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Basic Group Theory and
Representation Theory

In this chapter, we present the basic theory of finite groups and their representations
as preparation for the discussion of continuous groups that starts from Chapter 3. It
is assumed that readers know the basics of set theory, vector spaces, transformations,
linear operators, matrix representations, inner products and such. These will be called
upon as and when needed.

1.1 Definition of a Group

A group G is a set of elements a, b, c, · · · , g , g ′, · · · , e, · · · along with a composition
(or ‘multiplication’) law obeying four conditions:

(i) Closure: a, b ∈ G → ab = unique product element ∈ G .

(ii) Associativity: for any a, b, c ∈ G ,

a(bc) = (ab)c = abc ∈ G .

(iii) Identity: there is a unique element e ∈ G such that

ae = ea = a, for any a ∈ G .
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2 Continuous Groups for Physicists

(iv) Inverses: for each a ∈ G , there is a unique a−1 ∈ G , the inverse of a, such
that

a−1a = aa−1 = e. (1.1)

The composition rule or law can be called a binary law as the product is defined for any
pair of elements. The conditions in (1.1) could be stated in more economical forms,
for instance introducing only a left identity and left inverses, and then showing that
the more general properties in (1.1) do hold.

One can immediately think of various qualitatively different possibilities. The
number of (distinct) elements in G may be finite. Then this number, denoted by
|G |, is called the order of G . Some other possibilities are that the number of elements
may be a discrete infinity, or else a continuous infinity with G being a manifold of some
dimension.

1.2 Some Examples

(i) The symmetric group, the group of permutations on n objects, is finite, of order
n!, and is denoted by Sn. We mention only a few pertinent properties now, and
go into some more detail in Chapter 2. Each p ∈ Sn can be written in several
convenient ways:

p =
(

1 2 · · · n
p(1) p(2) · · · p(n)

)
=
(

j
p(j )

)
j=1···n

= (1 p(1) p(p(1)) · · · ) (j p(j ) p(p(j )) · · · ) · · · (k p(k) p(p(k)) · · · ). (1.2)

In the first form the columns can be rearranged at will, while in the second form
the factors and their entries are distinct. The composition law can be developed
as follows:

qp =
(

k
q(k)

)(
j

p(j )

)
=
(

p(j )
q(p(j ))

)(
j

p(j )

)
=
(

j
q(p(j ))

)
,

i.e.,

(qp)(j ) = q(p(j )), j = 1, 2, · · · , n. (1.3)
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We have followed here the rule of ‘reading from right to left’. The identity and
inverses are:

e =
(

1 2 · · · n
1 2 · · · n

)
=
(

j
j

)
j=1···n

= (1)(2) · · · (n);

p−1 =
(

p(j )
j

)
j=1···n

, i.e., p−1(p(j )) = j . (1.4)

All the conditions in (1.1) can and should be checked.

(ii) All integers with respect to addition. Here the group ‘multiplication’ law is
arithmetic addition. The identity is 0, and inverses are negatives.

(iii) All positive real (or rational) numbers with respect to multiplication. Now the
identity is 1, and inverses are reciprocals.

(iv) All vectors in any (real or complex) linear vector space with respect to vector
addition. Similar to (ii) above, the identity is the zero vector 0, and inverses are
negatives.

(v) SO(2) and O(2), SO(3) and O(3): these are the proper and full groups of rotations
in a plane or in three dimensions, respectively. These are continuous groups with
infinitely many elements. In the O(2) and O(3) cases, the group is made up of two
disjoint components, each of which is continuous and connected in an obvious
intuitive sense. We study these in Chapter 3.
We can also consider discrete subsets of these, leaving invariant some given regular
plane figure or solid. These are the point groups.

(vi) The rotation groups SO(3), O(3) generalise to any dimension n and to the
complex case. Thus we arrive at the groups SO(n) and O(n), SU (n) and U (n)
for various integers n, which we will study in some detail later. Yet others are the
complex orthogonal groups SO(n, C).

(vii) Groups related to spacetime. Here we have the Euclidean, Galilean, Lorentz,
and Poincaré groups. All of these are continuous groups with infinitely many
elements. They have more than one connected component if discrete operations
like space and/or time reflections are included. We will study some of these groups
in Chapter 10.

A group G is said to be abelian if for any pair of elements a and b, ab = ba.
Otherwise it is nonabelian. In the examples listed above, (ii), (iii) and (iv) are abelian.
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4 Continuous Groups for Physicists

Among the symmetric groups, S2 is abelian while Sn for n ≥ 3 is nonabelian. SO(2) is
abelian, and O(2), SO(3) and O(3) are all nonabelian.

The existence and properties of a unique identity element and unique inverse a−1

for each a ∈ G lead to the useful cancellation rules:

ab = ac ⇔ b = c; ba = ca ⇔ b = c. (1.5)

For a finite group G the composition law or entire structure can be displayed in a
multiplication table with |G | ‘rows’ and ‘columns’ labelled by the group elements:

e · · · b · · ·
e e · · · b · · ·
...

...
...

a a · · · ab · · ·
...

...
...

(1.6)

At the intersection of row a and column b stands the product ab. These entries must
be consistent with the group laws (1.1). So by (1.5) each row (column) contains every
element of G exactly once.

1.3 Operations within a Group

For the present we continue to have in mind a finite group, though many concepts
we will go on to introduce are more generally meaningful. For any elements a, b ∈ G ,
conjugation of a by b leads to another element a′ ∈ G :

a′ = bab−1, a = b−1a′b. (1.7)

We then say a and a′ are conjugate to one another. For each a ∈ G , its equivalence
class or conjugacy class C(a) consists of all a′ conjugate to a:

C(a) = equivalence class of a = {bab−1| b ∈ G , omit repetitions} ⊂ G . (1.8)

Different classes are generally of different ‘sizes’. For instance, C(e) = {e} consists of
one element alone. It is easy and important to check:

(i) C(a) = C(bab−1), any b, so C(a) is determined by any one of its elements;

(ii) C(a) ∩ C(b) = C(a) if b ∈ C(a), null otherwise, so two classes cannot

overlap partially;

(iii) G is the union of disjoint equivalence classes. (1.9)
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Basic Group Theory and Representation Theory 5

In Sn, for example, all elements in one class have common cycle structure and vice
versa. Thus if we write any p ∈ Sn in the form

p = (i1 p(i1) p(p(i1)) · · · )︸ ︷︷ ︸ (i2 p(i2) · · · )︸ ︷︷ ︸ · · · ,
m1 m2

n = m1 +m2 · · · , (1.10)

where i2 is not one of the earlier m1 entries, i3 is not one of the earlier m1+m2 entries,
· · · , then m1, m2, · · · is some partition of n. The cycle structure of p is denoted by
(m1, m2, · · · ), and cycle structures determine equivalence classes and conversely. All
p′ ∈ Sn conjugate to p in (1.10) have the same cycle structure as p, and conversely.

In SO(3), as we will recall later, each rotation is by some right handed angle about
some axis. Then each class consists of all rotations by a given angle about all possible
axes.

Subgroups

A subset H ⊂ G is a subgroup if its elements obey all the conditions to be a group,
given the composition law in G . H = {e} or G are trivial cases. An elegant and compact
criterion for a subset to be a subgroup is this:

H ⊂ G is a subgroup⇔ for all h1, h2 ∈ H , h−1
1 h2 ∈ H . (1.11)

As examples of subgroups in familiar groups we have: all even integers in the
additive group of all integers; all even permutations in Sn making up the alternating
subgroup An; Sn−1 within Sn, i.e., permutations p with p(n) = n; all rotations in
SO(3) about a given axis.

In a finite group, each element leads via its ‘powers’ to a subgroup called its cycle:

a ∈ G → {e, a, a2, · · · , aq−1} = cycle of a = subgroup in G ,

q = least positive integer such that aq = e, q = order of a. (1.12)

We will see that q divides |G |; it is clear that a−1 = aq−1, etc.

Given a subgroup H ⊂ G and any g ∈ G , conjugation leads to another conjugate
subgroup:

Hg = gHg−1 = {ghg−1| h ∈ H varying, g fixed} ⊂ G . (1.13)

Of course, g ∈ H implies Hg = H ; and if g 	∈ H , Hg could be different from H .
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6 Continuous Groups for Physicists

Cosets

Given a subgroup H ⊂ G , there are two generally distinct and useful ways to break G
up into subsets, based on two kinds of cosets:

aH = {ah| a fixed, all h ∈ H } = right coset containing a ∈ G ;

Ha = {ha| a fixed, all h ∈ H } = left coset containing a ∈ G . (1.14)

As we saw with equivalence classes, here too it is easy to see the following: each coset
is determined by any one of its elements; two cosets (both right or both left) either
coincide fully or are disjoint; G is a union of (right or left) cosets. However, unlike
classes, each coset is of the same ‘size’, namely as ‘big’ as H . It follows that |G |/|H |
is an integer, the number of disjoint right (or left) cosets. This is Lagrange’s theorem.
The claim made after (1.12) is now understood.

For a general subgroup H ⊂ G , right and left cosets are different, leading to
different ways of expressing G as a union of disjoint subsets. However, if Hg = H for
all g ∈ G , i.e., H is self conjugate, then every right coset is also a left coset and vice
versa. Then we say H is a normal or an invariant subgroup:

H is an invariant subgroup ⇔ Hg = gHg−1 = H for every g ∈ G

⇔ aH = Ha for every a ∈ G

⇔ the two kinds of cosets coincide. (1.15)

Then these (common) cosets can themselves be regarded as elements of a group, the
quotient group or factor group G/H : the identity is the coset containing the identity
element, eH = H , ie, H itself; the composition of two cosets is given by aH · bH =
ab ·H ; and for inverses we take (aH )−1 = a−1H . It is easy to check that all the group
laws are obeyed. The orders obey |G/H | = |G |/|H |.

For any group G , there are two natural invariant subgroups, the centre and the
commutator subgroup. The former consists of all those elements which ‘commute’
with all elements,

Z = centre of G = {a ∈ G | ab = ba for all b ∈ G}, (1.16)

so obviously it is abelian. The latter is more intricate and in fact is a way of ‘measuring’
the extent to which G is nonabelian. If G is abelian, then always ab = ba. In general,
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we define the commutator of any two elements a and b as the element

q(a, b) = aba−1b−1 = measure of noncommutativity of a and b,

q(a, b) = e ⇔ ab = ba. (1.17)

It is easy to see that under inversion and conjugation,

q(a, b)−1 = q(b, a), cq(a, b)c−1 = q(cac−1, cbc−1). (1.18)

The commutator subgroup Q ⊂ G is now defined as consisting of products of any
numbers of commutator factors:

Q = {q(a1, b1)q(a2, b2) · · · q(am , bm)| any m, a’s, b’s}. (1.19)

It is easy to see from (1.18) that Q is an invariant subgroup of G . Further, since
ab = q(a, b)ba = baq(a−1, b−1), we see that G/Q is abelian. Thus in the quotient all
noncommutativity in G has been removed.

There is a converse to this statement: if H is an invariant subgroup in G such that
G/H is abelian, then H contains Q .

For the symmetric group Sn, Q is the alternating group An of all even
permutations, and Sn/An is the two element abelian group.

We mention that the concept of the commutator subgroup is basic to the definitions
of so-called solvable and nilpotent groups, but we do not go into them here.

Returning to the general concept of invariant subgroups, we have two important
definitions:

(a) G is simple ⇔ G has no (proper) invariant subgroup;

(b) G is semisimple ⇔ G has no invariant abelian subgroup. (1.20)

This leads to a one-way relationship: G is simple⇒ G is semisimple.

Among the symmetric groups Sn we always have the alternating subgroup An

which is invariant, so all Sn are nonsimple. For n = 3 or n ≥ 5, An is the only invariant
subgroup in Sn. In the case of S4, apart from A4 there is one other invariant subgroup
K of 4 elements, and the quotient S4/K ∼ S3. In contrast, the rotation group SO(3)
is simple.

The last operation within a given group we consider is that of an automorphism.
Given G , an automorphism of G is a map τ : G → G which is one-to-one, onto,
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invertible and preserves products:

a ∈ G → τ (a) ∈ G : τ (a)τ (b) = τ (ab), τ−1 exists, τ (G) = G . (1.21)

It is easy to see that τ (a)−1 = τ (a−1), τ (e) = e. Conjugation by a fixed g ∈ G is an
automorphism:

g ∈ G , fixed: τg (a) = gag−1, a ∈ G . (1.22)

The conditions in (1.21) are immediately verified. These are called inner
automorphisms, all others are outer . Clearly if G is abelian, every nontrivial
automorphism is outer. We will later come across physically important examples of
automorphisms.

1.4 Operations with and Relations between Groups

We consider four of these:

(A) Homomorphism Given two groups G ′ and G , a homomorphism is a map � :
G ′ → G such that images of products are products of images:

�(a′b ′) = �(a′)�(b ′), all a′, b ′ ∈ G ′. (1.23)

It is easy to see that�(e ′) = e ∈ G ,�(a′−1) = �(a′)−1,�(G ′) ⊂ G is a subgroup
in G . We may generally assume �(G ′) = G or else limit ourselves to �(G ′) in G .
The kernel of a homomorphism is

K = {g ′ ∈ G ′| �(g ′) = e} = invariant subgroup in G ′, (1.24)

so we can form the quotient G ′/K .

(B) Isomorphism This is a particular case of homomorphism when � is one to one,
onto and invertible, so �(G ′) = G . Thus as groups G ′ and G are ‘identical’ or
essentially the same. Returning to a general homomorphism, case (A), we see that,
assuming �(G ′) = G ,

G ′/K is isomorphic to G . (1.25)

In an isomorphism G ′ and G play symmetric roles, but in a homomorphism this
is not so.
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(C) Direct product Given two groups G1 and G2, their direct (or Cartesian) product
G1 × G2 is another group. Its elements are ordered pairs (a1, a2) with a1 ∈ G1,
a2 ∈ G2. The group law is trivial, each entry ‘minding its own business’:

(a1, a2)(b1, b2) = (a1b1, a2b2);

identity = (e1, e2);

(a1, a2)−1 = (a−1
1 , a−1

2 ). (1.26)

The orders multiply: |G1 × G2| = |G1||G2|. In a natural sense, G1 and G2 are
invariant subgroups in G1 ×G2 and are recoverable as factor groups with respect
to the appropriate kernels.

(D) Semidirect product This is a more intricate way of combining G1 and G2, a direct
product with a ‘twist’, in which G1 and G2 are not treated symmetrically. For each
a1 ∈ G1, we need an automorphism τa1 of G2 obeying certain conditions:

τa′1(τa1(a2)) = τa′1a1(a2),

τa−1
1
= τ−1

a1
. (1.27)

Then the group law for ordered pairs is:

G1 � G2 : (a1, a2)(b1, b2) = (a1b1, a2τa1(b2)). (1.28)

It is instructive to verify the laws of group structure here; it is not as trivial as with
the direct product. In a natural manner we do find that G1 is a subgroup, G2 is
an invariant one, and the quotient G1 � G2/G2 � G1.

We will see several physically important examples of semidirect products, especially
in Chapter 10.

1.5 Realisations and Representations of Groups

A realisation of a group G arises in the following way. We have a set X , and for each
g ∈ G , a map φg : X → X obeying the group and other laws:

(i) each φg one-to-one, onto, invertible;

(ii) φe = IdX , identity map;

(iii) φg ′ ◦ φg = φg ′g , all g ′, g ∈ G ;

so (iv) φg−1 = (φg )−1. (1.29)
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(For composition of maps, associativity is automatic; in a group in the abstract, it is
explicitly postulated). Then we say we have a realisation of G by maps on X .

In the context of realisation of a group G on a set X as defined above, the following
notions naturally arise:

Orbit of x ∈ X : ϑ(x) = {x ′ ∈ X | x ′ = φg (x), some g ∈ G}
Equivalence relation on X : x ∼ y ⇔ φg (x) = y for some g ∈ G

Stability (Isotropy) group H (x) of x ∈ X : H (x) = {g ∈ G | φg (x) = x}
Fixed points Xg of g ∈ G : Xg = {x ∈ X | φg (x) = x for a fixed g ∈ G}

In classical Hamiltonian mechanics, groups usually act as canonical transformations
on phase space. In quantum mechanics, the state space is a linear vector space, a Hilbert
space, and we have the Superposition Principle. In this context, linear representations
of groups become relevant. We will hereafter study only these.

1.6 Group Representations

These are particular cases of realisations, with added features. Given a group G and a
(real or complex) linear vector space V, we have a representation D of G on V if the
following hold:

(i) For each g ∈ G , D(g) = invertible linear operator on V;

(ii) D(e) = 11 = identity or unit operator on V;

(iii) D(g ′)D(g) = D(g ′g), all g ′, g ∈ G ;

so (iv) D(g−1) = D(g)−1. (1.30)

The D(g) are also called linear transformations on V. The representation is faithful if

g ′ 	= g ⇒ D(g ′) 	= D(g), (1.31)

otherwise it is nonfaithful. The dimension of the representation D is that of V; it may
be finite or infinite.

A group G generally has many representations, on various V, of various dimensions.

Given a realisation of a group G on a set X , not naturally endowed with a vector
space structure, one can elevate it to a representation of G by defining a vector space
F[X ] over a field F consisting of all formal linear combinations

∑
i cixi of elements
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xi of X with the coefficients ci drawn from the field F. A particularly interesting
and important case arises when the set X is chosen to be G itself, which would be
analysed in greater detail later in this chapter. Other instances where this device can be
profitably employed are discussed in Chapter 2 in the context of the representations
of the group Sn.

1.7 Equivalent Representations

Let D on V , D ′ on V ′ be two representations of G . (It may happen that V ′ = V but
D ′ 	= D.) We say they are equivalent if there is a linear invertible map S : V → V ′
such that

D ′(g) = SD(g)S−1, all g ∈ G . (1.32)

If no such S exists, they are inequivalent. We are often interested in representations
determined up to equivalence.

For clarity we may assume that both V and V ′ are real vector spaces, or both
complex ones. Cases where one is real and the other complex can be handled
suitably.

1.8 Unitary/Orthogonal Cases – UR’s

Let the complex (or real) space V of a representation of G carry a hermitian
(or symmetric) inner product of vectors, written as (x , y) or 〈x |y〉 for x , y ∈
V. The representation D( · ) of G on V is said to be unitary (or real
orthogonal) if

(D(g)x , D(g)y) = (x , y), all g ∈ G , x , y ∈ V . (1.33)

Unitary representations are usually denoted as UR’s. For the most part we will work
with unitary group representations. Given a representation D( · ) of G on V, it may
happen that there is no choice of inner product on V such that (1.33) holds. Then
D( · ) is essentially nonunitary (or essentially nonorthogonal). For all finite groups as
well as so-called continuous compact groups, every representation is equivalent to a
unitary one. The Lorentz group SO(3, 1) is an important case where this does not
happen.
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1.9 Matrices of a Representation

Assume for simplicity that we are dealing with finite dimensional representations. Given
D( · ) of G on V, choose a basis {ej } in V, and for each g ∈ G write

D(g)ej = Dk
j (g)ek, sum on k. (1.34)

The n × n matrices (Dj
k(g)), where n = dimension of V, j is a row index and k a

column index, are the matrices of the representation in this basis. We simply write
them too as D(g). They obviously obey (1.30) in matrix form:

(i) Dj
k(g1g2) = Dj

l (g1)Dl
k(g2);

(ii) Dj
k(e) = δj

k;

(iii) Dj
k(g−1) = elements of inverse of matrix (Dj

k(g)). (1.35)

Any change of basis {ej } → {e ′j } in V according to

e ′j = (S−1)k
j ek, (1.36)

where S is a (real or complex as the nature of V ) nonsingular n × n matrix leads to
the relation (compare (1.32))

matrix D ′(g) = S
(
matrix D(g)

)
S−1, (1.37)

so the representation matrices experience a similarity transformation.

If the representation D( · ) on V is unitary or real orthogonal, and we use an
orthonormal basis in V , then the representation matrices are themselves unitary or
real orthogonal in the familiar senses.

1.10 Some Operations with Group Representations

We consider a few of these here. Picture a representation via its matrices D(g), and do
not assume unitarity or real orthogonality. We define three operations starting with
D(g):

Contragredient representation: g → (D(g)T )−1 = D(g−1)T ;

Adjoint representation: g → (D(g)†)−1 = D(g−1)†;

Complex conjugate representation: g → D(g)∗. (1.38)
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In each case we clearly see that from the initial representation we have created a new
one. The adjoint is the complex conjugate of the contragredient.

In case D(g) is a UR, it is self adjoint, and the contragredient equals the complex
conjugate. If D(g) is real orthogonal, it is self contragredient.

Direct Sums and Products

Let D1 on V1 and D2 on V2 be two representations of G . Assume V1 and V2 are
both complex or both real, but in general of different dimensions. Then the direct sum
representation D = D1⊕D2 is a representation on V = V1⊕V2 defined in the natural
way:

x1 ∈ V1, x2 ∈ V2→ x = x1 + x2 ∈ V,

D(g)x = D1(g)x1 +D2(g)x2 ∈ V, all g ∈ G . (1.39)

The representation property is immediate, and the dimension is the sum of the
individual ones.

The direct product representation D = D1 ×D2 acts on the tensor product space
V1 × V2: for product vectors,

x ∈ V1, y ∈ V2, g ∈ G : D(g)(x × y) = D1(g)x ×D2(g)y . (1.40)

This is then extended by linearity to general vectors in V1 × V2.

1.11 Character of a Representation

This is an important concept which we will often come back to. It is most simply
defined using the matrices of a representation in any basis. The character χ (D) of
a representation D of G on V, a function on G , is the trace of the representation
matrices:

χ (D)(g) = Dj
j (g) = Tr D(g). (1.41)

By Eq. (1.37) this is actually basis independent. It is in general a complex valued
function on the group, and constant over each conjugacy class:

χ (D)(g ′gg ′−1) = χ (D)(g). (1.42)
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14 Continuous Groups for Physicists

So we say χ (D)(g) is a class function. For a UR, χ(g−1) = χ(g)∗. For sums and
products of representations, the character behaves very simply:

χ (D1⊕D2)(g) = χ (D1)(g)+ χ (D2)(g),

χ (D1×D2)(g) = χ (D1)(g)χ (D2)(g). (1.43)

We will soon see that the character of a representation determines the representation
completely up to equivalence.

1.12 Invariant Subspaces, Reducibility, Irreducibility – UIR’s

Given a representation D of G on V , it is reducible if there is a nontrivial subspace
V1 ⊂ V invariant under G action:

x ∈ V1, g ∈ G ⇒ D(g)x ∈ V1. (1.44)

If no such V1 exists, D( · ) is an irreducible representation, or an irrep. If it is also
unitary, we say it is an UIR – unitary irreducible representation.

The convenient abbreviations ‘irreps’, ‘UR’ and ‘UIR’ will be used throughout.
In general we will keep in mind the complex case.

In the reducible case we can go further and ask: can we supplement V1 with another
(disjoint) subspace V2 ⊂ V which is also invariant and such that V = V1 ⊕ V2? If we
can, then D( · ) is decomposable, otherwise it is indecomposable. So the arrangement of
these ideas can be indicated in this way:

Irrep No nontrivial invariant subspace V1

↗
Rep. D of G on V

↘
Reducible V1 ⊂ V , nontrivial, invariant under D
↙ ↘

Decomposable Indecomposable
V = V1 ⊕ V2, V2 also invariant No such V2
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In matrix form, in suitable bases, these cases mean:

D(g) reducible ⇔ D(g) can be brought to the form

⎛
⎜⎜⎜⎝

D1(g)
... B(g)

. . .
... . . .

0
... D2(g)

⎞
⎟⎟⎟⎠;

D(g) reducible, decomposable ⇔ can choose basis so that B(g) = 0;

D(g) reducible, indecomposable ⇔ always B(g) 	= 0. (1.45)

In the decomposable case we can ‘look inside’ V1 and V2 and try to repeat the
process. For UR’s, reducibility always implies decomposability, as we can simply take
V2 = V ⊥1 , the orthogonal complement of V1. So by repeating this analysis we finally
arrive at UIR’s and can say: every UR is the direct sum of UIR’s. This holds for
all finite and all continuous compact groups. Thus in these cases, the basic building
blocks for representation theory are the UIR’s, which for these types of groups are
also finite dimensional. Anticipating a little, we have: for a finite group, the number of
inequivalent UIR’s is finite; for a continuous compact group they are a denumerable
infinity.

1.13 Schur’s Lemma: Proof and Applications

This is a key result, a very powerful tool to deal with irreps, equivalences, etc. Let D on
V , D ′ on V ′ be two given irreps of G , both assumed complex for definiteness. Suppose
there exists, or we are able to somehow construct, a linear operator T : V → V ′ such
that it ‘intertwines’ D and D ′ in the sense:

T D(g) = D ′(g)T , all g ∈ G . (1.46)

Then we can prove that either

(i) D and D ′ are inequivalent, and T = 0;

or (ii) T is nonsingular, so D and D ′ are equivalent. (1.47)

(We can leave aside the case where D and D ′ are equivalent, yet T = 0.)
We must appreciate that what cannot happen is T 	= 0, but T is singular, i.e., non
invertible.
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Proof. Define subspaces in V and in V ′ as follows:

N (T ) = null space of T = subspace of V on which T vanishes;

R(T ) = range of T = subspace of V ′ = image of V under T ; (1.48)

i.e.,

T N (T ) = 0, N (T ) ⊂ V; R(T ) = T (V ) ⊂ V ′. (1.49)

(Again we can leave aside the case T = 0, N (T ) = V .) Then from Eq. (1.46) we easily
find: N (T ) is invariant under D(G), R(T ) under D ′(g). Therefore the irreducibility
of both D and D ′ implies: N (T ) = 0, so T is one-to-one; R(T ) = V ′, so T is onto.
(Again we can discard R(T ) = 0 as then T = 0.) Then if T 	= 0, T −1 exists; and the
two representations, both irreducible, are equivalent.

For a first application of the Lemma, we consider a single irrep, and take V ′ = V,
D ′ = D. Then suppose for some T , a map V → V, we find:

TD(g) = D(g)T , all g ∈ G . (1.50)

Then form T − λ · 11 where λ is (any) eigenvalue of T . Since T − λ · 11 is singular and
also obeys (1.50), it must vanish, so we conclude:

D(g) an irrep of G , TD(g) = D(g)T , all g ⇒ T = λ · 11, some λ. (1.51)

The converse can also be easily shown: if only multiples of 11 commute with D(g) for
all g , D( · ) must be an irrep.

The next application of the Lemma reveals the inner structure of a reducible
representation, and the sense in which the reduction is unique. �

‘Uniqueness’ of Complete reduction

Let a representation D( · ) of G on V of finite dimension be fully reducible into irreps,
so D( ·) is a direct sum of these. Imagine two reductions of V into irreducible invariant
subspaces with corresponding irreps, namely,

V =
∑

ρ=1,2,···
⊕ Lρ , Lρ carrying irrep D(ρ),

=
∑

σ=1,2,···
⊕ Mσ , Mσ carrying irrep D(σ ). (1.52)

https://doi.org/10.1017/9781009187053.002 Published online by Cambridge University Press

https://doi.org/10.1017/9781009187053.002


March 4, 2022 12:44 Continuous Groups for Physicists 9.5in x 7.25in CH-01 page 17

Basic Group Theory and Representation Theory 17

We want to examine the extent to which these two decompositions can differ, and
what they must hold in common. Any vector xρ ∈ Lρ can be expanded uniquely in
terms of components in Mσ :

xρ ∈ Lρ : xρ =
∑
σ

yσ , yσ ∈Mσ . (1.53)

For each pair σρ, define the linear map Tσρ : Lρ →Mσ by

Tσρxρ = yσ (1.54)

as determined by (1.53). (Here there is no sum on ρ.) Apply D(g) to both sides to
get:

D(g)xρ ≡ D(ρ)(g)xρ = D(g)
∑
σ

yσ

=
∑
σ

D(g)yσ =
∑
σ

D(σ )(g)yσ ,

i.e., D(σ )(g)yσ = TσρD(ρ)(g)xρ ,

i.e., D(σ )(g)Tσρxρ = TσρD(ρ)(g)xρ , any xρ ∈ Lρ . (1.55)

Therefore for each pair σρ we have an intertwining relation

TσρD(ρ)(g) = D(σ )(g)Tσρ , (1.56)

as in Eq. (1.46). We can apply Schur’s Lemma to conclude:

(i) Tσρ = 0 if D(ρ), D(σ ) are not equivalent;

(ii) Tσρ 	= 0 only if they are equivalent. (1.57)

We can now draw out the consequences. For each Lρ carrying the irrep D(ρ), pick out
all those Mσ such that D(σ ) is equivalent to D(ρ). Then xρ ∈ Lρ ⇒ yσ 	= 0 only in
these Mσ ; xρ 	= 0⇒ at least one such yσ 	= 0, and at least one Tσρ 	= 0. Then by the
Lemma, this Tσρ is nonsingular.

So for each irrep D(ρ) in the first reduction, there is at least one equivalent irrep
D(σ ) in the second reduction, and conversely. Now we can examine the question of
multiplicities, the number of times a given irrep. repeats itself in a complete reduction.
Several subspaces Lρ (similarly Mσ ) may carry equivalent irreps. Let us label irreps
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(up to equivalence) by α,β, · · · , and multiple appearances by j , k, · · · ; so we write

Lρ ≡ Lα,j , Mσ ≡Mβ,k. (1.58)

Now ‘combine’ subspaces according to ‘representation type’:

V =
∑
ρ

⊕Lρ =
∑
α

⊕
⎛
⎝∑

j

⊕Lα,j

⎞
⎠ =∑

α

⊕L(α),

L(α) =
∑

j

⊕Lα,j ;

V =
∑
σ

⊕Mσ =
∑
β

⊕
(∑

k

⊕Mβ,k

)
=
∑
β

⊕M(β),

M(β) =
∑

k

⊕Mβ,k. (1.59)

Any x ∈ Lα,j has components only in Mα,k and vice versa. So

Tαj ,βk = 0 if α 	= β;

x ∈ L(α) ⇔ x ∈M(α), L(α) =M(α). (1.60)

We see that the irreps present in D on V and their multiplicities are unique, so are the
subspaces L(α). Only the further break up of each L(α) into Lα,j is arbitrary.

The Orthogonality Relations

This is our third and last application of Schur’s Lemma. It leads to important properties
of the matrix elements of the representation matrices in the various irreducible
representations.

Consider a complex-valued function f (g) on G , viewed as an element in a complex
vector space of dimension |G |, which we assume is finite. (More generally we could
consider f ( · ) belonging to some linear space of some dimension.) For any given f ( · )
we define its mean value by an averaging process over G :

M(f ) ≡Mg (f (g)) = 1
|G |

∑
g∈G

f (g). (1.61)
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The main properties which are evident upon inspection are linearity, nonnegativity,
normalisation and ‘translation’ invariances:

M(f1 + f2) =M(f1)+M(f2), M(λf ) = λM(f );

f ≥ 0⇒M(f ) ≥ 0; f = 1⇒M(f ) = 1,

Mg (f (g)) =Mg (f (gog) or f (ggo) or f (g−1)), go fixed. (1.62)

Now take two irreps D(g) on V, D ′(g) on V ′. Let S : V → V ′ be any linear map,
and consider

TS =Mg (D ′(g−1)SD(g)) = linear map V → V ′. (1.63)

(So here the quantity being averaged is not a complex valued function but something
belonging to a linear space, namely, the space of all linear maps V → V ′.) Using
Eq. (1.62) we see that it obeys:

D ′(g ′−1)TS =Mg

(
D ′(g ′−1)D ′(g−1)SD(g)

)
= TS D(g ′−1),

i.e., D ′(g)TS = TS D(g), any g ∈ G . (1.64)

Thus TS intertwines the two irreps, and we can use Schur’s Lemma:

D ′ and D inequivalent ⇒ TS = 0, any S ;

D ′ and D equivalent, the same ⇒ TS = λ(S)11, some λ(S). (1.65)

So for the case of inequivalent irreps, in terms of the matrices in any basis, as S is
arbitrary, we get:

Mg (D ′j ′k′(g
−1)Djk(g)) = 0, all j k j ′ k′. (1.66)

In case these matrices are unitary, this reads:

Mg (D ′j ′k′(g)∗Djk(g)) = 0, all j k j ′ k′. (1.67)

For equivalent irreps, we assume D ′ = D as in the second line of Eq. (1.65), and get:

Mg (Djk(g−1)Skl Dlm(g)) = λ(S)δjm , sum on all k, l . (1.68)

Setting j = m and summing on j gives λ(S) = Tr S/dim V, so (1.68) becomes

Mg (Djk(g−1)Dlm(g)) = δjmδkl/dim V. (1.69)
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And in the unitary case we have

Mg (Djk(g)∗Dlm(g)) = δjlδkm/dim V. (1.70)

Incidentally, the last two equations imply that in any irrep, in any chosen basis, any
fixed matrix element cannot vanish for all g .

We can regard the space of complex functions f (g) on G as a Hilbert space L2(G)
of dimension |G |, and we use M to define the inner product:

(f1, f2) =Mg (f1(g)∗f2(g)). (1.71)

At the same time, let us label the various inequivalent UIR’s byα,β, · · · as in Eq. (1.58),
with dimensions Nα, Nβ , · · · . Then Eqs. (1.67, 1.70) lead to the orthogonality
relations (

D(α)
jk ( · ) , D(β)

lm ( · )
)
= δαβδjlδkm/Nα. (1.72)

Each fixed matrix element in each UIR thus gives one nonzero vector in L2(G),
mutually orthogonal if the UIR’s are inequivalent or the row or column indices differ.
This leads to the inequality

∑
α

N 2
α ≤ |G |. (1.73)

From Eq. (1.72) we get important relations for the characters χ (α)(g) of the various
UIR’s: summing over j = k and l = m,(

χ (α)( · ), χ (β)( · )
)
= δαβ . (1.74)

Now the χ ’s are class functions, constant over each class. In general such functions on
G form a linear subspace in L2(G), and within this Eq. (1.74) means the χ (α)(g) are
an orthonormal set. This gives another inequality to accompany (1.73):

Number of inequivalent irreps or UIR′s ≤ number of equivalence classes in G
(1.75)

Let the character of a general UR D( · ) be written as χ(g), and upon reduction let
D( · ) contain D(α)( · ) with multiplicity να. Then we easily find from Eq. (1.74) and
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the definition of χ(g):

χ(g) =
∑
α

ναχ
(α)(g),

να = multiplicity of occurrence of D(α) in D = (χ (α),χ),

(χ ,χ) =
∑
α

ν2
α ≥ 1. (1.76)

Thus the UR D( · ) with character χ(g) is irreducible or reducible according as the
squared norm (χ ,χ) of χ is or exceeds unity.

It was mentioned earlier that for any finite group (as well as for any continuous
compact group) every representation may be assumed without loss of generality to be
unitary. We leave it as an exercise to prove this (in the finite group case) using the idea
of averaging over G as introduced in Eq. (1.61).

The Regular Representations of G

As the last but one item in this chapter, we explicitly construct two special UR’s of G ,
each of which contains all UIR’s, and which show that both inequalities (1.73, 1.75)
are equalities. These are the two regular representations, both acting on L2(G). For
finite G , the space L2(G) is finite dimensional, with inner product (1.71). For now we
consider this case. Later for continuous G we will use an integral version of this inner
product, possessing invariances as in the last line of (1.62).

We write L(g), R(g) or Lg , Rg for the operators on L2(G) corresponding to the
left and right regular representations of G . On a general complex function f (g) on G ,
their actions are:

(Lg ′f )(g) = f (g ′−1g), (Rg ′f )(g) = f (gg ′). (1.77)

It is easy to check that these are unitary operators, and they give two mutually
commuting UR’s of G :

Lg1Lg2 = Lg1g2, Rg1Rg2 = Rg1g2, Lg1Rg2 = Rg2Lg1. (1.78)

If we introduce Dirac notation with kets and bras according to

f ∈ L2(G) : f (g) = 〈g |f 〉, 〈g ′|g〉 = δg ′,g , (1.79)

then the actions of Lg ′ , Rg ′ on these basis kets are:

Lg ′ |g〉 = |g ′g〉, Rg ′ |g〉 = |gg ′−1〉. (1.80)
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As these are UR’s, they are fully reducible, and their characters determine the contents.
From Eq. (1.80) we obtain:

χ (left reg)(g) = Tr Lg = χ (right reg)(g) = Tr Rg = |G |δg ,e . (1.81)

Then we ask: how often does each UIR D(α)( · ) occur in each of these UR’s? From
Eq. (1.76) we get the answer:

να =
(
χ (α),χ (left or right reg)

)
= 1
|G |

∑
g
χ (α)(g)∗χ (··· )(g) = χ (α)(e)∗ = Nα. (1.82)

Thus every UIR α is present as often as its dimension Nα. This allows us to strengthen
(1.73) to an equality, ∑

α

N 2
α = |G |. (1.83)

It is important to observe that even though at this point the only UR’s that have
been constructed are the regular ones, and the various UIR’s are as yet ‘unknown’,
we have the information that each of the latter is definitely contained in (each of) the
former.

From Eqs. (1.72, 1.83) we have that the ‘normalised’ matrix elements
{N 1/2

α D(α)
jk (g)} form an orthonormal basis for L2(G). Any f (g) thus has a unique

expansion:

f (g) =
∑
α

∑
jk

N 1/2
α D(α)

jk (g)f (α)
jk ,

f (α)
jk = N 1/2

α

(
D(α)

jk ( · ) , f ( · )
)

,

‖f ‖2 = 1
|G |

∑
g
|f (g)|2 =

∑
α

∑
jk

|f (α)
jk |2. (1.84)

In this basis, Lg ′-action alters only the first index j , while Rg ′-action alters only k: This
is consistent with their mutually commuting. For the former action, k is a multiplicity
index; for the latter, j plays this role.

Since the collection {N 1/2
α D(α)

jk (g)} is both orthonormal and complete, we see that
any class function can be expanded in terms of the characters of the UIR’s:

f (gg ′g−1) = f (g ′), all g and g ′ ⇒
f (g) =

∑
α

fαχ (α)(g), fα = (χ (α)( · ), f ( · )). (1.85)
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As a result, (1.75) too can be strengthened to an equality:

Number of inequivalent irreps or UIR’s = number of equivalence classes in G
(1.86)

Complex Conjugation, Direct Products, of UIR’s

Given G , we know that in principle all the UIR’s D(α)( · ) can be ‘extracted’ from the
regular representations. We know how many there are, and have some information,
(1.83), on their dimensions.

Now suppose all the D(α)(·) have been constructed, each up to unitary equivalence.
From (1.76) in the irreducible case, we see that D(α)∗( · ), the complex conjugate of
D(α)( · ), is also a UIR. (This is one of the three operations listed in Eq. (1.38).) By
judicious use of Schur’s Lemma, we can easily find out the qualitatively different cases
that can arise. We describe them briefly, omitting the details of derivations.

To begin with, and this is obvious,

χ (α)(g)∗ 	= χ (α)(g)⇔ D(α)( · )∗, D(α)( · ) are inequivalent UIR’s;

χ (α)(g) real ⇔ Dα( · )∗, D(α)( · ) are equivalent UIR’s. (1.87)

In the latter case one can ask whether the matrices D(α)(g) can all be made real by a
suitable choice of orthonormal basis in the representation space. Here one finds the
results:

χ (α)(g) real⇔ D(α)(g)∗ = CD(α)(g)C−1,

C†C = 11,CT = λC , λ = ±1;

λ = +1⇔ D(α)(g)∗ = D(α)(g) in suitable basis – real case;

λ = −1⇔ D(α)(g)∗ 	= D(α)(g) in any basis – pseudoreal case. (1.88)

(In the last case, of course, we mean that there are some g for which D(α)(g) is
complex.) Thus the three possibilities are – complex, pseudoreal, and real. There is
a nice criterion in terms of χ (α)( · ) to directly distinguish between the last two, due to
Wigner, but we omit the details.

As a final item in representation theory we consider direct products of UIR’s, the
Clebsch–Gordan problem. For any pair α,β we have a direct product UR (1.40)

D(g) = D(α)(g)×D(β)(g), dimension NαNβ ,

Character χ(g) = χ (α)(g)χ (β)(g). (1.89)
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In the complete reduction of this product into UIR’s, each D(γ ) occurs with some
multiplicity:

D(α) ×D(β) =
∑
γ

⊕ ναβ,γD(γ ), ναβ,γ = integer ≥ 0, (1.90)

where by Eq. (1.76)

ναβ,γ = (χ (γ ), χ (α)χ (β)). (1.91)

The series on the right in (1.90) is called the Clebsch–Gordan series, and the change
of basis in the space of the product representation D(α) × D(β) to effect this block
diagonalisation involves Clebsch–Gordan coefficients which are basis dependent.

For an abelian group G , every UIR is one dimensional, every element is a class by
itself, and UIR’s are usually called ‘characters’. If G is nonabelian, at least some UIR’s
are multi dimensional.

1.14 Group Algebra

Given a finite group G and a field F, we can construct out of them a new set, denoted
by F[G], consisting of all formal linear combinations of the form

a =
∑

i

aixi , ai ∈ F , xi ∈ G . (1.92)

The set F[G] can be viewed in several different ways:

1. As a vector space over F: elements of F[G] can be added and multiplied by
elements of F in a natural way. This is the vector space which underlies the regular
representation of G as stated earlier.

2. As a unital ring: elements of F[G] can be added and (using the composition law of
G) multiplied together to yield elements of F[G], with the identity element 1.eG of
G serving as the multiplicative unit of the ring. If G is abelian (nonabelian) F[G] is
a commutative (noncommutative) ring.
With the identification of c ∈ F with ceG ∈ F[G] one can consider F as sitting in
F[G].

3. As an algebra over F: in addition to being a ring, F[G] is also closed under
multiplication by elements of F.
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1.15 Representations of G and Its Group Algebra F[G]
Recall that by a linear representation of a group G on a vector space V over a field F

we mean a collection of linear operators {D(g)} on V respecting the composition law
in G . Given a representation {D(g)}, we can define multiplication of elements v of the
vector space by elements a of F[G] to obtain other elements v′ of V as follows:

a.v = (
∑

i

aixi).v

→
∑

i

aiD(xi)v =
∑

i

aivi ∈ V . (1.93)

Here vi are the vectors in V to which v is mapped by D(xi). We are thus led to a new
mathematical structure – a module M over the ring F[G]. (The notion of a module is
same as that of a vector space with the field replaced by a ring.)

With this at hand, all aspects of the representation theory of finite groups can
be couched in the language of modules – a subspace V1 of the vector space V
invariant under all of {D(g)} corresponds to a submodule M1 of M , an irreducible
representation of G corresponds to a simple or irreducible submodule of M and so
on. A crucial advantage of this language for studying group representations lies in the
fact that constructing submodules of M (and hence subrepresentations of G) can be
shown to reduce to the task of finding idempotent (essentially idempotent) elements
in the ring F[G] – elements a in F[G] such that a2 = a (a2 = ca, c ∈ F). Further,
constructing irreducible submodules ( and hence irreducible representations of G) can
be shown to reduce to the task of finding idempotents in F[G]which are primitive, i.e.,
those idempotents in F[G] which can not be expressed as a sum of two ‘orthogonal’
idempotents. (Two idempotents a and b in F[G] are said to be orthogonal provided
ab = ba = 0.)

We shall put this machinery to use in Chapter 2 in the context of the irreducible
representations of the symmetric group. Note also that the considerations here apply
to any field F. However, later in this book we will exclusively be concerned with the
case when F is the complex field C.

Problems
P1.1 Given an associative group composition law, and left inverses and left identity only, i.e.,

(i) unique e such that ea = a for all a,
(ii) for each a, unique a−1 such that a−1a = e;

derive all the results in Eq. (1.1(iii), (iv)).
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P1.2 For a finite group of prime order, show that there are no nontrivial subgroups.

P1.3 If H is an invariant subgroup of G such that G/H is abelian, show that the commutator
subgroup Q of G is a subgroup of H as well.

P1.4 The group of translations in one real dimension, x → x + a, is abelian. Show that

a →
(

1 a
0 1

)
is a representation, and find out whether it is reducible or irreducible, decomposable or
indecomposable.

P1.5 For a finite group G acting on a set X , show that

(i) If x ∈ X and y ∈ X lie on the same orbit then their stability subgroups are conjugate
subgroups in G , i.e., H (y) = gH (x)g−1, some g ∈ G ,

(ii) For any x ∈ X , there is a natural bijective map from ϑ(x) to the coset space G/H (x)
and hence |ϑ(x)| = |G/H (x)|,

(iii) If the set X is decomposed into disjoint orbits using the equivalence relation noted in
Section 1.5 then one has

Number of orbits = 1
|G |

∑
g∈G

|Xg | (Burnside’s Lemma).
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