MAXIMAL SUM-FREE SETS IN ELEMENTARY ABELIAN *p*-GROUPS

BY

A. H. RHEMTULLA(1) AND ANNE PENFOLD STREET(2)

1. Introduction. Given an additive group G and nonempty subsets S, T of G, let S+T denote the set $\{s+t \mid s \in S, t \in T\}$, \overline{S} the complement of S in G and |S| the cardinality of S. We call S a sum-free set in G if $(S+S) \subseteq \overline{S}$. If, in addition, $|S| \ge |T|$ for every sum-free set T in G, then we call S a maximal sum-free set in G. We denote by $\lambda(G)$ the cardinality of a maximal sum-free set in G.

In a previous paper [3], we showed that if G is an elementary abelian p-group, where p=3k+1 and $|G|=p^n$, then $\lambda(G)=kp^{n-1}$. We also showed that if $G=\mathbb{Z}_p$, the group of order p, then any maximal sum-free set S of G can be mapped, under some automorphism of G, to one of the following sets:

$$A = \{k, k+2, \dots, 2k-1, 2k+1\};$$

$$B = \{k, \dots, 2k-1\};$$

$$C = \{k+1, \dots, 2k\}.$$

Maximal sum-free sets in elementary abelian q-groups, where q is prime, $q \equiv 2(3)$, have been characterized by Diananda and Yap [1]. Here we characterize the maximal sum-free sets S in an elementary abelian p-group G. if $|G| = p^n$, then exactly one of the $(p^n - 1)/(p - 1)$ maximal subgroups of G does not intersect S and each of the remaining maximal subgroups intersects S in a set of order kp^{n-2} , which by [3] is the largest possible intersection since S is sum-free. More precisely, we prove the following:

THEOREM. Let G be an elementary abelian p-group, $|G| = p^n$, p = 3k+1, p > 7 and let S be a maximal sum-free set in G. If G is denoted by

$$G = \{(i_1, \ldots, i_n) \mid i_j \in Z_p, j = 1, \ldots, n\}$$

then, under some automorphism of G, S can be mapped to one of the following (2n+1) sets:

$$A_n^n = \{(i_1, \dots, i_n) \mid i_n \in A\};$$

$$A_{n-r}^n = \{(i_1, \dots, i_n) \mid \text{not all } i_1, \dots, i_r = 0, i_n \in C\}$$

$$\cup \{(0, \dots, 0, i_{r+1}, \dots, i_n) \mid i_n \in A\} \text{ for } r = 1, \dots, n-1;$$

Received by the editors May 20, 1970.

(¹) The preparation of this paper was partially supported by the National Research Council of Canada Grant No. A-5299.

(2) Izaac Walton Killam Post-Doctoral Fellow.

73

$$B_n^n = \{(i_1, \dots, i_n) \mid i_n \in B\};$$

$$B_{n-r}^n = \{(i_1, \dots, i_n) \mid \text{not all } i_1, \dots, i_r = 0, i_n \in C\}$$

$$\cup \{(0, \dots, 0, i_{r+1}, \dots, i_n) \mid i_n \in B\} \text{ for } r = 1, \dots, n-1;$$

$$C^n = \{(i_1, \dots, i_n) \mid i_n \in C\} = A_0^n = B_0^n.$$

Note. If p=7 then k=2 and sets of type A do not occur. A similar proof shows that, in an elementary abelian 7-group of order 7^n , there are (n+1) nonisomorphic maximal sum-free sets, namely B_{n-r}^n , r = 0, 1, ..., n-1 and C^n .

DEFINITION. Let G be a group, H a subgroup of G and S a maximal sum-free set in G. Then S is said to *avoid* H if and only if $S \cap H = \phi$ and to *cover* H if and only if $S \cap H$ is a maximal sum-free set in H.

In this terminology, any maximal sum-free set S of an elementary abelian group G avoids precisely one maximal subgroup of G and covers all the rest.

2. **Proofs.** We first establish the following results which we need in proving the theorem.

LEMMA 1. Let $S \subseteq Z_p$ be a maximal sum-free set isomorphic to C and suppose that

$$S \subseteq \left\{\frac{k}{2} + 1, \dots, \frac{5k}{2}\right\}$$

Then either

$$S = C$$
 or $S = \left\{\frac{k}{2}+1, \ldots, k, 2k+1, \ldots, \frac{5k}{2}\right\} = C'.$

Proof. We may assume without loss of generality that $S = \{x, x+d, ..., x+(k-1) d\}$ for some $x \in \mathbb{Z}_p$, $d \le 3k/2$. Since S = -S, we have

$$2x + (k-1)d = 0$$

and hence

(1)
$$x = (k+1)d$$
 or equivalently $3x = 2d$.

We have two cases to consider: (a) If

(2)
$$\frac{k}{2}+1 \le x < x+d < \cdots < x+(k-1)d \le \frac{5k}{2},$$

then $(k-1)d \le 2k-1$ and d=1 or 2. If d=2, then by (1), x=2k+2 and S is not contained in the given set; if d=1, then S=C.

(b) If (2) is not satisfied then for some $l, 1 \le l \le k-1$, we have

$$x + ld \le \frac{5k}{2}$$
 and $\frac{k}{2} + 1 \le x + (l+1)d$

so that

$$(3) k+2 \le d \le \frac{3k}{2}$$

If, for some $s \in S$, $k+1 \leq s \leq 3k/2$ then, by (3),

$$s-d \in \left\{\frac{5k}{2}+2, \ldots, 3k, 0, 1, \ldots, \frac{k}{2}-2\right\};$$

hence $s-d \notin S$ and s=x, the first element of the arithmetic progression. Now $k+1 \le x \le 3k/2$ implies that $2 \le 3x \le 3k/2-1$ but, by (3), $2k+4 \le 2d \le 3k$. Hence $3x \ne 2d$, contradicting (1). Therefore $S \cap C = \phi$ and S = C'.

LEMMA 2. Let $\phi \neq X \subseteq Z_p$ and $X + X \subseteq X$. Then either $X = \{0\}$ or $X = Z_p$.

Proof. By the Cauchy–Davenport theorem [2],

$$|X+X| \ge \min(p, 2|X|-1).$$

If $p \le 2 |X| - 1$, then $X + X = Z_p$ and $X = Z_p$. If 2 |X| - 1 < p, then $2 |X| - 1 \le |X|$, so that $|X| \le 1$. Since $X \ne \phi$, we have |X| = 1, X + X = X and $X = \{0\}$.

Proof of the theorem. A routine computation shows that A_{n-r}^n , B_{n-r}^n and C^n are maximal sum-free sets. To prove no other maximal sum-free sets exist, we consider first the case when $|G| = p^2$ and then generalize.

(1) Let $G = \langle x_1, x_2 | px_i = 0, i = 1, 2; x_1 + x_2 = x_2 + x_1 \rangle$ and let $X_i = \langle x_i \rangle$. Since $|G| = p^2$, |S| = kp and hence S covers at least (2k+2) of the (p+1) subgroups of order p. We may assume without loss of generality that $|X_2 \cap S| = k$. We denote by S_i the subset of X_2 such that $S_i + ix_1 = S \cap (X_2 + ix_1)$ for $i = 0, \dots, p-1$.

We make repeated use of the sum-freeness of S in the form

$$(4) (S_i+S_j) \cap S_{i+j} = \phi$$

and in particular

$$(5) (S_0+S_i) \cap S_i = \phi.$$

Since $|S_0| = k$, we find from (5) and the Cauchy-Davenport theorem that $|S_i| \le k+1$. By Vosper's theorem [2], if S_0 and S_i are not in arithmetic progression with the same common difference, then $|S_i| \le k$; since |S| = kp, we must have $|S_i| = k$ for all *i*. If S_0 and S_i are in arithmetic progression with the same common difference and if $|S_i| = k+1$ for some *i* then, since *S* is sum-free, S_0 is isomorphic to *C*.

(a) Suppose that at least one proper subgroup of G intersects S in a set isomorphic to A. Without loss of generality we assume this subgroup to be X_2 and choose its generator x_2 so that $S_0 = A$. By (5),

$$S_i \subseteq \{\alpha_i, \ldots, \alpha_i + k - 1, \alpha_i + k + 1\}$$

for some $\alpha_i \in X_2$ and not both of $\alpha_i + 1$, $\alpha_i + k + 1 \in S_i$. Since $|S_i| = k$ for all *i*, we know that for each *i*, $S_i = \alpha_i - k + A$ or $S_i = \alpha_i - k - 1 + C$.

(i) If, for some i, $S_i = \alpha_i - k + A$, then we choose x_1 , the other generator of G,

1971]

[March

so that $S_1 = A$. Then $S_1 + S_1 = \overline{A}$ and, by (4), $S_2 = A$. By induction, $S_i = A$ for all *i* and $S = A_2^2$.

(ii) If, for all i, $S_i = \alpha_i - k - 1 + C$, then we choose x_1 so that $S_1 = C$. Note that S_i and consequently $(S_i + S_j)$ are in arithmetic progression with common difference 1 for all i, j. From this fact and (4), we have:

(6)
$$\alpha_i + \alpha_{-i} = 2k + 2$$
 and in particular $\alpha_{-1} = k + 1$;

(7)
$$\alpha_{(p+1)/2} = k+1 \text{ or } -\frac{k}{2} \text{ or } -\frac{k}{2}+1;$$

(8)
$$\alpha_{i+1} = \alpha_i - 1$$
 or α_i or $\alpha_i + 1$.

Suppose that $\alpha_{(p+1)/2} = -k/2$ and consider the movement of α_i as *i* runs from (p+1)/2 to p-1. By (6), in these (3k/2-1) steps, α_i must either decrease from (5k/2+1) by 3k/2 or increase from (5k/2+1) by (3k/2+1). But by (8), α_i can increase or decrease by at most 1 at each step. Hence $\alpha_{(p+1)/2} \neq -k/2$. A similar argument shows that $\alpha_{(p+1)/2} \neq -k/2+1$ and hence, by (6) and (7),

(9)
$$\alpha_{(p+1)/2} = \alpha_{(p-1)/2} = k+1.$$

By (6), (8), and (9), α_i differs from α_0 by at most (3k-2)/4; hence if $\alpha_i < k+1$, then $k \in S_i$.

Now let $X = \{i \in \langle x_1 \rangle \mid (i, k) \in S\} = \{i \in \langle x_1 \rangle \mid \alpha_i < k+1\}$. By (4), if $i, j \in X$, then $i+j \in X$. Hence $X + X \subseteq X$. But $0 \in X$, $1 \notin X$, so by Lemma 2, $X = \{0\}$. A similar argument shows that only S_0 contains an element greater than 2k. Hence $S_i = C$ for all $i \neq 0$ and $S = A_1^2$.

(b) Suppose that no proper subgroup of G intersects S in a set isomorphic to A but that at least one proper subgroup intersects S in a set isomorphic to B. We assume this subgroup to be X_2 and choose x_2 so that $S_0 = B$. By (5), $S_i \subseteq \{\alpha_i, \ldots, \alpha_i + k - 1\}$ for all *i*, for some $\alpha_i \in X_2$. Since |S| = kp we have $S = \alpha_i - k + B$ for all *i*; we choose x_1 so that $S_1 = B + 1 = C$.

By (4), $\alpha_i + \alpha_{-i} = 2k$ or 2k + 1 or 2k + 2 and in particular

(10)
$$\alpha_{-1} = k - 1$$
 or k or $k + 1$.

Also

(11)
$$\alpha_{i+1} = \alpha_i - 1 \quad \text{or} \quad \alpha_i \quad \text{or} \quad \alpha_i + 1.$$

(i) If $\alpha_{-1} = k - 1$, then by (4),

(12)
$$\alpha_{i-1} = \alpha_i - 3 \quad \text{or} \quad \alpha_i - 2 \quad \text{or} \quad \alpha_i - 1.$$

By (11) and (12), $\alpha_{i+1} = \alpha_i + 1$ for all *i*. The automorphism of *G* which maps (i_1, i_2) to $(i_1, i_2 - i_1)$ maps *S* to B_2^2 .

(ii) If $\alpha_{-1} = k$, then by (4),

(13)
$$\alpha_{i-1} = \alpha_i - 2 \quad \text{or} \quad \alpha_i - 1 \quad \text{or} \quad \alpha_i.$$

1971]

By (11) and (13),

(14)
$$\alpha_{i+1} = \alpha_i \text{ or } \alpha_i + 1 \text{ for all } i.$$

Consider the movement of α_i as *i* runs from 1 to (p-1). In these (p-2) steps, α_i must increase by (p-1), but by (14) α_i may increase by, at most, 1 at each step. Hence $\alpha_{-1} \neq k$.

(iii) If $\alpha_{-1} = k+1$, then a repetition of the argument of (a(ii)) shows that (7), (8), and (9) hold, that if $\alpha_i < k+1$, then $k \in S_i$ and that $k \in S_i$ only if i=0. Similarly, if we let $Y = \{i \in \langle x_1 \rangle \mid \alpha_i > k+1\}$ then $Y + Y \subseteq Y$, $Y \neq Z_p$, $Y \neq \{0\}$, and by Lemma 2, $Y = \phi$. Hence $S_i = C$ for all $i \neq 0$ and $S = B_1^2$.

(c) Finally, suppose that every subgroup of G covered by S intersects S in a set isomorphic to C.

(i) If there exists a proper subgroup, covered by S and having at least one coset which contains (k+1) elements of S, then we assume this subgroup to be X_2 and choose x_2 so that $S_0 = C$. By (5), $S_i \subseteq \{\alpha_i, \ldots, \alpha_i + k\}$ for all *i* and we choose x_1 so that $S_1 = \{k+1, \ldots, 2k+1\}$.

By the proof of Theorem 1(a) [3], S avoids $\langle x_1 \rangle$. Hence S must cover every other subgroup of order p in G. But S intersects each such subgroup in a set isomorphic to C, implying that S = -S. This, combined with the previous proof in [3], shows that α_i (and similarly the right-hand end-point of S_i) can move by, at most, k/2 in either direction. Since $\alpha_1 = k+1$ and the right-hand end-point of S_{-1} is 2k, we have

$$S_i \subseteq \left\{\frac{k}{2}+1,\ldots,\frac{5k}{2}\right\}$$
 for all *i*.

Hence for every subgroup $\langle (\rho, 1) \rangle$, the second coordinates of $\langle (\rho, 1) \cap S \rangle$ belong to $C \cup C'$. Since all these subgroups are covered by S, Lemma 1 shows that, for any given ρ , the second coordinates of the intersection are either C or C'. Let

$$T_j = \{i \in \langle x_1 \rangle \mid (i,j) \in S\} = \{i \in \langle x_1 \rangle \mid j \in S_i\}.$$

Then $|T_j| = a, j \in C'$ and $|T_j| = b, j \in C$. If a > 0, b > 0, then by (4), in particular,

$$T_{k/2+1} + T_{k/2+1} \cap T_{k+2} = \phi.$$

Hence by the Cauchy-Davenport theorem, $2a+b \le p+1$. Similarly, $2b+a \le p+1$ so that $a+b \le 2(p+1)/3$. But a+b=p. Hence a=0 or b=0; we may assume that a=0 and for each $\langle (\rho, 1) \rangle$, the second coordinates of its intersection with S form the set C.

This contradicts our statement that $(1, 2k+1) \in S$. Hence every coset of every proper subgroup covered by S contains exactly k elements of S.

(ii) Now let X_2 be any subgroup of order p covered by S and choose its generator

[March

 x_2 so that $S_0 = C$. Then $S_i \subseteq \{\alpha_i, \ldots, \alpha_i + k\}$ for all *i*, for some $\alpha_i \in X_1$ and, since $|S_i| = k$, four types of sets may occur:

$$S_{i} = \{\alpha_{i}, \dots, \alpha_{i} + k - 1\} \in P;$$

$$S_{i} = \{\alpha_{i}, \alpha_{i} + 2, \dots, \alpha_{i} + k\} \in Q_{1};$$

$$S_{i} = \{\alpha_{i}, \dots, \alpha_{i} + k - 2, \alpha_{i} + k\} \in Q_{2};$$

$$S_{i} = \{\alpha_{i}, \dots, \alpha_{i} + l, \alpha_{i} + l + 2, \dots, \alpha_{i} + k\} \in R, \quad 2 \le l \le k - 2$$

If a set of type R occurs, choose x_1 so that

$$S_1 = \{k+1, \dots, k+1+l, k+3+l, \dots, 2k+1\}$$
 for some $l, 2 \le l \le k-2$

By (4), we find that $\alpha_2 = k+2$, $\alpha_{i+1} = \alpha_i$ or $\alpha_i + 1$ and $\alpha_{-1} = k$ or k+1. Since α_i can never decrease, in the (p-3) steps as *i* runs from 2 to (p-1), α_i must increase from (k+2) by (p-2) or (p-1). But α_i can increase by, at most, 1 at each step. Hence no set of type *R* can occur.

If a set of type Q_2 occurs, choose x_1 so that

$$S_1 = \{k+1, \ldots, 2k-1, 2k+1\}.$$

By (4), we find that $\alpha_{-1} = k$ or k+1, $\alpha_{(p+1)/2} = k$ or k+1 or -k/2+1, $\alpha_{i+1} = \alpha_i - 1$ or α_i or $\alpha_i + 1$, and if $\alpha_{i+1} = \alpha_i - 1$ then $\alpha_{i+2} = \alpha_i$. A similar argument to that of (a(ii)) shows that $\alpha_i = k$ or k+1 for all *i*.

Hence S avoids $\langle x_1 \rangle$. Therefore S covers every other proper subgroup and intersects each of them in a set isomorphic to C and contained in $\{k, \ldots, 2k+1\}$. Hence by Lemma 1, every subgroup except $\langle x_1 \rangle$ intersects S in the set C, contradicting our statement that $(1, 2k+1) \in S$. Hence no set of type Q_2 (and similarly Q_1) can occur.

We now know that every coset of X_2 intersects S in a set of type P and we choose x_1 so that $S_1 = C$. By (4), we find that $\alpha_{-1} = k$ or k+1 or k+2, and

(15)
$$\alpha_{i+1} = \alpha_i - 1 \quad \text{or} \quad \alpha_i \quad \text{or} \quad \alpha_i + 1.$$

If $\alpha_{-1} = k$, then by (4) again,

(16) $\alpha_{i+1} = \alpha_i \quad \text{or} \quad \alpha_i + 1.$

If $\alpha_{-1} = k + 2$, then

(17)
$$\alpha_{i+1} = \alpha_i - 1 \quad \text{or} \quad \alpha_i.$$

If $\alpha_{-1} = k$, then by (16), in the (p-2) steps as *i* runs from 1 to (p-1), α_i must increase by (p-1). But α_i may increase by, at most, 1 at each step. Hence $\alpha_{-1} \neq k$. A similar argument using (17) shows that $\alpha_{-1} \neq k+2$.

Hence $\alpha_{-1} = k+1$, and by (4) we have $\alpha_{(p+1)/2} = -k/2$ or -k/2+1 or k+1. An argument similar to that of (a(ii)) shows that $\alpha_i = k+1$ and hence $S_i = C$ for all *i*. Therefore $S = C^2$.

(2) Now let G be an elementary abelian group of order p^n .

(a) We show first that any maximal sum-free set S in G avoids exactly one maximal subgroup of G.

Since by [3], $|S| = kp^{n-1}$, G has at least one subgroup of order p which is covered by S. Let X be any such subgroup and let Y be the subgroup complementing X in G. Then $|Y| = p^{n-1}$ and $Y = \bigcup_{i=1}^{p} Y_i$, where Y_i is a subgroup of order p and $\rho = (p^{n-1}-1)/p - 1$. Now

But

$$|(X+Y_i) \cap S| \le kp$$
 for all $i = 1, \dots, p$

 $|S| = kp^{n-1} = \sum_{i=1}^{p} |(X+Y_i) \cap S| - (p-1)k.$

and

$$\sum_{i=1}^{p} |(X+Y_i) \cap S| = kp^{n-1} + (\rho-1)k = kp\rho.$$

Hence

$$|(X+Y_i) \cap S| = kp$$
 for all $i = 1, \ldots, p$.

From the proof of (1), there exists a subgroup Z_i of order p such that $Z_i < X + Y_i$ and S avoids Z_i , for each $i=1, \ldots, p$. These ρ subgroups are distinct for if $Z_i = Z_j$, then

$$X + Y_i = X + Z_i = X + Z_j = X + Y_j$$
 and $i = j$.

Hence S avoids ρ of the $(p^n-1)/p-1$ subgroups of order p in G, and since $|S| = kp^{n-1}$, S covers the p^{n-1} remaining subgroups of order p, which we denote by X_i , $i = 1, \ldots, p^{n-1}$.

Suppose that for some h, i, j with $1 \le h \le p^{n-1}$, $1 \le i$, $j \le p$, we have $X_h < Z_i + Z_j$. Then we repeat the proof, choosing X_h as our subgroup X which is covered by S, and show that $|(Z_i + Z_j) \cap S| = kp$. But since S avoids both Z_i and Z_j , $|(Z_i + Z_j) \cap S| \le k(p-1)$. Hence for any $i, j = 1, ..., \rho$ we have $Z_i + Z_j \subseteq \bigcup_{i=1}^{\rho} Z_i$.

Now $|\bigcup_{l=1}^{\rho} Z_l| = p^{n-1}$ and $\bigcup_{l=1}^{\rho} Z_l$ is a subgroup. For if $z_1, z_2 \in \bigcup_{l=1}^{\rho} Z_l$ then either $z_1, z_2 \in Z_i$ and $z_1 + z_2 \in Z_i \subseteq \bigcup_{l=1}^{\rho} Z_l$ or $z_1 \in Z_i, z_2 \in Z_j$ and $z_1 + z_2 \in Z_i + Z_j$ $\subseteq \bigcup_{l=1}^{\rho} Z_l$. Hence S avoids a maximal subgroup of G.

(b) We now suppose that in elementary abelian *p*-groups of orders p^{n-1} or less, the maximal sum-free sets have been characterized. By (1) we see that if *H*, *K* are subgroups of order *p* in *G*, of order p^n , then it is impossible to have $S \cap H = A$ and $S \cap K = B$. Hence two cases arise:

(i) Subgroups of order p intersect S in sets A or C. If no subgroup of order p intersects S in A, then $S = C^n$. If exactly one subgroup of order p intersects S in A, then $S = A_1^n$. If two subgroups of order p intersect S in A, then the subgroup of order p^2 which they generate intersects S in A_2^2 so that altogether p subgroups of order p intersect S in A and $S = A_2^n$. By induction, if the subgroups of order p intersect S in A generate a subgroup of order p^r , then p^{r-1} subgroups of order p intersect S in A and $S = A_r^n$. In each case, since S avoids a maximal subgroup of $e^{-C.M.B.}$

G, S is determined up to automorphism by the order of the subgroup generated by all those subgroups of order p which intersect S in A. Hence (n+1) sets are possible.

(ii) Subgroups of order p intersect S in sets B or C. An argument similar to (i) shows that again (n+1) sets are possible, namely C^n , B_1^n , ..., B_n^n .

Since C^n occurs in both cases, we have altogether (2n+1) nonisomorphic sets.

References

1. P. H. Diananda and H. P. Yap, Maximal sum-free sets of elements of finite groups, Proc. Japan Acad., 45 (1969), 1-5.

2. H. B. Mann, Addition theorems: The addition theorems of group theory and number theory, Interscience, New York, 1965.

3. A. H. Rhemtulla and A. P. Street, Maximal sum-free sets in finite abelian groups, Bull. Austral. Math. Soc., 2 (1970), 289-297.

UNIVERSITY OF ALBERTA, EDMONTON, ALBERTA