A MODIFIED PROJECTION METHOD FOR EQUATIONS OF THE SECOND KIND: CORRIGENDUM AND ADDENDUM

M. THAMBAN NAIR

The author would like to correct an error in the statement of a result [in Bull. Aust. Math. Soc. 36 (1987) 485-492] and also to incorporate an additional result.

In Theorem 2.2(3) it is stated that if \(T \) is a compact self adjoint operator on a Hilbert space and \(\pi_n \)'s are orthogonal projections, then the Kantorovich approximation \(x^K_n \), Sloan approximation \(x^S_n \) and the modified projection approximation \(x^M_n \) are of the same order. That this is not correct was pointed out to the author by Professor I.H. Sloan. The correct statement is the following:

THEOREM 2.2.(3). If \(T \) is a compact self adjoint operator, then the orders of convergence of \(x^K_n \), \(x^S_n \) and \(x^M_n \) are at least \(\varepsilon_n = \min\{\|R^K_n\|, \|R^S_n\|\} \), where \(R^A_n x = x - x^A_n, A \in \{K, S\} \), that is, there exists a constant \(c > 0 \) such that

\[
\|x - x^K_n\| \leq c \varepsilon_n, \quad \|x - x^S_n\| \leq c \varepsilon_n \quad \text{and} \quad \|x - x^M_n\| \leq c \varepsilon_n.
\]

From the definition \(x^K_n \) and \(x^M_n \) we note that

\[
(1 - \pi_n T)(x - x^K_n) = (1 - \pi_n)T x = (1 - \pi_n)(x^K_n) = (1 - \pi_n)(x - x^M_n),
\]

so that along with Theorem 2.1, we obtain:

THEOREM. There exist positive constants \(c_1 \) and \(c_2 \) such that

\[
c_1 \|x - x^K_n\| \leq \|x - x^M_n\| \leq c_2 \max\{\|x - x^K_n\|, \|x - x^S_n\|\}.
\]

Thus whenever \(x^S_n \) is better than \(x^K_n \), \(x^M_n \) and \(x^K_n \) have the same order of convergence.

Department of Mathematics
Goa University
Bambolim, Santa-Cruz P.O.
Goa - 402 005
India

Received 5th June 1989

Copyright Clearance Centre, Inc. Serial-fee code: 0004-9729/89 $A2.00+0.00.