has the K-valued de Rham complex (A•(M)K, d)
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for K ∈ {R,C}. Fixing a d-closed 1-form φ ∈ A1(M)K, we consider another complex. Namely,
define

dφ = d+ Lφ,

where Lφ := φ ∧ •. The cochain complex

(A•(M)K, dφ)

can be regarded as the de Rham complex with values in the topologically trivial flat bundle
M × K with the connection form φ. We study cohomologies and Hodge theory for general
complex manifolds with twisted differentials. More precisely, for θ1, θ2 ∈ H1,0

BC(M), consider the
bi-differential Z-graded complex

(A•(M)C, ∂(θ1,θ2), ∂(θ1,θ2)),

where

∂(θ1,θ2) := ∂ + Lθ2 + Lθ1 ,

∂(θ1,θ2) := ∂ − Lθ2 + Lθ1 .

It is easy to check that

∂(θ1,θ2)∂(θ1,θ2) = ∂(θ1,θ2)∂(θ1,θ2) = ∂(θ1,θ2)∂(θ1,θ2) + ∂(θ1,θ2)∂(θ1,θ2) = 0.

Angella and Kasuya [AK14] investigated cohomological properties of this bi-differential complex
and considered (more than) two cohomologies:

H•(A•(M)C; ∂(θ1,θ2), ∂(θ1,θ2); ∂(θ1,θ2)∂(θ1,θ2)) :=
ker ∂(θ1,θ2) ∩ ker ∂(θ1,θ2)

im ∂(θ1,θ2)∂(θ1,θ2)

and

H•(A•(M)C; ∂(θ1,θ2)) :=
ker ∂(θ1,θ2)

im ∂(θ1,θ2)
,

which are simply denoted by H•BC(M, θ1, θ2) and H•∂(M, θ1, θ2), respectively. If one sets θ1 = θ2 =
0, H•BC(M, θ1, θ2) and H•∂(M, θ1, θ2) are just the ordinary Bott–Chern cohomology H•,•BC(M) and
H•,•∂ (M) of M , respectively.

Following Wells in [Wel74, Theorem 3.1], Angella and Kasuya proved the following
proposition.

Proposition 3.12 [AK14, Theorem 2.4]. Let µ : M̃ → M be a modification of a compact
complex manifold M . Then the induced maps

µ∗BC : H•BC(M, θ1, θ2) → H•BC(M̃, µ∗θ1, µ
∗θ2),

µ∗∂ : H•∂(M, θ1, θ2) → H•∂(M̃, µ∗θ1, µ
∗θ2)

are injective.

We reformulate Definition 3.1 for the (p, q)th mild ∂∂̄-lemma as follows.

Definition 3.13. For any positive integers p, q 6 n, an n-dimensional complex manifold X
satisfies the (p, q)th mild ∂∂̄-lemma if the induced map ιp,qBC,∂ : Hp,q

BC(X) → Hp,q
∂ (X) by the

identity map is injective.
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Proposition 3.14. With the notation in Proposition 3.12, if M̃ satisfies the (p, q)th mild ∂∂̄-

lemma, then so does M .

Proof. Taking θ1 = θ2 = 0, we have the following commutative diagram.

Hp,q
BC(M)

µ∗BC //

ιp,qBC,∂

��

Hp,q
BC(M̃)

ιp,qBC,∂
��

Hp,q
∂ (M)

µ∗∂ // Hp,q
∂ (M̃)

By the (p, q)th mild ∂∂̄-lemma assumption on M̃ , the map ιp,qBC,∂ for M̃ is injective and so are

µ∗BC, µ
∗
∂ by Proposition 3.12. So the map ιp,qBC,∂ for M is injective, i.e., M satisfies the (p, q)th

mild ∂∂̄-lemma. 2

4. Power series proof of main result

This section is used to prove main Theorem 3.2. Let us sketch Kodaira–Spencer’s proof of the

local stability theorem [KS60]. Let Ft be the orthogonal projection to the kernel Ft of the first

4th order Kodaira–Spencer operator (also often called Bott–Chern Laplacian)

�BC,t = ∂t∂t∂
∗
t∂
∗
t + ∂

∗
t∂
∗
t ∂t∂t + ∂

∗
t∂t∂

∗
t ∂t + ∂∗t ∂t∂

∗
t∂t + ∂

∗
t∂t + ∂∗t ∂t (7)

and Gt the corresponding Green’s operator with respect to αt on Xt. Here

αt =
√
−1gij̄(ζ, t) dζ

i ∧ dζj

is a hermitian metric on Xt depending differentiably on t with α0 being a Kähler metric on

X0, and ∂
∗
t (respectively, ∂∗t ) is the dual of ∂t (respectively, ∂t) with respect to αt. By a

cohomological argument with the upper semi-continuity theorem, they prove that Ft and Gt

depend differentiably on t. Then they can construct the desired Kähler metric on Xt as

α̃t = 1
2(Ftαt + Ftαt).

See also [Voi02, § 9.3].

Our proof is quite different. As explained in § 1, to prove Theorem 3.2, it suffices to prove

the special case p = q of the following theorem.

Theorem 4.1. If X0 satisfies the (p, q + 1)th and (q, p + 1)th mild ∂∂̄-lemmata, then there is

a d-closed (p, q)-form Ω(t) on Xt depending smoothly on t with Ω(0) = Ω0 for any d-closed

Ω0 ∈ Ap,q(X0).

We first reduce the local stability Theorem 4.1 to the Kuranishi family since the family

of Beltrami differentials induced by this Kuranishi family plays an important role in the

construction of the family of d-closed (p, q)-forms Ω(t).

467

https://doi.org/10.1112/S0010437X19007085 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X19007085


S. Rao, X. Wan and Q. Zhao

4.1 Kuranishi family and Beltrami differentials
We introduce some basics on the Kuranishi family of complex structures in this subsection, which
is extracted from [RZ18, RWZ16] and obviously originally from [Kur64].

By (the proof of) Kuranishi’s completeness theorem [Kur64], for any compact complex
manifold X0, there exists a complete holomorphic family $ : K → T of complex manifolds
at the reference point 0 ∈ T in the sense that for any differentiable family π : X → B with
π−1(s0) = $−1(0) = X0, there exist a sufficiently small neighborhood E ⊆ B of s0, and smooth
maps Φ : XE → K, τ : E → T with τ(s0) = 0 such that the diagram

XE
Φ //

π
��

K

$
��

(E, s0)
τ // (T, 0)

commutes, Φ maps π−1(s) biholomorphically onto $−1(τ(s)) for each s ∈ E, and

Φ : π−1(s0) = X0 → $−1(0) = X0

is the identity map. This family is called Kuranishi family and is constructed as follows. Let
{ην}mν=1 be a base for H0,1(X0, T

1,0
X0

), where some suitable hermitian metric is fixed on X0 and
m > 1. Otherwise the complex manifold X0 would be rigid, i.e., for any differentiable family
κ : M → P with s0 ∈ P and κ−1(s0) = X0, there is a neighborhood V ⊆ P of s0 such that
κ : κ−1(V ) → V is trivial. Then one can construct a holomorphic family

ϕ(t) =

∞∑
|I|=1

ϕIt
I :=

∞∑
j=1

ϕj(t), I = (i1, . . . , im), t = (t1, . . . , tm) ∈ Cm,

for |t| < ρ a small positive constant, of Beltrami differentials as follows:

ϕ1(t) =
m∑
ν=1

tνην

and for |I| > 2,

ϕI =
1

2
∂
∗G

∑
J+L=I

[ϕJ , ϕL].

It is clear that ϕ(t) satisfies the equation

ϕ(t) = ϕ1 + 1
2∂
∗G[ϕ(t), ϕ(t)].

Let
T = {t | H[ϕ(t), ϕ(t)] = 0}.

So for each t ∈ T , ϕ(t) satisfies
∂̄ϕ(t) = 1

2 [ϕ(t), ϕ(t)],

and determines a complex structure Xt on the underlying differentiable manifold of X0. More
importantly, ϕ(t) represents the complete holomorphic family $ : K → T of complex manifolds.
Roughly speaking, the Kuranishi family $ : K → T contains all sufficiently small differentiable
deformations of X0.

By means of these, one can reduce the local stability Theorem 4.1 to the Kuranishi family by
shrinking E if necessary, that is, it suffices to construct a p-Kähler metric on each Xt. From now
on, we use ϕ(t) and ϕ interchangeably to denote this holomorphic family of integrable Beltrami
differentials, and assume m = 1 for simplicity.
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4.2 Obstruction equation and construction of power series

Now we begin to prove the d-closed smooth extension of (p, q)-forms as in Theorem 4.1 by using

the power series method.

As both e
ι(1−ϕ̄ϕ)−1ϕ̄ and eιϕ are invertible operators when t is sufficiently small, it follows

that for any Ω ∈ Ap,q(X0),

eιϕ|ιϕ̄(Ω) = eιϕ ◦ eι(1−ϕ̄ϕ)−1ϕ̄ ◦ e−ι(1−ϕ̄ϕ)−1ϕ̄ ◦ e−ιϕ ◦ eιϕ|ιϕ̄(Ω). (8)

Set

Ω̃ = e
−ι(1−ϕ̄ϕ)−1ϕ̄ ◦ e−ιϕ ◦ eιϕ|ιϕ̄(Ω), (9)

where Ω and Ω̃ apparently have a one-to-one correspondence. Here we follow the notation:

ϕϕ = ϕyϕ, 1 is the identity operator defined as

1 =
1

p+ q

( n∑
i

dzi ⊗ ∂

∂zi
+

n∑
i

dz̄i ⊗ ∂

∂z̄i

)
when it acts on (p, q)-forms of a complex manifold, and similarly for others. And it is easy to

check that the operator

e
−ι(1−ϕ̄ϕ)−1ϕ̄ ◦ e−ιϕ ◦ eιϕ|ιϕ̄

preserves the form types and thus Ω̃ is still a (p, q)-form. In fact, for any (p, q)-form α on X0,
we will find

e
−ι(1−ϕ̄ϕ)−1ϕ̄ ◦ e−ιϕ ◦ eιϕ|ιϕ̄(α)

= αi1···ipj1···jq dz
i1 ∧ · · · ∧ dzip ∧ (1− ϕ̄ϕ)y dz̄j1 ∧ · · · ∧ (1− ϕ̄ϕ)y dz̄jq ∈ Ap,q(X0),

where α = αi1···ipj1···jq dz
i1∧· · ·∧ dzip∧ dz̄j1∧· · ·∧ dz̄jq . Together with (8) and (9), Proposition 2.3

implies that

d(eιϕ|ιϕ̄(Ω)) = d ◦ eιϕ ◦ eι(1−ϕ̄ϕ)−1ϕ̄(Ω̃)

= eιϕ ◦ (∂̄ + [∂, ιϕ] + ∂) ◦ eι(1−ϕ̄ϕ)−1ϕ̄(Ω̃)

= eιϕ(∂̄ϕ + ∂)
+∞∑
k=0

Ak

= eιϕ
(
∂̄ϕA0 +

+∞∑
k=0

(∂Ak + ∂̄ϕAk+1)

)
, (10)

where

Ak :=
(ι(1−ϕ̄ϕ)−1ϕ̄)k

k!
(Ω̃)

is a (p+ k, q − k)-form and

∂̄ϕ := ∂̄ + [∂, ιϕ].

Thus, d(eιϕ|ιϕ̄(Ω)) = 0 amounts to

∂̄ϕA0 = 0, ∂Ak + ∂̄ϕAk+1 = 0, k = 0, 1, 2, . . . .

469

https://doi.org/10.1112/S0010437X19007085 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X19007085


S. Rao, X. Wan and Q. Zhao

Proposition 4.2. For any given (p, q)-form Ω,

d(eιϕ|ιϕ̄(Ω)) = 0

is equivalent to
∞∑
k=0

(
∂̄ ◦

ιk−1
ϕ

(k − 1)!
+ ∂ ◦

ιkϕ
k!

)
An−p−(l−k) = 0, (11)

where max{1, n− p− q} 6 l 6 min{2n− p− q, n+ 1}, ιkϕ = 0 for k < 0 and 0! = 1.

Proof. Recall that Ω̃ = e
−ι(1−ϕ̄ϕ)−1ϕ̄ ◦ e−ιϕ ◦ eιϕ|ιϕ̄(Ω) and then

d(eιϕ|ιϕ̄(Ω)) = d ◦ eιϕ ◦ eι(1−ϕ̄ϕ)−1ϕ̄(Ω̃)

= (∂̄ ◦ eιϕ ◦ eι(1−ϕ̄ϕ)−1ϕ̄ + ∂ ◦ eιϕ ◦ eι(1−ϕ̄ϕ)−1ϕ̄)(Ω̃)

=

+∞∑
k1,k2=0

(
∂̄ ◦

ιk1
ϕ

k1!
+ ∂ ◦

ιk1
ϕ

k1!

)
◦
ιk2

(1−ϕ̄ϕ)−1ϕ̄

k2!
(Ω̃).

Note that the part of degree (+(n− p− l+ 1),−(n− p− l)) in the operator d ◦ eιϕ ◦ eι(1−ϕ̄ϕ)−1ϕ̄

is
∞∑
k=0

(
∂̄ ◦

ιk−1
ϕ

(k − 1)!
+ ∂ ◦

ιkϕ
k!

)
◦

ιn−p−l+k
(1−ϕ̄ϕ)−1ϕ̄

(n− p− l + k)!
(Ω̃) (12)

since

(+(n− p− l + 1),−(n− p− l)) = (n− p− l + k)(1,−1) + (k − 1)(−1, 1) + (0, 1)

= (n− p− l + k)(1,−1) + k(−1, 1) + (1, 0).

This is exactly the left-hand side of (11). So d(eιϕ|ιϕ̄(Ω)) = 0 is equivalent to the vanishing of

(12) for each l such that

(p, q) + (+(n− p− l + 1),−(n− p− l)) ∈ [0, n]× [0, n],

i.e., max{1, n− p− q} 6 l 6 min{2n− p− q, n+ 1}. 2

Remark 4.3. We consider two special cases of Proposition 4.2.

(i) For p = q = n− 1, (11) is reduced to{
∂A0 + (∂̄ + ∂ ◦ ιϕ)A1 = 0,

(∂̄ + ∂ ◦ ιϕ)A0 + (∂̄ ◦ ιϕ + 1
2∂ ◦ ι

2
ϕ)A1 = 0,

which is exactly the system of obstruction equations given in [RWZ16, (3.8)].

(ii) For p = q = 1, (11) is reduced to
∂Ω− ∂ ◦ ιϕ̄ϕ(Ω) + (∂̄ + ∂ ◦ ιϕ) ◦ ιϕ̄(Ω) = 0,

(∂̄ + ∂ ◦ ιϕ)(Ω− ιϕ̄ϕ(Ω)) + (∂̄ ◦ ιϕ + 1
2∂ ◦ ι

2
ϕ)ιϕ̄(Ω) = 0,

∂ ◦ ιϕ̄(Ω) = 0.
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Since −ιϕ̄ϕ + ιϕ ◦ ιϕ̄ = −ιϕϕ̄ + ιϕ̄ ◦ ιϕ and 2ιϕ ◦ ιϕ̄ϕα = ι2ϕ ◦ ιϕ̄(α) for (1, 1)-form α as shown
in [RWZ16, Proposition 2.6], we have

∂̄Ω = ∂̄ ◦ (ιϕ̄ϕ − ιϕ ◦ ιϕ̄)(Ω)− ∂ ◦ ιϕ(Ω),

∂Ω = ∂ ◦ (ιϕϕ̄ − ιϕ̄ ◦ ιϕ)(Ω)− ∂̄ ◦ ιϕ̄(Ω),

∂ ◦ ιϕ̄(Ω) = 0,

which is exactly the system of obstruction equations given in [RWZ16, Proposition 2.7].

Unfortunately, the system (11) of obstruction equations consists of too many equations, and
is difficult to solve. We try to reduce it to one with only two equations as in Proposition 4.5.

We will use the homogenous notation for a power series here and henceforth. Assuming that
α(t) is a power series of (bundle-valued) (p, q)-forms, expanded as

α(t) =

∞∑
k=0

∑
i+j=k

αi,jt
it̄j ,

we use the notation 
α(t) =

∞∑
k=0

αk,

αk =
∑
i+j=k

αi,jt
it
j
,

where αk is the k-order homogeneous part in the expansion of α(t) and all αi,j are smooth
(bundle-valued) (p, q)-forms on X0 with α(0) = α0,0.

Lemma 4.4. If d(eιϕ|ιϕ̄(Ω))N1 = 0 for any N1 6 N , then

(∂̄ϕA0)N1 = 0, (∂Ak + ∂̄ϕAk+1)N1 = 0, k = 0, 1, 2, . . .

for any N1 6 N .

Proof. From (10), it follows that

e−ιϕd(eιϕ|ιϕ̄(Ω)) = ∂̄ϕA0 +
+∞∑
k=0

(∂Ak + ∂̄ϕAk+1).

For any N1 6 N ,

0 = (e−ιϕd(eιϕ|ιϕ̄(Ω)))N1 = (∂̄ϕA0)N1 +
+∞∑
k=0

(∂Ak + ∂̄ϕAk+1)N1 .

By comparing degrees, we complete the proof. 2

As for (10), one can also have

d(eιϕ|ιϕ̄(α)) = eιϕ|ιϕ̄ ◦ (e−ιϕ|−ιϕ̄ ◦ eιϕ ◦ ([∂, ιϕ] + ∂̄ + ∂) ◦ e−ιϕ ◦ eιϕ|ιϕ̄(α)).

A long local calculation shows that

d(eιϕ|ιϕ̄(α)) = eιϕ|ιϕ̄(((1− ϕ̄ϕ)−1 − (1− ϕ̄ϕ)−1ϕ̄)`([∂, ιϕ] + ∂̄ + ∂)(1− ϕ̄ϕ+ ϕ̄)`α). (13)

Here we use the notation `, first introduced in[RWZ16, § 2.1], to denote the simultaneous
contraction on each component of a complex differential form. For example, (1 − ϕ̄ϕ + ϕ̄)`α
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means that the operator (1− ϕ̄ϕ+ ϕ̄) acts on α simultaneously as

(1− ϕ̄ϕ+ ϕ̄)`(fi1···ipj1···jqdz
i1 ∧ · · · ∧ dzip ∧ dz̄j1 ∧ · · · ∧ dz̄jq)

= fi1···ipj1···jq(1− ϕ̄ϕ+ ϕ̄)ydzi1 ∧ · · · ∧ (1− ϕ̄ϕ+ ϕ̄)ydzip

∧ (1− ϕ̄ϕ+ ϕ̄)ydz̄j1 ∧ · · · ∧ (1− ϕ̄ϕ+ ϕ̄)ydz̄jq ,

if α is locally expressed by

α = fi1···ipj1···jqdz
i1 ∧ · · · ∧ dzip ∧ dz̄j1 ∧ · · · ∧ dz̄jq .

This new simultaneous contraction is well defined since ϕ(t) is a global (1, 0)-vector valued
(0, 1)-form on X0 (see [MK71, pp. 150–151]) as reasoned in [RZ18, Proof of Lemma 2.8].
Moreover, we know that

e−ιϕ|−ιϕ̄ ◦ eιϕ = ((1− ϕ̄ϕ)−1 − (1− ϕ̄ϕ)−1ϕ̄)` : Ap,q(X0) →

min{q,n−p}⊕
i=0

Ap+i,q−i(X0).

Thus, by carefully comparing the types of forms in both sides of (13), we have

∂̄t(e
ιϕ|ιϕ̄(α)) = eιϕ|ιϕ̄((1− ϕ̄ϕ)−1`([∂, ιϕ] + ∂̄)(1− ϕ̄ϕ)`α). (14)

See [RZ18, Proposition 2.13] and [RWZ16, (2.14)] for more details of (14).
Here and henceforth we denote by (α)p,q the (p, q)-type part of a (p + q)-degree complex

differential form α.

Proposition 4.5. The obstruction equation d(eιϕ|ιϕ̄(Ω)) = 0 is also equivalent to

∞∑
k=0

(
∂̄ ◦

ιk−1
ϕ

(k − 1)!
+ ∂ ◦

ιkϕ
k!

)
◦
ιk(1−ϕ̄ϕ)−1ϕ̄

k!
(Ω̃) = 0,

∞∑
k=0

(
∂̄ ◦

ιk−1
ϕ

(k − 1)!
+ ∂ ◦

ιkϕ
k!

)
◦
ιk−1
(1−ϕ̄ϕ)−1ϕ̄

(k − 1)!
(Ω̃) = 0.

(15)

Proof. From the proof of Proposition 4.2, it is easy to see that the left-hand side of the first
equation in (15) is (d(eιϕ|ιϕ̄(Ω)))p+1,q, while the other one is (d(eιϕ|ιϕ̄(Ω)))p,q+1. Thus, (15) holds
if d(eιϕ|ιϕ̄(Ω)) = 0.

Conversely, we assume that (15) holds. By (14) and (10), we compare types of forms to get

∂̄te
ιϕ|ιϕ̄(Ω) = eιϕ|ιϕ̄ ◦ (1− ϕ̄ϕ)−1`∂̄ϕA0

= eιϕ|ιϕ̄ ◦ (1− ϕ̄ϕ)−1`
(

(d(eιϕ|ιϕ̄(Ω)))p,q+1 −
+∞∑
k=0

ιk+1
ϕ

(k + 1)!
(∂Ak + ∂̄ϕAk+1)

)
. (16)

Similarly, we get

∂te
ιϕ|ιϕ̄(Ω) = eιϕ|ιϕ̄ ◦ (1− ϕϕ̄)−1`

(
(d(eιϕ|ιϕ̄(Ω)))p+1,q −

+∞∑
k=0

ιk+1
ϕ̄

(k + 1)!
(∂Ak + ∂̄ϕAk+1)

)
,

where • in the last term means that ∂, ∂̄, ϕ, ϕ̄ are replaced by ∂̄, ∂, ϕ̄, ϕ, respectively, while Ω
takes no conjugation.
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If (15) holds, i.e., (d(eιϕ|ιϕ̄(Ω)))p+1,q = 0 and (d(eιϕ|ιϕ̄(Ω)))p,q+1 = 0, we will prove

d(eιϕ|ιϕ̄(Ω)) = 0

by induction on orders. Obviously,

d(eιϕ|ιϕ̄(Ω))0 = dΩ0 = 0.

Now we assume that for any N1 6 N , d(eιϕ|ιϕ̄(Ω))N1 = 0. By Lemma 4.4, we have

(∂̄ϕA0)N1 = 0, (∂Ak + ∂̄ϕAk+1)N1 = 0, k = 0, 1, 2, . . .

for any N1 6 N . For the (N + 1)th order, (16) and the induction assumption for any N1 6 N
imply

(∂̄te
ιϕ|ιϕ̄(Ω))N+1 = ((eιϕ|ιϕ̄ ◦ (1− ϕ̄ϕ)−1`)−1 ◦ ∂̄teιϕ|ιϕ̄(Ω))N+1

= (d(eιϕ|ιϕ̄(Ω)))p,q+1
N+1 −

(+∞∑
k=0

ιk+1
ϕ

(k + 1)!
(∂Ak + ∂̄ϕAk+1)

)
N+1

= 0.

Similarly, we have (∂te
ιϕ|ιϕ̄(Ω))N+1 = 0. So

d(eιϕ|ιϕ̄(Ω))N+1 = (∂̄te
ιϕ|ιϕ̄(Ω))N+1 + (∂te

ιϕ|ιϕ̄(Ω))N+1 = 0.

Thus, we complete the proof. 2

Remark 4.6. For p = q = 1, if solving deιϕ|ιϕ̄(Ω) = 0 for the orders 6 N , we proceed to the
(N + 1)th order. It is necessary to prove

∂̄(ϕyΩ)N+1 = (∂̄eιϕ|ιϕ̄(Ω))0,3
N+1 = (deιϕ|ιϕ̄(Ω))0,3

N+1 = 0.

From (10), we have

(deιϕ|ιϕ̄(Ω))0,3
N+1 =

( +∞∑
k=−1

ιk+2
ϕ

(k + 2)!
(∂Ak + ∂̄ϕAk+1)

)
N+1

=

(
ι3ϕ
3!
◦ ∂(ϕ̄yΩ)

)
N+1

= 0,

where the last equality follows from Lemma 4.4.

Now we begin to solve (15) with two more lemmas. For the resolution of ∂∂-equations, we
need a lemma due to [Pop15, Theorem 4.1] (or [RWZ16, Lemma 3.14]).

Lemma 4.7. Let (X,ω) be a compact Hermitian complex manifold with the pure-type complex
differential forms x and y. Assume that the ∂∂-equation

∂∂x = y (17)

admits a solution. Then an explicit solution of the ∂∂-equation (17) can be chosen as

(∂∂)∗GBCy,

which uniquely minimizes the L2-norms of all the solutions with respect to ω. Besides, the
equalities

GBC(∂∂) = (∂∂)GA and (∂∂)∗GBC = GA(∂∂)∗

hold, where GBC and GA are the associated Green’s operators of �BC and �A, respectively.
Here �BC is defined in (7) and �A is the second Kodaira–Spencer operator (often also called
Aeppli Laplacian)

�A = ∂∗∂
∗
∂∂ + ∂∂∂∗∂

∗
+ ∂∂∗∂∂

∗
+ ∂∂

∗
∂∂∗ + ∂∂

∗
+ ∂∂∗.
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Sketch of Proof for Lemma 4.7. We shall use the Hodge decomposition of �BC on X,

Ap,q(X) = ker�BC ⊕ Im(∂∂)⊕ (Im ∂∗ + Im ∂
∗
),

whose three parts are orthogonal to each other with respect to the L2-scalar product defined by

ω, combined with the equality

1 = HBC +�BCGBC,

where HBC is the harmonic projection operator. Then two observations follow:

(1) �BC∂∂(∂∂)∗ = ∂∂(∂∂)∗�BC;

(2) GBC∂∂(∂∂)∗ = ∂∂(∂∂)∗GBC.

It is clear that (1) implies (2), while the statement (1) is proved by a direct calculation,

�BC∂∂(∂∂)∗ = (∂∂)(∂∂)∗(∂∂)(∂∂)∗ = ∂∂(∂∂)∗�BC.

Hence, we have

(∂∂)(∂∂)∗GBCy = GBC(∂∂)(∂∂)∗y = GBC�BCy = (1−HBC)y = y,

where y ∈ Im ∂∂ due to the solution-existence of the ∂∂-equation.

To see that the solution (∂∂)∗GBCy is the unique L2-norm minimum, we resort to the Hodge

decomposition of the operator �A,

Ap,q(X) = ker�A ⊕ (Im ∂ + Im ∂)⊕ Im(∂∂)∗, (18)

where ker�A = ker(∂∂)∩ ker ∂∗ ∩ ker ∂
∗
. Let z be an arbitrary solution of the ∂∂-equation (17),

which decomposes into three components z1 + z2 + z3 with respect to the Hodge decomposition

(18) of �A. And we are able to obtain that

z3 = GA(∂∂)∗y = (∂∂)∗GBCy.

Therefore,

‖z‖2 = ‖z1‖2 + ‖z2‖2 + ‖z3‖2 > ‖z3‖2 = ‖(∂∂)∗GBCy‖2,

and the equality holds if and only if z1 = z2 = 0, i.e., z = z3 = (∂∂)∗GBCy. 2

Lemma 4.8. Let X be a complex manifold satisfying the (p, q + 1)th and (q, p + 1)th mild

∂∂-lemmata. Consider the system of equations{
∂x = ∂ζ,

∂x = ∂ξ,
(19)

where ζ, ξ are (p+ 1, q− 1)- and (q+ 1, p− 1)-forms on X, respectively. The system of equations

(19) has a solution if and only if {
∂∂ζ = 0,

∂∂ξ = 0.
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Proof. This lemma is inspired by [RWZ16, Observation 2.11]. The lemmata assumption will
produce µ ∈ Ap,q−1 and ν ∈ Ap−1,q, satisfying the system of equations{

∂∂µ = ∂ζ,

∂∂ν = ∂ξ̄.

The combined expression
∂µ+ ∂ν

is our choice for the solution of the system (19). 2

By Lemmata 4.7 and 4.8, we have the following proposition.

Proposition 4.9. With the same notation as in Lemmata 4.7 and 4.8, the system of equations
(19) has a canonical solution

x = ∂(∂∂)∗GBC∂ζ − ∂(∂∂)∗GBC∂ξ̄.

Now we assume that X0 is a complex manifold that satisfies the (q, p+ 1)th and (p, q+ 1)th
mild ∂∂̄-lemmata. The obstruction (15) can be rewritten as

∂Ω̃ +

∞∑
k=1

(
∂̄ ◦

ιk−1
ϕ

(k − 1)!
+ ∂ ◦

ιkϕ
k!

)
◦
ιk(1−ϕ̄ϕ)−1ϕ̄

k!
(Ω̃) = 0,

∂̄Ω̃ + ∂ ◦ ιϕ(Ω̃) +

∞∑
k=2

(
∂̄ ◦

ιk−1
ϕ

(k − 1)!
+ ∂ ◦

ιkϕ
k!

)
◦
ιk−1
(1−ϕ̄ϕ)−1ϕ̄

(k − 1)!
(Ω̃) = 0.

(20)

Set

Ω̃′ := Ω̃ +
∞∑
k=1

ιkϕ
k!
◦
ιk(1−ϕ̄ϕ)−1ϕ̄

k!
(Ω̃).

Then (20) becomes 
∂Ω̃′ = −∂̄

∞∑
k=1

ιk−1
ϕ

(k − 1)!
◦
ιk(1−ϕ̄ϕ)−1ϕ̄

k!
(Ω̃),

∂̄Ω̃′ = −∂
∞∑
k=0

ιk+1
ϕ

(k + 1)!
◦
ιk(1−ϕ̄ϕ)−1ϕ̄

k!
(Ω̃).

In order to use the (q, p+ 1)th and (p, q + 1)th mild ∂∂̄-lemmata, we need to prove
∂∂̄

∞∑
k=1

ιk−1
ϕ

(k − 1)!
◦
ιk(1−ϕ̄ϕ)−1ϕ̄

k!
(Ω̃) = 0,

∂∂̄

∞∑
k=0

ιk+1
ϕ

(k + 1)!
◦
ιk(1−ϕ̄ϕ)−1ϕ̄

k!
(Ω̃) = 0,

(21)

at the (N + 1)th order if it has been solved for the orders 6 N .
Now we prove (21). Firstly, note that

∞∑
k=0

ιk+1
ϕ

(k + 1)!
◦
ιk(1−ϕ̄ϕ)−1ϕ̄

k!
(Ω̃) = (eιϕ ◦ eι(1−ϕ̄ϕ)−1ϕ̄(Ω̃))p−1,q+1 = (eιϕ|ιϕ̄(Ω))p−1,q+1.

475

https://doi.org/10.1112/S0010437X19007085 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X19007085


S. Rao, X. Wan and Q. Zhao

Thus, (
∂∂̄

∞∑
k=0

ιk+1
ϕ

(k + 1)!
◦
ιk(1−ϕ̄ϕ)−1ϕ̄

k!
(Ω̃)

)
N+1

= ∂∂̄((eιϕ|ιϕ̄(Ω))p−1,q+1)N+1

= (∂∂̄eιϕ|ιϕ̄(Ω))p,q+2
N+1

= (∂deιϕ|ιϕ̄(Ω))p,q+2
N+1

= ∂(deιϕ|ιϕ̄(Ω))p−1,q+2
N+1

since the obstruction equation is solved for the orders 6 N , i.e., d(eιϕ|ιϕ̄(Ω))N1 = 0 for any
N1 6 N . By Lemma 4.4, we have

(∂̄ϕA0)N1 = 0, (∂Ak + ∂̄ϕAk+1)N1 = 0, k = 0, 1, 2, . . .

for any N1 6 N . It follows from (10) that

(deιϕ|ιϕ̄(Ω))p−1,q+2
N+1 =

( +∞∑
k=−1

ιk+2
ϕ

(k + 2)!
(∂Ak + ∂̄ϕAk+1)

)
N+1

= 0.

So (
∂∂̄

∞∑
k=0

ιk+1
ϕ

(k + 1)!
◦
ιk(1−ϕ̄ϕ)−1ϕ̄

k!
(Ω̃)

)
N+1

= ∂
(
deιϕ|ιϕ̄(Ω)

)p−1,q+2

N+1
= 0.

Hence, we have proved the second equation of (21). Similarly, by the same argument (i.e., replace
all ϕ (respectively, ϕ̄) by ϕ̄ (respectively, ϕ)), the first equation of (21) also holds.

By Proposition 4.9, one obtains a formal solution of (20) by induction

Ω̃l = −
( ∞∑
k=1

ιkϕ
k!
◦
ιk(1−ϕ̄ϕ)−1ϕ̄

k!
(Ω̃)

)
l

− ∂(∂∂)∗GBC∂

( ∞∑
k=1

ιk−1
ϕ

(k − 1)!
◦
ιk(1−ϕ̄ϕ)−1ϕ̄

k!
(Ω̃)

)
l

+ ∂(∂∂)∗GBC∂

( ∞∑
k=0

ιk+1
ϕ

(k + 1)!
◦
ιk(1−ϕ̄ϕ)−1ϕ̄

k!
(Ω̃)

)
l

= −
(min{q,n−p}∑

k=1

ιkϕ
k!
◦
ιk(1−ϕ̄ϕ)−1ϕ̄

k!
(Ω̃)

)
l

− ∂(∂∂)∗GBC∂

(min{q,n−p}∑
k=1

ιk−1
ϕ

(k − 1)!
◦
ιk(1−ϕ̄ϕ)−1ϕ̄

k!
(Ω̃)

)
l

+ ∂(∂∂)∗GBC∂

(min{q,n−p}∑
k=0

ιk+1
ϕ

(k + 1)!
◦
ιk(1−ϕ̄ϕ)−1ϕ̄

k!
(Ω̃)

)
l

. (22)

Remark 4.10. We are possibly able to obtain this (formal) solution (22) of (20) backwards by
the invertibility of some operator in small t as shown in [LRW17, Remark 4.6], but it seems that
to figure out this solution explicitly by the power series method is indispensable in this process.

4.3 Regularity argument
Here we adopt a strategy for a convergence argument [LZ18] suggested by Liu, which simplifies
our argument involved in [RWZ16, RZ18].
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From the induction expression (22), one obtains the formal expression of Ω̃

Ω̃ = −
min{q,n−p}∑

i=1

ιiϕ
i!
◦
ιi(1−ϕ̄ϕ)−1ϕ̄

i!
(Ω̃)− ∂(∂∂)∗GBC∂

min{q,n−p}∑
i=1

ιi−1
ϕ

(i− 1)!
◦
ιi(1−ϕ̄ϕ)−1ϕ̄

i!
(Ω̃)

+ ∂(∂∂)∗GBC∂

min{q,n−p}∑
i=0

ιi+1
ϕ

(i+ 1)!
◦
ιi(1−ϕ̄ϕ)−1ϕ̄

i!
(Ω̃) + Ω0. (23)

Set

F = ∂(∂∂)∗GBC∂

min{q,n−p}∑
i=0

ιi+1
ϕ

(i+ 1)!
◦
ιi(1−ϕ̄ϕ)−1ϕ̄

i!

−
min{q,n−p}∑

i=1

ιiϕ
i!
◦
ιi(1−ϕ̄ϕ)−1ϕ̄

i!

− ∂(∂∂)∗GBC∂

min{q,n−p}∑
i=1

ιi−1
ϕ

(i− 1)!
◦
ιi(1−ϕ̄ϕ)−1ϕ̄

i!

and write
Ω0 = (1− F )Ω̃. (24)

We claim that Ω̃(t) converges in Hölder norm as t → 0 by use of the following two a priori
elliptic estimates: for any complex differential form φ,

‖∂∗φ‖k−1,α 6 C1‖φ‖k,α

and
‖GBCφ‖k,α 6 Ck,α‖φ‖k−4,α,

where k > 3 and Ck,α depends only on k and α, not on φ (cf. [Kod86, Appendix.Theorem 7.4]
for example). And we note that ϕ(t) converges smoothly to zero as t → 0. Thus, by (24), we
estimate

‖Ω0‖k,α > (1− εk,α)‖Ω̃‖k,α,

where 0 < εk,α � 1 is some constant depending on k, α.
Finally, we proceed to the regularity of Ω̃(t) since there is possibly no uniform lower

bound for the convergence radius obtained as above in the Ck,α-norm when k converges to
+∞. This argument lies heavily in the elliptic estimates [Kod86, Appendix 8], [DN55] and
also [RWZ16, § 3.2].

Without loss of generality, we just consider the equation

�Ω̃ = −�
min{q,n−p}∑

k=1

ιkϕ
k!
◦
ιk(1−ϕ̄ϕ)−1ϕ̄

k!
(Ω̃)− ∂∂∗∂(∂∂)∗GBC∂

min{q,n−p}∑
k=1

ιk−1
ϕ

(k − 1)!
◦
ιk(1−ϕ̄ϕ)−1ϕ̄

k!
(Ω̃)

+�∂(∂∂)∗GBC∂

min{q,n−p}∑
k=0

ιk+1
ϕ

(k + 1)!
◦
ιk(1−ϕ̄ϕ)−1ϕ̄

k!
(Ω̃)

by applying the ∂-Laplacian � = ∂
∗
∂ + ∂∂

∗
to the expression formula (23) and omitting the

lower-order term �Ω0 in this expression. By replacing the roles of

ιϕ ◦ ι(1−ϕ̄ϕ)−1ϕ̄, ι(1−ϕ̄ϕ)−1ϕ̄, ιϕ + 1
2 ιϕ ◦ ιϕ ◦ ι(1−ϕ̄ϕ)−1ϕ̄
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in the analogous strongly elliptic second-order pseudo-differential equation in the regularity
argument of [RWZ16, § 3.2]

�Ω̃(t) = −�(ιϕ ◦ ι(1−ϕ̄ϕ)−1ϕ̄(Ω̃(t)))− ∂∂∗∂(∂∂)∗GBC∂(ι(1−ϕ̄ϕ)−1ϕ̄(Ω̃(t)))

+�∂(∂∂)∗GBC∂((ιϕ + 1
2 ιϕ ◦ ιϕ ◦ ι(1−ϕ̄ϕ)−1ϕ̄)Ω̃(t)),

by

min{q,n−p}∑
i=1

ιiϕ
i!
◦
ιi(1−ϕ̄ϕ)−1ϕ̄

i!
,

min{q,n−p}∑
i=1

ιi−1
ϕ

(i− 1)!
◦
ιi(1−ϕ̄ϕ)−1ϕ̄

i!
,

min{q,n−p}∑
i=0

ιi+1
ϕ

(i+ 1)!
◦
ιi(1−ϕ̄ϕ)−1ϕ̄

i!
,

respectively, we prove the following result. For each l = 1, 2, . . . , choose a smooth function ηl(t)
with values in [0, 1]

ηl(t) ≡


1 for |t| 6

(
1

2
+

1

2l+1

)
r;

0 for |t| >
(

1

2
+

1

2l

)
r,

where r is a positive constant to be determined. Inductively, by Douglis–Nirenberg’s interior
estimates [Kod86, Appendix.Theorem 2.3], [DN55], for any l = 1, 2, . . . , η2l+1Ω̃(t) is Ck+l,α,
where r can be chosen independent of l. Since η2l+1(t) is identically equal to 1 on |t| < r/2,
which is independent of l, Ω̃(t) is C∞ on X0 with |t| < r/2. Then Ω̃(t) can be considered as a
real analytic family of (p, q)-forms in t and thus is smooth on t.

5. Deformation invariance of Bott–Chern numbers

The main goal of this section is to study deformation invariance of Bott–Chern numbers on
complex manifolds.

Theorem 5.1. If the reference fiberX0 satisfies the (p, q+ 1)th and (q, p+ 1)th mild ∂∂̄-lemmata
and the deformation invariance of the (p − 1, q − 1)-Aeppli number hp−1,q−1

A (Xt) holds, then
hp,qBC(Xt) are deformation invariant.

The following is a direct corollary.

Corollary 5.2. If the reference fiber X0 satisfies the (p, 1)th mild ∂∂̄-lemma, then hp,0BC(Xt)

and h0,p
BC(Xt) are deformation invariant.

Resorting to the calculations for the Hodge and Bott–Chern numbers of manifolds in the
Kuranishi family of the Iwasawa manifold (cf. [Ang13, Appendix]), we find the following example
where neither the deformation invariance of the (p, 0)- nor (0, p)-Bott–Chern numbers is true
when the condition of the (p, 1)th mild ∂∂̄-lemma does not hold on the reference fiber in Corollary
5.2. It indicates that the condition involved may not be omitted in order for the deformation
invariance of (p, 0)- and (0, p)-Bott–Chern numbers.

Let I3 be the Iwasawa manifold of complex dimension 3 with η1, η2, η3 denoted by the basis
of the holomorphic one form H0(I3,Ω1) of I3, satisfying the relation

dη1 = 0, dη2 = 0, dη3 = −η1 ∧ η2.

And the convention η121̄3̄ := η1 ∧ η2 ∧ η1 ∧ η3 will be used for simplicity.
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Example 5.3 (The cases (p, q) = (2, 0) and (0, 2)). The injectivity of ι2,1BC,∂ does not hold on I3
and in these cases h2,0

BC(Xt) and h0,2
BC(Xt) are deformation variant.

Proof. It is easy to check that the left-invariant (2, 1)-form

∂η31̄ = −η121̄

stands for a non-trivial Bott–Chern class but a trivial class in H2,1
∂ (I3), which indicates non-

injectivity of ι2,1BC,∂ . The deformation variance of h2,0
BC(Xt) and h0,2

BC(Xt) can be got from [Ang13,
Appendix]. 2

Now let us describe our basic philosophy to consider the deformation invariance of Bott–
Chern numbers briefly. The Kodaira–Spencer’s upper semi-continuity theorem [KS60, Theorem 4]
tells us that the function

t 7−→ hp,qBC(Xt) = dimCH
p,q
BC(Xt,C)

is always upper semi-continuous for t ∈ B and thus, to approach the deformational invariance of
hp,qBC(Xt), we only need to obtain the lower semi-continuity. Here our main strategy is a modified
iteration procedure, originally from [LSY09] and developed in [Sun12, SY11, ZR13, LRY15],
which is to look for an injective extension map from Hp,q

BC(X0) to Hp,q
BC(Xt). More precisely, for

the unique harmonic representative σ0 of the initial Bott–Chern cohomology class in Hp,q
BC(X0),

we try to construct a convergent power series

σt = σ0 +

∞∑
j+k=1

tktj̄σkj̄ ∈ Ap,q(X0),

with σt varying smoothly on t such that for each small t:

(i) eιϕ|ιϕ(σt) ∈ Ap,q(Xt) is d-closed with respect to the differential structure on Xt with the
induced family ϕ of Beltrami differentials;

(ii) the extension map Hp,q
BC(X0) → Hp,q

BC(Xt) : [σ0]d 7→ [eιϕ|ιϕ(σt)]d is injective.

Obviously, (i) amounts to Theorem 4.1. To guarantee (ii), it suffices to prove the following
proposition.

Proposition 5.4. If the d-extension of Hp,q
BC(X0) as in Theorem 4.1 holds for a complex manifold

X0, then the deformation invariance of hp−1,q−1
A (Xt) assures that the extension map

Hp,q
BC(X0) → Hp,q

BC(Xt) : [σ0]d 7→ [eιϕ|ιϕ(σt)]d

is injective.

Proof. Here we follow an idea in [RZ18, Proposition 3.15]. Let us fix a family of smoothly
varying Hermitian metrics {ωt}t∈B for the infinitesimal deformation π : X → B of X0. Thus, if

the Aeppli numbers hp−1,q−1
A (Xt) are deformation invariant, the Green’s operator GA,t, acting on

the Ap−1,q−1(Xt), depends differentiably with respect to t from [KS60, Theorem 7] by Kodaira
and Spencer. Using this, we ensure that this extension map cannot send a nonzero class in
Hp,q

BC(X0) to a zero class in Hp,q
BC(Xt).

If we suppose that

e
ιϕ(t)|ιϕ(t)(σt) = ∂t∂tηt
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for some ηt ∈ Ap−1,q−1(Xt) when t ∈ B\{0}, the Hodge decomposition of Bott–Chern Laplacian
and the commutativity

GBC(∂∂) = (∂∂)GA

in Lemma 4.7 yield that

e
ιϕ(t)|ιϕ(t)(σt) = ∂t∂tηt = (HBC,t +�BC,tGBC,t)∂t∂t(ηt)

= GBC,t�BC,t∂t∂t(ηt)

= GBC,t∂t∂t∂
∗
t∂
∗
t ∂t∂t(ηt)

= ∂t∂tGA,t∂
∗
t∂
∗
t (e

ιϕ(t)|ιϕ(t)(σt)),

where HBC,t, �BC,t are the harmonic projectors and the Bott–Chern Laplacian with respect to
(Xt, ωt), respectively. Let t converge to 0 on both sides of the equality

e
ιϕ(t)|ιϕ(t)(σt) = ∂t∂tGA,t∂

∗
t∂
∗
t (e

ιϕ(t)|ιϕ(t)(σt)),

which turns out that σ0 is ∂∂-exact on the reference fiber X0. Here we use the fact that the
Green’s operator GA,t depends differentiably with respect to t. 2
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