MAXIMAL SUM-FREE SETS IN ELEMENTARY ABELIAN p-GROUPS

BY
A. H. RHEMTULLA $\left({ }^{1}\right)$ AND ANNE PENFOLD STREET $\left.{ }^{(}{ }^{2}\right)$

1. Introduction. Given an additive group G and nonempty subsets S, T of G, let $S+T$ denote the set $\{s+t \mid s \in S, t \in T\}, \bar{S}$ the complement of S in G and $|S|$ the cardinality of S. We call S a sum-free set in G if $(S+S) \subseteq \bar{S}$. If, in addition, $|S| \geq|T|$ for every sum-free set T in G, then we call S a maximal sum-free set in G. We denote by $\lambda(G)$ the cardinality of a maximal sum-free set in G.
In a previous paper [3], we showed that if G is an elementary abelian p-group, where $p=3 k+1$ and $|G|=p^{n}$, then $\lambda(G)=k p^{n-1}$. We also showed that if $G=Z_{p}$, the group of order p, then any maximal sum-free set S of G can be mapped, under some automorphism of G, to one of the following sets:

$$
\begin{aligned}
& A=\{k, k+2, \ldots, 2 k-1,2 k+1\} ; \\
& B=\{k, \ldots, 2 k-1\} ; \\
& C=\{k+1, \ldots, 2 k\} .
\end{aligned}
$$

Maximal sum-free sets in elementary abelian q-groups, where q is prime, $q \equiv 2(3)$, have been characterized by Diananda and Yap [1]. Here we characterize the maximal sum-free sets S in an elementary abelian p-group G. if $|G|=p^{n}$, then exactly one of the $\left(p^{n}-1\right) /(p-1)$ maximal subgroups of G does not intersect S and each of the remaining maximal subgroups intersects S in a set of order $k p^{n-2}$, which by [3] is the largest possible intersection since S is sum-free. More precisely, we prove the following:
Theorem. Let G be an elementary abelian p-group, $|G|=p^{n}, p=3 k+1, p>7$ and let S be a maximal sum-free set in G. If G is denoted by

$$
G=\left\{\left(i_{1}, \ldots, i_{n}\right) \mid i_{j} \in Z_{p}, j=1, \ldots, n\right\}
$$

then, under some automorphism of G, S can be mapped to one of the following $(2 n+1)$ sets:

$$
\begin{aligned}
A_{n}^{n}= & \left\{\left(i_{1}, \ldots, i_{n}\right) \mid i_{n} \in A\right\} ; \\
A_{n-r}^{n}= & \left\{\left(i_{1}, \ldots, i_{n}\right) \mid \text { not all } i_{1}, \ldots, i_{r}=0, i_{n} \in C\right\} \\
& \cup\left\{\left(0, \ldots, 0, i_{r+1}, \ldots, i_{n}\right) \mid i_{n} \in A\right\} \text { for } r=1, \ldots, n-1 ;
\end{aligned}
$$

Received by the editors May 20, 1970.
${ }^{(1)}$ The preparation of this paper was partially supported by the National Research Council of Canada Grant No. A-5299.
${ }^{\left({ }^{2}\right)}$ Izaac Walton Killam Post-Doctoral Fellow.

$$
\begin{aligned}
B_{n}^{n}= & \left\{\left(i_{1}, \ldots, i_{n}\right) \mid i_{n} \in B\right\} ; \\
B_{n-r}^{n}= & \left\{\left(i_{1}, \ldots, i_{n}\right) \mid \text { not all } i_{1}, \ldots, i_{r}=0, i_{n} \in C\right\} \\
& \cup\left\{\left(0, \ldots, 0, i_{r+1}, \ldots, i_{n}\right) \mid i_{n} \in B\right\} \text { for } r=1, \ldots, n-1 ; \\
C^{n}= & \left\{\left(i_{1}, \ldots, i_{n}\right) \mid i_{n} \in C\right\}=A_{0}^{n}=B_{0}^{n} .
\end{aligned}
$$

Note. If $p=7$ then $k=2$ and sets of type A do not occur. A similar proof shows that, in an elementary abelian 7 -group of order 7^{n}, there are $(n+1)$ nonisomorphic maximal sum-free sets, namely $B_{n-r}^{n}, r=0,1, \ldots, n-1$ and C^{n}.

Definition. Let G be a group, H a subgroup of G and S a maximal sum-free set in G. Then S is said to avoid H if and only if $S \cap H=\phi$ and to cover H if and only if $S \cap H$ is a maximal sum-free set in H.

In this terminology, any maximal sum-free set S of an elementary abelian group G avoids precisely one maximal subgroup of G and covers all the rest.
2. Proofs. We first establish the following results which we need in proving the theorem.

Lemma 1. Let $S \subseteq Z_{p}$ be a maximal sum-free set isomorphic to C and suppose that

$$
S \subseteq\left\{\frac{k}{2}+1, \ldots, \frac{5 k}{2}\right\}
$$

Then either

$$
S=C \quad \text { or } \quad S=\left\{\frac{k}{2}+1, \ldots, k, 2 k+1, \ldots, \frac{5 k}{2}\right\}=C^{\prime}
$$

Proof. We may assume without loss of generality that $S=\{x, x+d, \ldots$, $x+(k-1) d\}$ for some $x \in Z_{p}, d \leq 3 k / 2$. Since $S=-S$, we have

$$
2 x+(k-1) d=0
$$

and hence

$$
\begin{equation*}
x=(k+1) d \text { or equivalently } 3 x=2 d \tag{1}
\end{equation*}
$$

We have two cases to consider: (a) If

$$
\begin{equation*}
\frac{k}{2}+1 \leq x<x+d<\cdots<x+(k-1) d \leq \frac{5 k}{2} \tag{2}
\end{equation*}
$$

then $(k-1) d \leq 2 k-1$ and $d=1$ or 2 . If $d=2$, then by (1), $x=2 k+2$ and S is not contained in the given set; if $d=1$, then $S=C$.
(b) If (2) is not satisfied then for some $l, 1 \leq l \leq k-1$, we have

$$
x+l d \leq \frac{5 k}{2} \quad \text { and } \quad \frac{k}{2}+1 \leq x+(l+1) d
$$

so that

$$
\begin{equation*}
k+2 \leq d \leq \frac{3 k}{2} \tag{3}
\end{equation*}
$$

If, for some $s \in S, k+1 \leq s \leq 3 k / 2$ then, by (3),

$$
s-d \in\left\{\frac{5 k}{2}+2, \ldots, 3 k, 0,1, \ldots, \frac{k}{2}-2\right\}
$$

hence $s-d \notin S$ and $s=x$, the first element of the arithmetic progression. Now $k+1 \leq x \leq 3 k / 2$ implies that $2 \leq 3 x \leq 3 k / 2-1$ but, by (3), $2 k+4 \leq 2 d \leq 3 k$. Hence $3 x \neq 2 d$, contradicting (1). Therefore $S \cap C=\phi$ and $S=C^{\prime}$.

Lemma 2. Let $\phi \neq X \subseteq Z_{p}$ and $X+X \subseteq X$. Then either $\mathrm{X}=\{0\}$ or $X=Z_{p}$.
Proof. By the Cauchy-Davenport theorem [2],

$$
|X+X| \geq \min (p, 2|X|-1)
$$

If $p \leq 2|X|-1$, then $X+X=Z_{p}$ and $X=Z_{p}$. If $2|X|-1<p$, then $2|X|-1 \leq|X|$, so that $|X| \leq 1$. Since $X \neq \phi$, we have $|X|=1, X+X=X$ and $X=\{0\}$.

Proof of the theorem. A routine computation shows that A_{n-r}^{n}, B_{n-r}^{n} and C^{n} are maximal sum-free sets. To prove no other maximal sum-free sets exist, we consider first the case when $|G|=p^{2}$ and then generalize.
(1) Let $G=\left\langle x_{1}, x_{2} \mid p x_{i}=0, i=1,2 ; x_{1}+x_{2}=x_{2}+x_{1}\right\rangle$ and let $X_{i}=\left\langle x_{i}\right\rangle$. Since $|G|=p^{2},|S|=k p$ and hence S covers at least $(2 k+2)$ of the $(p+1)$ subgroups of order p. We may assume without loss of generality that $\left|X_{2} \cap S\right|=k$. We denote by S_{i} the subset of X_{2} such that $S_{i}+i x_{1}=S \cap\left(X_{2}+i x_{1}\right)$ for $i=0, \ldots, p-1$.

We make repeated use of the sum-freeness of S in the form

$$
\begin{equation*}
\left(S_{i}+S_{j}\right) \cap S_{i+j}=\phi \tag{4}
\end{equation*}
$$

and in particular

$$
\begin{equation*}
\left(S_{0}+S_{i}\right) \cap S_{i}=\phi \tag{5}
\end{equation*}
$$

Since $\left|S_{0}\right|=k$, we find from (5) and the Cauchy-Davenport theorem that $\left|S_{i}\right| \leq k+1$. By Vosper's theorem [2], if S_{0} and S_{i} are not in arithmetic progression with the same common difference, then $\left|S_{i}\right| \leq k$; since $|S|=k p$, we must have $\left|S_{i}\right|=k$ for all i. If S_{0} and S_{i} are in arithmetic progression with the same common difference and if $\left|S_{i}\right|=k+1$ for some i then, since S is sum-free, S_{0} is isomorphic to C.
(a) Suppose that at least one proper subgroup of G intersects S in a set isomorphic to A. Without loss of generality we assume this subgroup to be X_{2} and choose its generator x_{2} so that $S_{0}=A$. By (5),

$$
S_{i} \subseteq\left\{\alpha_{i}, \ldots, \alpha_{i}+k-1, \alpha_{i}+k+1\right\}
$$

for some $\alpha_{i} \in X_{2}$ and not both of $\alpha_{i}+1, \alpha_{i}+k+1 \in S_{i}$. Since $\left|S_{i}\right|=k$ for all i, we know that for each $i, S_{i}=\alpha_{i}-k+A$ or $S_{i}=\alpha_{i}-k-1+C$.
(i) If, for some $i, S_{i}=\alpha_{i}-k+A$, then we choose x_{1}, the other generator of G,
so that $S_{1}=A$. Then $S_{1}+S_{1}=\bar{A}$ and, by (4), $S_{2}=A$. By induction, $S_{i}=A$ for all i and $S=A_{2}^{2}$.
(ii) If, for all $i, S_{i}=\alpha_{i}-k-1+C$, then we choose x_{1} so that $S_{1}=C$. Note that S_{i} and consequently $\left(S_{i}+S_{j}\right)$ are in arithmetic progression with common difference 1 for all i, j. From this fact and (4), we have:

$$
\begin{gather*}
\alpha_{i}+\alpha_{-i}=2 k+2 \quad \text { and in particular } \alpha_{-1}=k+1 \tag{6}\\
\alpha_{(p+1) / 2}=k+1 \quad \text { or }-\frac{k}{2} \text { or }-\frac{k}{2}+1 \tag{7}\\
\alpha_{i+1}=\alpha_{i}-1 \quad \text { or } \alpha_{i} \text { or } \alpha_{i}+1 \tag{8}
\end{gather*}
$$

Suppose that $\alpha_{(p+1) / 2}=-k / 2$ and consider the movement of α_{i} as i runs from $(p+1) / 2$ to $p-1$. By (6), in these $(3 k / 2-1)$ steps, α_{i} must either decrease from $(5 k / 2+1)$ by $3 k / 2$ or increase from $(5 k / 2+1)$ by $(3 k / 2+1)$. But by (8), α_{i} can increase or decrease by at most 1 at each step. Hence $\alpha_{(p+1) / 2} \neq-k / 2$. A similar argument shows that $\alpha_{(p+1) / 2} \neq-k / 2+1$ and hence, by (6) and (7),

$$
\begin{equation*}
\alpha_{(p+1) / 2}=\alpha_{(p-1) / 2}=k+1 \tag{9}
\end{equation*}
$$

By (6), (8), and (9), α_{i} differs from α_{0} by at most $(3 k-2) / 4$; hence if $\alpha_{i}<k+1$, then $k \in S_{i}$.

Now let $X=\left\{i \in\left\langle x_{1}\right\rangle \mid(i, k) \in S\right\}=\left\{i \in\left\langle x_{1}\right\rangle \mid \alpha_{i}<k+1\right\}$. By (4), if $i, j \in X$, then $i+j \in X$. Hence $X+X \subseteq X$. But $0 \in X, 1 \notin X$, so by Lemma $2, X=\{0\}$. A similar argument shows that only S_{0} contains an element greater than $2 k$. Hence $S_{i}=C$ for all $i \neq 0$ and $S=A_{1}^{2}$.
(b) Suppose that no proper subgroup of G intersects S in a set isomorphic to A but that at least one proper subgroup intersects S in a set isomorphic to B. We assume this subgroup to be X_{2} and choose x_{2} so that $S_{0}=B$. By (5), $S_{\imath} \subseteq\left\{\alpha_{i}, \ldots, \alpha_{i}\right.$ $+k-1\}$ for all i, for some $\alpha_{i} \in X_{2}$. Since $|S|=k p$ we have $S=\alpha_{i}-k+B$ for all i; we choose x_{1} so that $S_{1}=B+1=C$.

By (4), $\alpha_{i}+\alpha_{-i}=2 k$ or $2 k+1$ or $2 k+2$ and in particular

$$
\begin{equation*}
\alpha_{-1}=k-1 \text { or } k \text { or } k+1 . \tag{10}
\end{equation*}
$$

Also

$$
\begin{equation*}
\alpha_{i+1}=\alpha_{i}-1 \quad \text { or } \quad \alpha_{i} \quad \text { or } \quad \alpha_{i}+1 \tag{11}
\end{equation*}
$$

(i) If $\alpha_{-1}=k-1$, then by (4),

$$
\begin{equation*}
\alpha_{i-1}=\alpha_{i}-3 \quad \text { or } \alpha_{i}-2 \text { or } \alpha_{i}-1 \tag{12}
\end{equation*}
$$

By (11) and (12), $\alpha_{i+1}=\alpha_{i}+1$ for all i. The automorphism of G which maps $\left(i_{1}, i_{2}\right)$ to ($i_{1}, i_{2}-i_{1}$) maps S to B_{2}^{2}.
(ii) If $\alpha_{-1}=k$, then by (4),

$$
\begin{equation*}
\alpha_{i-1}=\alpha_{i}-2 \text { or } \alpha_{i}-1 \text { or } \alpha_{i} \tag{13}
\end{equation*}
$$

By (11) and (13),

$$
\begin{equation*}
\alpha_{i+1}=\alpha_{i} \quad \text { or } \quad \alpha_{i}+1 \quad \text { for all } i . \tag{14}
\end{equation*}
$$

Consider the movement of α_{i} as i runs from 1 to $(p-1)$. In these $(p-2)$ steps, α_{i} must increase by $(p-1)$, but by (14) α_{i} may increase by, at most, 1 at each step. Hence $\alpha_{-1} \neq k$.
(iii) If $\alpha_{-1}=k+1$, then a repetition of the argument of (a(ii)) shows that (7), (8), and (9) hold, that if $\alpha_{i}<k+1$, then $k \in S_{i}$ and that $k \in S_{i}$ only if $i=0$. Similarly, if we let $Y=\left\{i \in\left\langle x_{1}\right\rangle\left|\alpha_{i}\right\rangle k+1\right\}$ then $Y+Y \subseteq Y, Y \neq Z_{p}, Y \neq\{0\}$, and by Lemma 2, $Y=\phi$. Hence $S_{i}=C$ for all $i \neq 0$ and $S=B_{1}^{2}$.
(c) Finally, suppose that every subgroup of G covered by S intersects S in a set isomorphic to C.
(i) If there exists a proper subgroup, covered by S and having at least one coset which contains $(k+1)$ elements of S, then we assume this subgroup to be X_{2} and choose x_{2} so that $S_{0}=C$. By (5), $S_{i} \subseteq\left\{\alpha_{i}, \ldots, \alpha_{i}+k\right\}$ for all i and we choose x_{1} so that $S_{1}=\{k+1, \ldots, 2 k+1\}$.

By the proof of Theorem 1(a) [3], S avoids $\left\langle x_{1}\right\rangle$. Hence S must cover every other subgroup of order p in G. But S intersects each such subgroup in a set isomorphic to C, implying that $S=-S$. This, combined with the previous proof in [3], shows that α_{i} (and similarly the right-hand end-point of S_{i}) can move by, at most, $k / 2$ in either direction. Since $\alpha_{1}=k+1$ and the right-hand end-point of S_{-1} is $2 k$, we have

$$
S_{i} \subseteq\left\{\frac{k}{2}+1, \ldots, \frac{5 k}{2}\right\} \quad \text { for all } i
$$

Hence for every subgroup $\langle(\rho, 1)\rangle$, the second coordinates of $\langle(\rho, 1) \cap S\rangle$ belong to $C \cup C^{\prime}$. Since all these subgroups are covered by S, Lemma 1 shows that, for any given ρ, the second coordinates of the intersection are either C or C^{\prime}. Let

$$
T_{j}=\left\{i \in\left\langle x_{1}\right\rangle \mid(i, j) \in S\right\}=\left\{i \in\left\langle x_{1}\right\rangle \mid j \in S_{i}\right\} .
$$

Then $\left|T_{j}\right|=a, j \in C^{\prime}$ and $\left|T_{j}\right|=b, j \in C$. If $a>0, b>0$, then by (4), in particular,

$$
T_{k / 2+1}+T_{k / 2+1} \cap T_{k+2}=\phi
$$

Hence by the Cauchy-Davenport theorem, $2 a+b \leq p+1$. Similarly, $2 b+a \leq p+1$ so that $a+b \leq 2(p+1) / 3$. But $a+b=p$. Hence $a=0$ or $b=0$; we may assume that $a=0$ and for each $\langle(\rho, 1)\rangle$, the second coordinates of its intersection with S form the set C.

This contradicts our statement that $(1,2 k+1) \in S$. Hence every coset of every proper subgroup covered by S contains exactly k elements of S.
(ii) Now let X_{2} be any subgroup of order p covered by S and choose its generator
x_{2} so that $S_{0}=C$. Then $S_{i} \subseteq\left\{\alpha_{i}, \ldots, \alpha_{i}+k\right\}$ for all i, for some $\alpha_{i} \in X_{1}$ and, since $\left|S_{i}\right|=k$, four types of sets may occur:

$$
\begin{aligned}
& S_{i}=\left\{\alpha_{i}, \ldots, \alpha_{i}+k-1\right\} \in P \\
& S_{i}=\left\{\alpha_{i}, \alpha_{i}+2, \ldots, \alpha_{i}+k\right\} \in Q_{1} \\
& S_{\imath}=\left\{\alpha_{i}, \ldots, \alpha_{i}+k-2, \alpha_{i}+k\right\} \in Q_{2} \\
& S_{i}=\left\{\alpha_{i}, \ldots, \alpha_{i}+l, \alpha_{i}+l+2, \ldots, \alpha_{i}+k\right\} \in R, \quad 2 \leq l \leq k-2 .
\end{aligned}
$$

If a set of type R occurs, choose x_{1} so that

$$
S_{1}=\{k+1, \ldots, k+1+l, k+3+l, \ldots, 2 k+1\} \text { for some } l, \quad 2 \leq l \leq k-2
$$

By (4), we find that $\alpha_{2}=k+2, \alpha_{i+1}=\alpha_{i}$ or $\alpha_{i}+1$ and $\alpha_{-1}=k$ or $k+1$. Since α_{i} can never decrease, in the ($p-3$) steps as i runs from 2 to $(p-1), \alpha_{i}$ must increase from $(k+2)$ by $(p-2)$ or $(p-1)$. But α_{i} can increase by, at most, 1 at each step. Hence no set of type R can occur.
If a set of type Q_{2} occurs, choose x_{1} so that

$$
S_{1}=\{k+1, \ldots, 2 k-1,2 k+1\} .
$$

By (4), we find that $\alpha_{-1}=k$ or $k+1, \alpha_{(p+1) / 2}=k$ or $k+1$ or $-k / 2+1, \alpha_{i+1}=\alpha_{i}-1$ or α_{i} or $\alpha_{i}+1$, and if $\alpha_{i+1}=\alpha_{i}-1$ then $\alpha_{i+2}=\alpha_{i}$. A similar argument to that of (a(ii)) shows that $\alpha_{i}=k$ or $k+1$ for all i.

Hence S avoids $\left\langle x_{1}\right\rangle$. Therefore S covers every other proper subgroup and intersects each of them in a set isomorphic to C and contained in $\{k, \ldots, 2 k+1\}$. Hence by Lemma 1 , every subgroup except $\left\langle x_{1}\right\rangle$ intersects S in the set C, contradicting our statement that $(1,2 k+1) \in S$. Hence no set of type Q_{2} (and similarly Q_{1}) can occur.
We now know that every coset of X_{2} intersects S in a set of type P and we choose x_{1} so that $S_{1}=C$. By (4), we find that $\alpha_{-1}=k$ or $k+1$ or $k+2$, and

$$
\begin{equation*}
\alpha_{i+1}=\alpha_{i}-1 \quad \text { or } \quad \alpha_{i} \quad \text { or } \quad \alpha_{i}+1 \tag{15}
\end{equation*}
$$

If $\alpha_{-1}=k$, then by (4) again,

$$
\begin{equation*}
\alpha_{i+1}=\alpha_{i} \quad \text { or } \quad \alpha_{i}+1 \tag{16}
\end{equation*}
$$

If $\alpha_{-1}=k+2$, then

$$
\begin{equation*}
\alpha_{i+1}=\alpha_{i}-1 \quad \text { or } \quad \alpha_{i} . \tag{17}
\end{equation*}
$$

If $\alpha_{-1}=k$, then by (16), in the ($p-2$) steps as i runs from 1 to $(p-1), \alpha_{i}$ must increase by $(p-1)$. But α_{i} may increase by, at most, 1 at each step. Hence $\alpha_{-1} \neq k$. A similar argument using (17) shows that $\alpha_{-1} \neq k+2$.

Hence $\alpha_{-1}=k+1$, and by (4) we have $\alpha_{(p+1) / 2}=-k / 2$ or $-k / 2+1$ or $k+1$. An argument similar to that of (a(ii)) shows that $\alpha_{i}=k+1$ and hence $S_{i}=C$ for all i. Therefore $S=C^{2}$.
(2) Now let G be an elementary abelian group of order p^{n}.
(a) We show first that any maximal sum-free set S in G avoids exactly one maximal subgroup of G.
Since by [3], $|S|=k p^{n-1}, G$ has at least one subgroup of order p which is covered by S. Let X be any such subgroup and let Y be the subgroup complementing X in G. Then $|Y|=p^{n-1}$ and $Y=\bigcup_{i=1}^{\rho} Y_{i}$, where Y_{i} is a subgroup of order p and $\rho=\left(p^{n-1}-1\right) / p-1$. Now

$$
|S|=k p^{n-1}=\sum_{i=1}^{\rho}\left|\left(X+Y_{i}\right) \cap S\right|-(\rho-1) k .
$$

But

$$
\left|\left(X+Y_{i}\right) \cap S\right| \leq k p \quad \text { for all } i=1, \ldots, \rho
$$

and

$$
\sum_{i=1}^{\rho}\left|\left(X+Y_{i}\right) \cap S\right|=k p^{n-1}+(\rho-1) k=k p \rho
$$

Hence

$$
\left|\left(X+Y_{i}\right) \cap S\right|=k p \quad \text { for all } i=1, \ldots, \rho
$$

From the proof of (1), there exists a subgroup Z_{i} of order p such that $Z_{i}<X+Y_{i}$ and S avoids Z_{i}, for each $i=1, \ldots, \rho$. These ρ subgroups are distinct for if $Z_{i}=Z_{j}$, then

$$
X+Y_{i}=X+Z_{i}=X+Z_{j}=X+Y_{j} \quad \text { and } \quad i=j .
$$

Hence S avoids ρ of the $\left(p^{n}-1\right) / p-1$ subgroups of order p in G, and since $|S|=k p^{n-1}, S$ covers the p^{n-1} remaining subgroups of order p, which we denote by $X_{i}, i=1, \ldots, p^{n-1}$.

Suppose that for some h, i, j with $1 \leq h \leq p^{n-1}, 1 \leq i, j \leq p$, we have $X_{h}<Z_{i}+Z_{j}$. Then we repeat the proof, choosing X_{h} as our subgroup X which is covered by S, and show that $\left|\left(Z_{i}+Z_{j}\right) \cap S\right|=k p$. But since S avoids both Z_{i} and $Z_{j}, \mid\left(Z_{i}+Z_{j}\right)$ $\cap S \mid \leq k(p-1)$. Hence for any $i, j=1, \ldots, \rho$ we have $Z_{i}+Z_{j} \subseteq \bigcup_{i=1}^{i} Z_{l}$.

Now $\left|\bigcup_{i=1}^{o} Z_{l}\right|=p^{n-1}$ and $\bigcup_{i=1}^{\rho} Z_{l}$ is a subgroup. For if $z_{1}, z_{2} \in \bigcup_{i=1}^{\rho} Z_{l}$ then either $z_{1}, z_{2} \in Z_{i}$ and $z_{1}+z_{2} \in Z_{i} \subseteq \bigcup_{i=1}^{i} Z_{l}$ or $z_{1} \in Z_{i}, z_{2} \in Z_{j}$ and $z_{1}+z_{2} \in Z_{i}+Z_{j}$ $\subseteq \bigcup_{i=1}^{\rho} Z_{l}$. Hence S avoids a maximal subgroup of G.
(b) We now suppose that in elementary abelian p-groups of orders p^{n-1} or less, the maximal sum-free sets have been characterized. By (1) we see that if H, K are subgroups of order p in G, of order p^{n}, then it is impossible to have $S \cap H=A$ and $S \cap K=B$. Hence two cases arise:
(i) Subgroups of order p intersect S in sets A or C. If no subgroup of order p intersects S in A, then $S=C^{n}$. If exactly one subgroup of order p intersects S in A, then $S=A_{1}^{n}$. If two subgroups of order p intersect S in A, then the subgroup of order p^{2} which they generate intersects S in A_{2}^{2} so that altogether p subgroups of order p intersect S in A and $S=A_{2}^{n}$. By induction, if the subgroups of order p intersecting S in A generate a subgroup of order p^{r}, then p^{r-1} subgroups of order p intersect S in A and $S=A_{r}^{n}$. In each case, since S avoids a maximal subgroup of $6-$ с.м.в.
G, S is determined up to automorphism by the order of the subgroup generated by all those subgroups of order p which intersect S in A. Hence $(n+1)$ sets are possible.
(ii) Subgroups of order p intersect S in sets B or C. An argument similar to (i) shows that again ($n+1$) sets are possible, namely $C^{n}, B_{1}^{n}, \ldots, B_{n}^{n}$.

Since C^{n} occurs in both cases, we have altogether $(2 n+1)$ nonisomorphic sets.

References

1. P. H. Diananda and H. P. Yap, Maximal sum-free sets of elements of finite groups, Proc. Japan Acad., 45 (1969), 1-5.
2. H. B. Mann, Addition theorems: The addition theorems of group theory and number theory, Interscience, New York, 1965.
3. A. H. Rhemtulla and A. P. Street, Maximal sum-free sets in finite abelian groups, Bull. Austral. Math. Soc., 2 (1970), 289-297.

University of Alberta, Edmonton, Alberta

