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ABSTRACT. Snow slab avalanches primarily release by propagation of shear fractures within thin weak
layers under much thicker slabs. In some cases, the weak layer is on the order of 1mm thick and such
fractures may be considered to be a mode II shear fracture at initiation. In the cases analysed in this
paper, the weak layer has finite thickness, and slope-normal effects may be present. Field data from
>500 snow shear fracture tests are analysed and applied to the problem of weak-layer fracture. The
paper contains a detailed analysis using a simple analytical model to estimate the critical length prior to
an unstable shear fracture. The model contains the assumption of a finite fracture process zone which
may be a significant fraction of the slab depth, D, or the critical length, L, for weak-layer shear fracture.
The field results show that the L/D ratio varies from ��0.1 to just over 2, and the model results are close
to the same range. The analysis also shows that both the field and model results for L/D follow a Gumbel
probability density function. Since the experimental field data contain rate-dependent (viscoelastic) and
slope-normal effects, it is imperative to account for these in the model and for snow slab instability
evaluation when using test data. Detailed evaluations considering both these effects are given. The
applicability of the test data to avalanche release is discussed.

NOTATION

D Slab depth measured in slope-normal direction (m)
d0 Weak-layer thickness (m)
E Effective rate-dependent Young’s modulus
E 0 Effective rate-dependent modulus of snow slab (Pa)
g Magnitude of gravity acceleration: 9.81(m s–2)
GII Mode II fracture energy (Jm–2)
L Critical length of shear fracture (m)
L0 Total length of snow block (m)
p0 One-dimensional depth-averaged longitudinal stress

(pressure) (Pa)
x Longitudinal coordinate (m)
y Slope-normal coordinate (m)
� Displacement or slip along shear band (m)
�0 Total slip along shear band (m)
� Elastic shear modulus or viscoelastic modulus (Pa)
�* Coefficient representing proportionality between

slope-parallel traction and �N during rapid shearing
�(f) Frequency-dependent elastic shear modulus or

viscoelastic modulus (Pa)
�s Shear modulus for slab
�w Shear modulus for weak layer
� Mean snow slab density (kgm–3)
�N Slope-normal stress on the weak layer (Pa)
� r Residual shear stress (Pa)
� Viscoelastic analog of Poisson’s ratio
 Slope angle (8)
! Length of fracture process zone (m)

1. INTRODUCTION
Dry snow slab avalanches are observed to release after mode
II shear fracture propagation in a relatively thin weak layer

under a thicker, planar slab. On average, the mode II fracture
propagates within the weak layer for a distance on the order
of 50D (McClung, 2009a) prior to slab release, whereD is the
slab depth measured in the slope-normal direction. It is
natural to suppose that such weak-layer fractures also initiate
as mode II fractures (Schweizer and others, 2003). Field tests
resulting in shear fracture initiation in thin, weak layers under
snow slabs, called propagation saw tests, were developed
independently by Sigrist and Schweizer (Sigrist, 2006),
Gauthier (2007) and Gauthier and Jamieson (2008). Models
of the results of saw tests to predict the critical length, L, for
slope-parallel shear fracture have also been developed
(Heierli and others, 2008; McClung, 2009b).

One objective of the present paper is to explore the
prediction of McClung’s (2009b) model of the extensive
measurements of the critical lengths, L, in the field tests,
making use of the known mechanical and failure character-
istics of alpine snow. These characteristics include rate-
dependent modulus (Mellor, 1975; McClung, 2007a), pres-
sure sensitivity and strain-softening behaviour during shear
failure and fracture (McClung, 1977, 1987; Schweizer,
1998), and finite fracture process zone (FPZ) during fracture
(Sigrist and others, 2005; Sigrist, 2006; Borstad and
McClung, 2009).

There are prominent slope-normal stress and pressure
sensitivity effects implied by the field tests (McClung,
2009b). In this paper, both rate effects and slope-normal
effects are considered in comparison with the modelling
results. The model used (McClung, 2009b) is based on the
work of Cleary and Rice (1974) which is applicable when
the fracture process zone length, !, may be as large as the
critical length (!/L� 1). The model contains the prediction
of shorter critical length for higher applied normal stress
which is evident in the field tests of Gauthier and Jamieson
(2008) and of McClung.

Application of the model illustrates the complexity of
modelling snow fracture using realistic assumptions
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regarding fracture and deformation properties. The verifica-
tion results show that the model predictions of L/D provide
good estimates of the range, probability density function
(PDF) and normal stress effects as seen in the data, even
though the model is a simplified version of the deformation
state in the tests.

Another objective of this paper is to relate applicability of
the saw test results to avalanche release from field obser-
vations of both. The discussion of the test and avalanche
observations reveals that applicability of the saw tests to
avalanche applications must be made with caution.

2. DESCRIPTION OF FIELD TESTS AND DATA
CHARACTERISTICS
The field tests are described in two subsections. Section 2.1
contains the basic description of performance of the tests.
Section 2.2 contains descriptive aspects of the tests from
high-speed films (300 frames s–1) and related observations of
fractures during the tests.

2.1. Performance of the tests
Sigrist (2006), Gauthier (2007), Gauthier and Jamieson
(2008) and McClung (2009b) provide detailed descriptions
of the field tests used in this paper. Of the field test data,
>90% are from the work of Gauthier (2007) and Gauthier
and Jamieson (2008). The procedure involves introducing a

cut upslope or downslope within a weak layer underneath a
long rectangular block of snow cut free on all sides. The cut
is made to a critical length, l, at which the shear fracture
propagates rapidly within the weak layer. Figure 1 contains a
schematic of the test set-up. The block of snow is 30 cm
wide with a total length L0 = 1m and ideally more than two
times D. In most of the tests, all sides are free surfaces.

The cut within the weak layer (Fig. 1) is made either
upslope from the lower end of the block or downslope from
the upper end of the block. Gauthier and Jamieson (2008)
showed that there is no statistical difference between critical
cut lengths made upslope or downslope. For the remainder
of this paper and in the model presented later, I take the cut
as being made upslope. With the cut starting from the free
surface at the downslope end of the block, it is important
that when the propagation condition is met, the cut is not
close to the free surface at the upper end of the block. The
standard length of the block is 1m and median cut lengths
do not exceed 0.65m, so this condition is normally fulfilled.

One important feature of the tests (Fig. 1) is that the weak
layer must be thick enough so that the saw cut does not
intersect the slab. Thus, the weak-layer thickness, d0, should
be greater than �5mm. The finite thickness of the weak
layers tested, along with the finite thickness of the saw, gives
rise to a two dimensional (2-D) deformation pattern in the
weak layer with slow, slope-normal deformation working to
bring the crack faces together. The 2-D aspect negates
comparison of the test results with the earlier models (e.g.
McClung, 1981) based strictly on slope-parallel deformation
only in the weak layer. Avalanches sometimes release by
shear fracture on weak layers which are on the order of
1mm thick. Examples include layers of 2-D stellar crystals
and surface hoar �1mm thick. The analysis in this paper
does not apply to these cases.

Table 1 contains descriptive statistics for field-measured
parameters from 42 slab/weak-layer combinations compiled
from 559 tests where � is the mean slab density. All the tests
were done on dry snow.

2.2. Observations from high-speed films of the
propagation saw tests
When a saw cut is made within the weak layer, there are
some important features which may not apply to avalanche
release but are important in interpreting the test results. High-
speed films (300 frames s–1) and precision displacement,
speed and acceleration estimates were made using particle
tracking (0.11mm pixel–1) during the saw cuts. The particle
tracking was done with particles attached to the slab.

Fig. 1. (a) Schematic for field tests made with a saw cut of critical
length L within a weak layer of thickness d0 with a total block
length L0. (b) Side-view schematic of the field tests, with D as the
slab depth and slope angle  . The parameter ! is the length of the
fracture process zone. The coordinate system is defined such that
x is measured from the left end of the block (x=0) to the end of the
cut or slip surface (x= L) in the direction of the dotted line in the
centre of the weak layer.

Table 1. Descriptive statistics for L, L/D, �,  and D from 42 weak-
layer/slab combinations comprising 559 tests. More than 90% of
the data are from Gauthier (2007) and Gauthier and Jamieson
(2008)

Descriptor

L L/D �  D

m kgm–3 8 m

Min. 0.07 0.14 85 0 0.08
Max. 0.61 2.2 266 43 1.3
Median 0.29 0.88 164 30 0.33
Mean 0.30 0.98 165 27 0.39
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Maximum slope-normal displacement prior to propagation
was <1mm. Slope-parallel displacement in the slab was not
observed. This is probably due to the resolution accuracy. In
addition, the saw cut will produce the overwhelming amount
of displacement in the weak layer, not the slab, and weak-
layer displacements were not measured. Model predictions
(section 7) suggest the total weak-layer slip, �0, is on the order
of a few tenths of a millimetre.

Two types of initial fractures are observed with the tests.
In most cases, slope-parallel weak-layer propagation is
observed. However, slab tensile fracture is sometimes
observed, occurring at a distance of �1D ahead of the
saw. Gauthier (2007) presented extensive data from 87 slab/
weak-layer combinations representing >800 tests with a
2mm thick saw. The data showed that in 16% of the
combinations, tensile slab fracture was primarily observed in
the individual tests; in 71%, weak-layer propagation was
primarily observed; and in 13%, observations were missing
or inconclusive or the mix of slab fractures and slope-
parallel propagation was about the same. Thus, in most
cases, the first fracture to propagate is in the slope-parallel
direction which is interpreted here as mode II fracture.

The films and observations revealed that test results
depend on the blade thickness of the saw used. With a thin
saw (1mm), the first fracture to propagate is nearly always in
the slope-parallel direction. With a thicker saw (3mm), the
first fracture still usually propagates in the slope-parallel
direction but tensile slab fractures occur more often than
with the thin saw. For cases of tensile slab fracture, I believe
that the gap created by the saw causes slab bending to
precipitate the slab tensile fracture.

Tensile slab fractures in slab avalanches (McClung,
2009a) occur, on average, at a distance of �50D after
initiation, which is long after weak-layer propagation. Thus,
the initial slab fractures seen in some of the propagation saw
tests (at 1D) seem to be an artifact of a gap created by the
saw rather than having much relation to avalanche tensile
fractures.

In all cases, the films showed that the collapse mentioned
in the models of Perla and LaChapelle (1970) and Heierli
and others (2008) is a dynamic effect that occurs after, and in
response to, the shock of either dynamic slope-parallel
weak-layer propagation or dynamic tensile slab failure.
Since the gap created by the saw is unlikely to be realistic for
avalanche release, slope-parallel propagation, as seen in
most of the tests, is assumed to be the initiation mechanism
for fracture.

Results from high-speed films of the tests show there is
very little contact of the faces of the crack behind the saw
cut. Haefeli (1951, p. 195; 1954, p. 101–102) claimed to
have measured the residual shear stress for alpine snow and
� r� 0. Given these results, it is assumed that � r� 0 for the
analysis in this paper. This assumption might not apply to
avalanche initiation for which there is no saw cut.

3. MODEL DESCRIPTION
The model employed is derived by McClung (2009b). It is
one-dimensional (1-D) even though the weak-layer deform-
ation pattern produced by the saw is 2-D. Thus, it is a
simplified version of what actually takes place when the saw
cut is made.

The propagation condition for the geometry of Figure 1 is
derived from the solution of two equations (equations 6 and

10) from McClung (2009b). These are given respectively as
Equations (1) and (2) below for application to the tests with
� r = 0. Equation (1) relates driving energy to resistance to
band motion:

Dp0
2

2E 0 þ ð���NÞ�0 ¼ GII: ð1Þ
In Equation (1), the depth-averaged normal stress due to slab
weight is �N= �GD cos (with mean slab density �), �* is a
dimensionless coefficient depending on weak-layer crystal
form, GII is mode II weak-layer fracture energy, and
E 0 =2�/(1 – �) is a rate-dependent effective modulus (� and
� are shear modulus and Poisson’s ratio). In Equation (1), –�0
is the depth-averaged longitudinal stress upslope and just
beyond the end of the saw cut at x= L, and �0 is total weak-
layer slip at the free surface (x=0) induced by the saw cut.

The other equation needed to complete the propagation
condition (McClung, 2009b, equation 10) relates slip along
the band to position x:

x ¼ 2
C1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C0 � C1�

p
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C0 � C1ð2�Þ

q� �
þ L� !,

0 � x � L� !,
ð2Þ

where C0 ¼ 2GII=DE 0 and C1 ¼ 2ð���NÞ=DE 0. In Equa-
tion (2), �ðxÞ is slip at position x, and � is the mean value
of slip inside the fracture process zone of length !.

With � = �0 at x= 0, Equations (1) and (2) may be
combined to give the propagation condition which is solved
for the critical length:

L
D

¼ 1
���N

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2E 0GII

D

r ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2���N�

GII

s
þ !

D
� p0
���N

: ð3Þ

Equation (3) contains five parameters (E 0, GII, 2�, !, �*) that
are not measured in the tests. The parameters are determined
from measurements and estimates on alpine snow in section
4 to analyse the test results.

In Equation (3), the last two terms on the right are
independent of �N, since p0 is proportional to �N (McClung,
1981). Of these two terms, the first, !/D, is small and
positive and the second is small and negative. For the data
comparison below, Equation (3) is approximated by
assuming that these two terms (positive and negative)
approximately cancel:

L
D

¼ 1
���N

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2E 0GII

D

r ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2���N�

GII

s
: ð4Þ

The assumption that the last two terms in Equation (3) can be
neglected is partially justified by field tests below. Sigrist
(2006, p. 68), from precision tensile tests on alpine snow,
estimated that the FPZ for alpine snow is about 5–10 cm for
the snow densities used in this paper. The median value of
D is 0.33m for the tests, which gives an estimate of
!=D�0.15–0.30 as a rough average.

To evaluate the negative term, values of �* and p0 are
needed. For surface hoar (the most common weak layer in
the tests), it is suggested in section 4 below that �* = 0.2.
From McClung (1981), p0 ¼ �=2ð1� �Þ½ ��N, where � is
interpreted as a viscoelastic analog of Poisson’s ratio.
Shinojima (1967) measured the ratio of lateral to compres-
sive stress for viscoelastic compressive strain states for
35 snow samples (densities 90–275 kgm–3) to yield a mean
value (0–0.1). Mellor (1975, p. 268) provides a broad range
of suggested values for �, with the middle values matching
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the data of Shinojima (1967). Using the mean value �=0.03
(range 0–0.1), the last term in Equation (3) is
�p0=ð���NÞ � 0:08 for surface hoar with a range 0 to
–0.28 using Shinojima’s data.

The approximate estimates of the last two terms of
Equation (3) suggest Equation (4) may provide slight under-
estimates, particularly for thin slabs. Figure 2 shows the field
measurements for L=D versus D for 45 slab/weak-layer
combinations (663 tests). The data show that low ratios of
L=D occur mostly for thicker slabs. Thus, the thinner slabs
should not have significantly higher percentage error than
the thicker slabs.

4. MODEL INPUT PARAMETERS FROM PREVIOUS
WORK

Four of the input parameters (2�, ��, GII, E 0) are taken from
previous work since it is not possible to measure them along
with the field tests. Each is described below in a separate
subsection.

4.1. Determination of 2�� for snow in simple shear
laboratory experiments
Laboratory test results show that when failure is achieved
during slow load application (a peak on a shear-stress/
displacement curve) alpine snow is in a dilatant state whether
the sample simply fails and slowly softens after the peak, or
fractures and collapses or settles rapidly after the peak is
achieved (McClung, 2007c, 2009b. The laboratory results
suggest that the characteristic mean displacement over
which rapid softening takes place in a fracture experiment
is of the order 2� ¼ 0:1mm. This value is similar to results in
tension fracture experiments on alpine snow (McClung and
Schaerer, 2006, p. 84; Sigrist, 2006; Borstad and McClung,
2009), and concrete (Bažant and Planas, 1998, p. 180). Slow
shearing strain-softening failures on alpine snow without
fracture typically show displacements over which softening
takes place an order of magnitude above this value, i.e.

� = 1mm or more (McClung, 1977; Schweizer, 1998;
McClung and Schweizer, 1999).

The smaller displacement in shear during fracture, as
opposed to slow softening, is of immense importance since
the size of the FPZ is determined mostly by the material
parameter � relatively independent of the size of the snow
slab (Palmer and Rice, 1973). In the present study, the
assumed value is 2� = 0.08mm� 0.1mm, which is an
appropriate value for shear fracture experiments on dry
snow during shear fracturing (McClung, 2009b). Precision
estimates of 2� with closed loop testing in shear are not yet
available for alpine snow.

4.2. Determination of values of ��* for weak-layer
forms from field tests
In the present model, the effective values of �* represent the
pressure sensitivity for weak-layer forms by the proportion of
slope-parallel traction accompanied by rapid slope-parallel
weak-layer displacement as the saw cut is made. The
traction is assumed to be the initial stress released by the saw
cut. It is taken to be a fraction of the slope-normal stress at
the weak layer: �0 ¼ �*�n (McClung, 2009b), which must be
regarded as an approximation.

When a saw cut is made rapidly, as in the present
experiments, fracture is rapid without the dilatant grain
rearrangement during the slow laboratory shear tests. The
values of �* applied in the model verification below were
taken from pressure sensitivity tests on avalanche weak
layers reported by Jamieson (1995), who placed weights on
shear frames. The values were calculated by making linear
fits through the shear frame strengths measured as a function
of applied normal stress. These calculations gave the
following values for �* for different crystal forms: 0.20
(surface hoar), 0.37 (facets), 0.07 (rounded facets) and 0.47
(decomposing and fragmented forms).

Independent confirmation of these values is provided by
Van Herwijnen and Heierli (2009). They reported similar
instantaneous, initial values just after failure but before
frictional contact, which follows dynamic layer collapse.
From experiments on surface hoar, faceted crystals and
depth hoar from propagation saw tests, skier-tested events
and rutschblock tests, reported values mostly range from
about 0.2 to 0.4, with one very low value of �0.02. All these
values are far below pressure sensitivity estimates from slow
tests (McClung, 1987) which do not exhibit fast fracture.

Haefeli (1954, p. 116–119) reported similar experimental
data on depth hoar. The tests were performed rapidly with
duration of a few seconds since the rate of load application
was �0.6 kPa s–1 and maximum shear strength was �2 kPa.
A least-squares fit to the mean values of strength (mean value
for five series of tests) with normal loads from 0 to 3 kPa give
a value �* = 0.46. Further refinement, taking into account
changes in cohesion with normal stress according to
Haefeli, gave �* in the range 0.27–0.36. These results are
in good agreement with the tests of Jamieson (1995) for the
other persistent forms (surface hoar and facets) and the
results of Van Herwijnen and Heierli (2009).

4.3. Weak-layer mode II fracture energy, GII

In the present study, the weak-layer fracture energy is taken
as a constant, median value estimated by McClung (2007c)
for avalanche applications. The values (McClung, 2007c)
were determined from slab avalanche fracture line data

Fig. 2. Experimental values of L/D versus D for 45 slab/weak-layer
combinations representing 563 field tests. Numbers in the legend
represent data sources: 1 (Gauthier, 2007; Gauthier and Jamieson,
2008); 2 (University of British Columbia); 3 (Sigrist, 2006).
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using the mode II stress intensity factor determined by
Bažant and others (2003) assuming elastic slab behaviour.
Due to the rate dependence of alpine snow, the present tests
are too slow to be assumed elastic, so it would not be
appropriate to determine GII along with the tests. The range
of GII calculated from 278 slab avalanche profiles
(McClung, 2007c) is 0.001–0.2 Jm–2. The median value
determined by McClung (2007a), GII = 0.02Jm–2, is used in
the present validation. This is comparable to, but lower than,
values determined by Sigrist (2006) (0.07 Jm–2) and Sigrist
and Schweizer (2007) and assumed by Heierli and others
(2008) (0.03–0.07 Jm–2).

4.4. Viscoelastic and rate-dependent modulus, E 0

Alpine snow is a highly rate-dependent material (Mellor,
1975; Chae, 1967; Shinojima, 1967) and it is required that
deformation must be very rapid in order to avoid viscous
effects. The experiments described in this paper have been
performed with the speed of the saw cut on the order of
10–20 cm s–1 (Gauthier, 2007; McClung, 2009b), with time
to fracture of several seconds. According to Palmer and Rice
(1973), Rice (1973, p. 272) and Bažant (2005, p. 156), the
slab modulus for viscoelastic deformation should be chosen
in relation to the frequency implied by the speed of advance
over the scale of the FPZ.

From the work of Sigrist (2006) and Borstad and McClung
(2009), it may be inferred that the scale of the FPZ in rapid
tension fractures is about 5–10 cm, which is similar to the
saw width in the present work. Such estimates are for slab
material with, normally, smaller grain sizes than for weak-
layer forms. Thus, it is possible that, on average, the FPZ for
the weak layers used in this paper (mostly surface hoar) may
be larger than 5–10 cm. For application of the saw tests to
shear fractures, the speed of advance relative to the FPZ size
implies that the relevant frequency is of order 1Hz for
choice of the modulus.

For this paper, the viscoelastic storage shear modulus of
the slab, �s, at a frequency of 1Hz as a function of mean slab
density, � (kgm–2), is determined by a nonlinear fit through
the data of Camponovo and Schweizer (2001) from
McClung (2007a) as:

log10 ð�sÞ ¼ 5:58þ 0:00857ð�� 215Þ; �sðPaÞ, 1Hz: ð5Þ
The field data are all taken from weak layers with finite
thickness d0, on average, �2 cm. For a layered system, it is
shown by Hutchinson and Suo (1992) that the effective
shear modulus, �, for describing fracture varies between
�wl <�<�s, where �wl is the effective modulus for the weak
layer. The upper limit, �s, applies for an infinitesimally thin
crack adjacent to the slab, and the lower limit, �wl, applies
for a thin crack entirely embedded within a thick weak layer.
For the present experiments, the weak layer is thin, but of
finite thickness, and the saw cut is not infinitesimally thin. so
the effective modulus should be between the limits. From
hardness differences between the slab and weak layer, it is
suggested that the weak layer is typically lower by a factor of
10 or more in modulus than the slab in avalanche work.
Thus, it is possible that the appropriate modulus, �, to
describe the fracture may vary from the slab stiffness to a
factor of ten or so lower than the slab stiffness.

For the present paper, the shear modulus is assumed to
vary as with a constant stress model from Hull and Clyne
(1996) for a composite material. For a slab with a weak layer
occupying a fraction, f, of the slab/weak-layer system,

mixture theory gives the effective shear modulus as

� ¼ f
�wl

þ 1� f
�s

� ��1

, ð6Þ

where f ¼ d0=D,�wl is the effective modulus of the weak
layer and d0 = 0.02m is the average weak-layer thickness. It
is assumed that the weak layer has a modulus of �wl =
(1/20)�s in the model calculations below. This assumption
produces an effective modulus appropriate for the experi-
ments of, on average, about half �s appropriate for the slab
of given average density. For a median value of D,
f = d0/D = 0.02 m/0.33 m = 0.06 and slab modulus
20 times the weak-layer modulus, Equation (6) yields
� ¼ �s=2:14.

The constant stress mixture model contained in Equa-
tions (5) and (6) yields the limits predicted by Hutchinson
and Suo (1992) for the special cases they considered. If
d0=D ! 0 then �! �s, for the case in which an infini
tesimally thin crack is adjacent to the slab. If d0=D ! 1,
then �! �wl for the case in which an infinitesimally thin
crack is entirely within a weak layer. The high-speed films
(300 frames s–1) of the tests and the work of Sigrist (2006,
p. 90) have shown that the slope-normal deformation within
the saw cut is not infinitesimal as assumed in the linear
elastic fracture mechanics (LEFM) model of Hutchinson and
Suo (1992). Nevertheless, their work suggests reasonable
bounds on the effective modulus. Of the two bounds,
�! �s is the most unrealistic, since the crack is neither
infinitesimally thin, nor directly adjacent to the slab. In order
to perform the tests, so that the saw cut does not enter into
the slab, the layer thickness must be greater than about
d0 = 5mm such that the saw cut remains entirely within the
weak layer.

The effective modulus used in this paper for mode II
fracture is

E 0 ¼ 2�=ð1� �Þ, ð7Þ
where � is the analog Poisson’s ratio for viscoelastic
correspondence. For the low-density snow in the experi-
ments (85–266 kgm–3), based on results suggested by Mellor
(1975) and summarized by Salm (1977), it is assumed that
�=0.1. This corresponds to the upper limit of the data of
Shinojima (1967).

Equation (7) represents an important assumption in the
analysis below. It is partially justified by the model success
explained below and the fact that the effective modulus for
the layered system (slab/weak-layer) should be less than that
for the slab for weak layers of finite thickness, as with the
experiments. In the experiments, the saw is forced through
the weak layer and energy transfer takes place both in the
slab and weak layer.

5. ESTIMATES OF L/D FROM THE 1-D MODEL
5.1. Direct model comparison with data
Table 2 contains a summary of input parameters used in the
model comparison for the four input parameters not meas-
ured in the tests. The parameter E=2�(1 + �) = 2.2� is the
implied rate-dependent Young’s modulus, which may
easily be compared with published values (Schulson and
Duval, 2009).

Figure 3 shows comparison of the data for 27 weak-layer/
slab combinations (355 tests) for which the weak-layer crystal
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forms are known. Nonlinear regression modelling showed

ðL=DÞcalc ¼ CðL=DÞmeas, ð8Þ
where C=1.01�0.13 within 95% confidence limits and
percentage variance explained as R2 (Predicted/Observed) =
0.76. There is considerable scatter in Figure 3. This is partly
due to natural variations in the data with two input
parameters (�, GII) left constant.

5.2. Implied probability density function
Figure 4 shows the experimental data for L/D fitted to a
Gumbel PDF. The data represent 45 different weak-layer/
slab combinations and 563 tests. The abscissa is the
Reduced Variate defined as –ln (–ln (PN) , where PN is the
non-excedance probability given by PNðxÞ ¼

R x
�1 fXðx 0Þ dx 0

and fXðxÞðx ¼ L=DÞ is the PDF. A Kolmogorov–Smirnov (K-
S) goodness-of-fit test gave the K-S test statistic as 0.103 with
a p value of 0.721. The location parameter and scale
parameters are 0.76 and 0.39 respectively.

Figure 5 shows calculated model values for 27 weak-
layer–slab combinations (355 tests) fitted to a Gumbel PDF
using the parameters above. The K-S statistic is 0.155 with a
p value of 0.533. The location parameter is 0.70 and the
scale parameter is 0.56.

Other distributions were considered including log-
normal, Weibull, Frêchet and gamma, but the Gumbel
PDF was chosen since it gave the best goodness-of-fit
statistics and the best fit for the probability plot for both the
sets of measured and calculated values. Thus, the choice of
the Gumbel PDF is empirically based.

Table 2. Values of the four input parameters used in the model
comparison

Parameter Value Comment

GII 0.02 Jm–2 Kept constant
2� 0.08mm Kept constant
E 0.1–3.4MPa Varied with � (85–266kgm–3)
�* 0.07–0.47 Varied with weak-layer form

Fig. 3. Scatter plot of calculated versus measured values of L/D for
27 slab/weak-layer combinations representing 355 tests. The
constant of proportionality is within 95% confidence limits.

Fig. 4. Probability plot for experimental values of medians for 45
slab/weak-layer combinations, weak layers representing 563 tests.
The plot suggests that the ratio follows a Gumbel normal PDF. The
reduced variate is –ln(–ln(PN)), where PN is the non-exceedance
probability defined in the text.

Fig. 5. Probability plot for 27 slab/weak-layer combinations
representing calculated vales for 355 tests similar to Figure 3. The
plot suggests the values follow a Gumbel probability function.
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Due to lack of information about slab density, weak-layer
crystal form or �*, Figure 5 does not have as many weak-
layer/slab combinations as Figure 4. The constant input
parameters, (G I I = 0.02 J m–2; 2� = 0.08 mm) imply
�*�N<250Pa in order to obtain a solution. Thus, some
slab/weak-layer combinations did not yield solutions for
high normal stresses (>1 kPa). The highest slope-normal
stresses in the database come from faceted weak layers with
slope-normal stress around 2500Pa, which either implies
�* < 0.1 or GII > 0.02 Jm–2.

Both of these explanations are possible. Jamieson (1995)
measured a weak layer with rounded, faceted forms which
implies �* = 0.07 so the model can still apply. Importantly,
high slope-normal stresses are usually associated with weak
layers of older snow which may have higher fracture energy
values than the average used in the model comparison here.
It is well known that the shear strength of weak layers tends
to increase with normal stress overburden and time,
provided they are not subject to high temperature gradients
(Chalmers and Jamieson, 2003; Zeidler and Jamieson,
2006). Since shear strength is an important component of
GII (Bažant and others, 2003), it is expected that GII

increases as layers age and �N increases by snow loading.
In deep alpine snowpacks, strong temperature gradients are
usually found in the upper portion, not at deep weak layers.

Use of GII = 0.1 J m–2 yields predictions for any case in
the database. Assuming GII = 0.1 Jm–2 for two deep slabs
(highest values of �N in the database) on a faceted layer
(Gauthier and Jamieson, 2008) gave L/D (measured;
predicted) as: (0.29; 0.25) and (0.36; 0.55) for values of
(D, �,  ) respectively of: (1.3m; 233 kgm–3; 238); (0.98m;
262 kgm–3; 08).

5.3. General slope-normal dependence
Slope-normal dependence in the field data and the model is
a direct consequence of the release of gravitational potential
energy by making the saw cut in a relatively thick weak
layer. In order to isolate one parameter in field tests, slope-
normal dependence in this case, the slab and weak layer
properties must be roughly the same for each slope angle.

Three datasets are available for testing slope-normal
dependence: (1) tests on slopes of 08, 308 and 388 reported
by Gauthier and Jamieson (2008) for a weak layer of
decomposing and fragmented crystals (DF); (2) tests on a
surface hoar (SH) layer at Rogers Pass, British Columbia,
Canada (McClung, 2009b); and (3) tests on a surface hoar
(SH) layer at Kootenay Pass, British Columbia (McClung,
2009b). Table 2 contains a summary of test results in
comparison with the model. The results show that the model
predicts the correct trend and magnitude. For the same slab
and weak layer, critical length increases with slope angle.

For constant slope angle ( =308), three sets of measure-
ments with a weak layer of faceted snow reported by Sigrist
(2006) gave the following results for pairs of L/D (measured;
predicted): (0.85; 0.67); (0.89; 0.73); (1.14; 1.10).

In order to explore the general slope-normal dependence
further, Equation (4) may be expressed as

L
D

¼ C1

�N

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� C2�N

p
, ð9Þ

wh e r e C1 ¼ ð1=��Þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2E 0GII=D

p
a n d C2 ¼ ð2���=GIIÞ.

Theoretical calculations of C1 for 35 slab/weak-layer
calculations, with the inputs described above, show that it
varies from 115 to 992Pa, with a median value of 540 Pa. In

order that the calculations may extend over the entire range
of slope-normal stresses in the data (maximum value
2735Pa; faceted snow), it is assumed that u* = 0.07 (min-
imum value for faceted weak layer) in C2 to give an estimate
C2 = 0.28	10–3 (Pa–1) with 2� =0.08mm, GII = 0.02 Jm–2 as
before. The normal stress calculations show that there is a
lack of data between �N=1–2 kPa, but the data suggest rapid
decline in the value of L/D up until �1 kPa normal stress,
and the model predicts similar behaviour.

Nonlinear robust regression of the data for Equation (9)
(42 slab/weak-layer combinations), using the Marquardt
algorithm with C2 = 0.28	 10–3 Pa–1, gave a value
C1 = 293Pa that falls approximately midway between the
minimum (115Pa) and median (540 Pa) values estimated
theoretically. The percent variance explained for the non-
linear regression is (raw) R2 = 0.77. Figure 6 shows three
calculated curves based on the theoretical minimum,
maximum and median values of C1 compared with the
measured data versus normal stress calculated from the data.
The results show that the theoretical curves bracket the
measurements well and the median curve goes approxi-
mately through the middle range of most of the data.

These numerical results are not sensitive to the chosen
value of C2. If C2 = 0 then C1 = 286Pa and if C2 = 0.36	
10–3 Pa–1 then C1 = 295Pa. The latter value of C2 is the
largest allowable for the dataset given that the highest value
of �N is 2.375 kPa so that the constraint on Equation (4) is
satisfied. The reason the calculations are not sensitive to C2

is the scarcity of data for �N between 1 and 2 kPa.

6. RELATION TO AVALANCHE RELEASE AND
FORECASTING
It is important that the results of the propagation saw tests be
used carefully when applied to slab avalanche initiation.
Two very important differences are evident from obser-
vations during the tests.

First, introduction of a saw cut produces a gap behind the
saw which depends importantly on the thickness of the saw
used. In the case of slab avalanche release, there is no such
gap (Schweizer and others, 2003). The tensile slab fractures
in the tests are caused by the artificial gap produced by the
saw to produce bending at a distance of � 1D ahead of the
saw. The tensile fracture at the crowns of slab avalanches
occurs, on average (McClung, 2009a), a distance of �50D
upslope of the weak-layer fracture initiation point. This
suggests that the separation gap introduced by the saw cut,
and the slab bending associated with it, does not play a role
in tensile fracture of the crown of avalanches. If slab bending
effects in avalanche initiation were comparable to those
produced by the saw gap, one would expect to see slab
avalanche tensile fractures at short distances.

Second, direct extrapolation of results of the saw tests,
where a gap is made with the saw, to avalanche release
where the deformation conditions are not well known, must
be carefully done. The interest in the propagation saw tests is
that they exhibit slope-parallel weak-layer propagation even
if  =08, which is a characteristic of natural weak-layer
propagation under human influences. The most likely reason
either saw tests or natural fractures can produce propagation
for  >08 is that both induce complex loading with slope-
normal and slope-parallel weak-layer deformation. Natural
propagation for low slope angles or  =08 is not observed for
slow loading by snowfall which is the most common cause

McClung: Critical length measurements for weak-layer shear fracture 563

https://doi.org/10.3189/002214311796905541 Published online by Cambridge University Press

https://doi.org/10.3189/002214311796905541


of avalanche release. The reason is that mostly slope-normal
weak-layer deformation is expected by slow snowfall
loading for  =08, which apparently cannot drive a slope-
parallel fracture. Slab avalanches under loading by snowfall
are only observed under conditions for which slope-parallel
deformation can become significant ( >258). Thus, the link
between the saw tests and natural fractures for  =08 (or low
slope angles) is likely to be due to the presence of slope-
parallel slip under complex loading due to the saw cut or
human intervention.

The field data suggest that L/D is in the range 0.1–2.2 for
dry snow with median about 0.9. Thus, the median
approximately matches the prediction of Bažant and others
(2003) that the ratio should be of order one or somewhat
larger. In addition, the data agree with the prediction of
McClung and Schweizer (1999) that the critical length

should be a significant fraction of a meter. From Table 3, the
median critical lengths for all the tests are �30 cm, with
variation from about 0.1 to 0.6m. It is not surprising to find
such variations since, in reality, each weak layer and slab
consists of snow with a different combination of crystal
forms and size and physical characteristics. The minimum
value of L (0.07m) is close to the estimate of the FPZ size
from tensile tests. Fracture propagation would not normally
be expected for sizes less than the FPZ.

The suggestion of small (tens of cm) but finite critical
lengths has very important implications for forecasting and
decision-making for backcountry travel in avalanche terrain.
Such small regions under a slab would be nearly impossible
to locate. Similarly, it would be virtually impossible to
measure their properties. The practical use of the test
(Gauthier, 2007; Gauthier and Jamieson, 2008) is best

Fig. 6. Model limit estimates of L/D from Equation (7) with C2 = 0.28 kPa–1 and C1 = 115540992 Pa as minimum, median and maximum

Table 3. Median values of L and L/D (measured and calculated) for three layers at different locations. The test sequences are chosen for
different slope angles to assess slope-normal dependence. Weak-layer forms are DF (decomposing and fragmented) and SH (surface hoar).
The values of L/D are calculated from Equation (4). The measured values represent the median of each test set. Cases in the top three rows
are from Gauthier and Jamieson (2008) and the other cases are from the University of British Columbia

L: meas L/D: meas L/D: calc  No. of tests Test sequence Weak-layer form

m 8

0.13 0.93 1.07 0 23 1 DF
0.19 1.68 1.81 30 17 1 DF
0.22 2.20 2.62 38 4 1 DF
0.19 0.56 0.89 6.5 10 2 SH
0.39 1.08 1.08 38 10 2 SH
0.43 1.15 0.79 0 10 3 SH
0.61 2.03 1.43 32 10 3 SH
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centred on how likely the fracture is to propagate for
considerable distance and release an avalanche.

7. SUMMARY AND LIMITATIONS
Every slab/weak-layer combination has different mechanical
properties. However, in this paper, the values of �* were
varied with weak-layer type and the values of E 0 were varied
with slab density � while the other two parameters not
measured in the tests (�, GII) were taken constant. This
deficiency limits the accuracy of the predictions and
increases scatter (Fig. 3).

The model sometimes does not perform well at high
normal stress (thick slabs). This can be due to a number of
factors. The most likely is that the constant median value
GII = 0.02 Jm–2 used in the evaluation may be too low since
thicker slabs generally imply older snow in the weak layer
which strengthens as it ages and overburden increases.

The propagation saw-test experiments display 2-D weak-
layer deformation whereas the model here contains only
1-D deformation based on slope-parallel slip. Due to the
applied normal load acting on the weak-layer plane and
the slope-normal displacement, it is not possible that the
conditions in a propagation saw test constitute pure mode II
loading.

Measurements of the slope-normal displacement in the
tests show that it implies closure of the gap created by the
saw and mode I loading. It is possible that the energy
implied by the interaction of slope-normal stress and slope-
normal displacement does not have much influence on the
conditions for slope-parallel propagation. For small-scale
yielding, Broberg (1999) shows that for the case of a crack
moving without change of direction and mixed mode I and II
loading, the energy released by the action of slope-normal
stress and slope-normal displacement does not produce
energy together with slope-parallel slip. Primary slope-
parallel propagation is observed in the tests from precision
deformation measurements along with speed and accelera-
tion calculations prior to dynamic slope-normal collapse.
The slope-parallel propagation may represent the path of
least energy needed to propagate fracture due to the low
expected values of GII in the fragile weak layers tested
(McClung, 2007c; Sigrist and Schweizer, 2007) and the
imposition of slope-parallel slip by the saw action. From
Equation (1), neglecting the pressure term gives a maximum
value of slope-parallel slip �0 = 0.2mm for �* = 0.2 (surface
hoar) and the median value of �N=462Pa, but this is in the
weak layer, not the slab.

The model used here contains the basic elements
experimentally displayed by alpine snow: rate dependence,
finite-sized fracture process zone, pressure sensitivity and
strain-softening. One important result of this paper is to
illustrate that a simple model can provide a reasonable match
to field data using known snow properties. The simple model
used requires at least five parameters which are not measured
in the tests. A model based on LEFM requires fewer
parameters but it would be inconsistent with the way snow
deforms and fails. LEFM implies rate independence and
infinitesimal FPZ.

Alpine snow is highly rate-dependent. For a density of
200 kgm–3, changes in modulus from a frequency of
1–100Hz imply that E 0 (Mellor, 1975; Sigrist, 2006)
increases by more than a factor of 10 or that values of L/D
increase by more than a factor of 3. The analysis in this

paper does not apply to applications such as high rate of
energy delivery during explosive control since the test data
were performed with a saw speed of �20 cm s–1.

No claim is made that the simple model used here
(McClung, 2009b) is definitive in relation to avalanche
fractures. However, it is consistent with the manner in which
snow deforms, fails and fractures and it provides a reason-
able match to the test data.
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