BONFERRONI-TYPE INEQUALITIES

ELAINE RECSEI* AND
E. SENETA, University of Sydney

Abstract

We derive the Sobel-Uppuluri and Galambos-type extensions of the Bonferroni bounds, and further extensions of the same nature, as consequences of a single non-probabilistic inequality. The methodology follows that of Galambos. JORDAN INEQUALITIES; GALAMBOS INEQUALITIES; INVERSION FORMULA; BINOMIAL MOMENTS

1. Unified treatment and extensions

Let $w_{t}, t=0,1, \cdots, n$ be non-negative numbers. Define

$$
\begin{equation*}
A_{k, n}=\sum_{t=k}^{n}\binom{t}{k} w_{t}, \quad k \geqq 0 \quad\left(A_{k, n}=0, k>n\right) \tag{1}
\end{equation*}
$$

Then, following Galambos [3], pp. 18-20, [2], p. 580,

$$
\begin{equation*}
\sum_{k=0}^{a}(-1)^{k}\binom{k+r}{r} A_{k+r, n}=w_{r}+(-1)^{a} \sum_{s=r+a+1}^{n}\binom{s-r-1}{a}\binom{s}{r} w_{s} \tag{2}
\end{equation*}
$$

for $0 \leqq a \leqq n-r-1$, and

$$
\begin{equation*}
\sum_{s=r+a+1}^{n}\binom{s-r-1}{a}\binom{s}{r} w_{s} \geqq \frac{a+1}{n-r}\binom{a+1+r}{r} A_{a+1+r, n} \tag{3}
\end{equation*}
$$

Using (3) in (2) yields the bounds for $0 \leqq r \leqq n, u \geqq 0,\left(\sum_{s=r}^{r-1}=0\right)$:

$$
\begin{align*}
& \sum_{s=r}^{r+2 u-1}(-1)^{s-r}\binom{s}{r} A_{s, n}+\frac{2 u}{n-r}\binom{r+2 u}{r} A_{r+2 u, n} \leqq w_{r} \\
& \leqq \sum_{s=r}^{r+2 u}(-1)^{s-r}\binom{s}{r} A_{s, n}-\frac{2 u+1}{n-r}\binom{r+2 u+1}{r} A_{r+2 u+1, n} \tag{4}
\end{align*}
$$

keeping in mind (for $r+2 u \geqq n$) the inversion of the relation (1):

$$
\begin{equation*}
w_{r}=\sum_{s=r}^{n}(-1)^{s-r}\binom{s}{r} A_{s, n}, \quad 0 \leqq r \leqq n \tag{5}
\end{equation*}
$$

Received 21 January 1987.

* Postal address: Department of Mathematical Statistics, University of Sydney, NSW 2006 Australia.

Now let $y_{t}, t=1, \cdots, n$, be arbitrary non-negative numbers, and define $S_{k, n}$ by

$$
\begin{equation*}
S_{k, n}=\sum_{t=k}^{n}\binom{t-1}{k-1} y_{t}, \quad k \geqq 1 \quad\left(S_{k, n}=0, k>n\right) . \tag{6}
\end{equation*}
$$

Since $\binom{t-1}{k-1}=(k / t)\binom{t}{k}$, it follows that

$$
S_{k, n} / k=\sum_{t=k}^{n}\binom{t}{k}\left(y_{t} / t\right), \quad k \geqq 1 .
$$

Thus putting $w_{0}=0$ and taking in (1) and (4) for $k \geqq 1, A_{k, n}=S_{k, n} / k$, and $w_{t}=y_{t} / t$, $1 \leqq t \leqq n$, it follows that for $1 \leqq r \leqq n, u \geqq 0$,

$$
\begin{align*}
& \sum_{s=r}^{r+2 u-1}(-1)^{s-r}\binom{s-1}{r-1} S_{s, n}+\frac{2 u}{n-r}\binom{r+2 u-1}{r-1} S_{r+2 u, n} \leqq y_{r} \\
& \quad \leqq \sum_{s=r}^{r+2 u}(-1)^{s-r}\binom{s-1}{r-1} S_{s, n}-\frac{2 u+1}{n-r}\binom{r+2 u}{r-1} S_{r+2 u+1, n} \tag{7}
\end{align*}
$$

again keeping in mind (5).
Turning now to a probabilistic setting, let A_{1}, \cdots, A_{n} be a sequence of events on a probability space, let $B_{r, n}, 0 \leqq r \leqq n$, be the event that exactly r of the A 's occur, and let $P_{[r]}=P\left(B_{r, n}\right)$. Let $S_{k, n}=\sum P\left(A_{i_{1}} A_{i_{2}} \cdots A_{i_{k}}\right)$ where the sum is over all subscripts satisfying $1 \leqq i_{1}<i_{2}<\cdots<i_{k} \leqq n$. Then it is well known (defining $S_{0, n}$ as 1) that:

$$
S_{k, n}=\sum_{t=k}^{n}\binom{t}{k} P_{[t]}, \quad k \geqq 0
$$

so putting $w_{t}=P_{[t]}$ and $A_{k, n}=S_{k, n}$ in (1), (4) yields the Sobel-Uppuluri-Galambos inequalities ([3], p. 20; [5]), Further, it is well known that if we put

$$
P_{(r)}=\sum_{s=r}^{n} P_{[s]}
$$

then for $1 \leqq r \leqq n$,

$$
S_{k, n}=\sum_{t=k}^{n}\binom{t-1}{k-1} P_{(t)}, \quad k \geqq 1
$$

so putting $y_{t}=P_{(t)}$ in (6) and (7) yields the Galambos bounds ([2], [6]) for $P_{(r)}, r \geqq 1$. The direction of generalisation is now clear. For example, for $n \geqq t \geqq 2$, put

$$
P_{\{t)}=\sum_{s=t}^{n} P_{(s)}=\left(\sum_{h=r}^{n}(h-r+1) P_{[h]}\right) .
$$

Substituting for $P_{(s)}$ from the inversion formula (5), i.e.

$$
P_{(s)}=\sum_{k=s}^{n}(-1)^{k-s}\binom{k-1}{k-s} S_{k, n}, \quad 1 \leqq s \leqq n
$$

and using a combinatorial identity we obtain

$$
P_{\{t\}}=\sum_{k=t}^{n}(-1)^{k-t}\binom{k-2}{k-t} S_{k, n}
$$

i.e.

$$
P_{\{t\}} /\left(t(t-1)=\sum_{k=t}^{n}(-1)^{k-t}\binom{k}{t} S_{k, n} / k(k-1),\right.
$$

whence by the inversion formula to (5), viz. (1),

$$
S_{k, n}=\sum_{r=k}^{n}\binom{r-2}{k-2} P_{(r)}, k \geqq 2 .
$$

Hence for $2 \leqq r \leqq n, u \geqq 0$,

$$
\begin{aligned}
& \sum_{s=r}^{r+2 u-1}(-1)^{s-r}\binom{s-2}{r-2} S_{s, n}+\frac{2 u}{n-r}\binom{r+2 u-2}{r-2} S_{r+2 u, n} \leqq P_{(r)} \\
& \quad \leqq \sum_{s=r}^{r+2 u}(-1)^{s-r}\binom{s-2}{r-2} S_{s, n}-\frac{2 u+1}{n-r}\binom{r+2 u}{r-1} S_{r+2 u+1, n} .
\end{aligned}
$$

2. The method of polynomials

In the general vein of Galambos' conceptualization of the Bonferroni inequalities ([1]), the following deductions can be made from extending slightly the argument in [4]. Suppose for all $p, 0 \leqq p \leqq 1$ and all integers $m \geqq 0$,

$$
\begin{equation*}
(1-p)^{m} \leqq \sum_{k=0}^{m} c_{k}(m)\binom{m}{k} p^{k} \quad\left(\text { where } c_{0}(0)=1\right) \tag{8}
\end{equation*}
$$

Then with the notation of the above probabilistic setting

$$
\begin{equation*}
P_{[r]}=P\left(B_{r, n}\right) \leqq \sum_{z=r}^{n} c_{z-r}(n-r)\binom{z}{r} S_{z, n} . \tag{9}
\end{equation*}
$$

(If the inequality in the supposition (8) is reversed, it is reversed in (9).)
Thus Theorem 4 in [4] can be written down directly from its Lemma 2. Thus, once the inequalities (in the form of Taylor expansion with remainder):

$$
\begin{aligned}
& \sum_{k=0}^{2 u-1}\binom{m}{k}(-p)^{k}+\binom{m}{2 u}(-p)^{2 u} \leqq(1-p)^{m} \\
\leqq & \sum_{k=0}^{2 u}\binom{m}{k}(-p)^{k}+\frac{2 u+1}{m}\binom{m}{2 u+1}(-p)^{2 u+1}
\end{aligned}
$$

have been obtained for $m \geqq 0,0 \leqq p \leqq 1$, the Sobel-Uppuluri-type bounds for $P_{[r]}$ follow immediately.

3. An application

We give in Table 1 below some data on performance of first-year students in the Faculty of Science at the University of Sydney in the 1980 annual examinations. The intention is to illustrate use of the Sobel-Uppuluri-Galambos bounds (4) in a real situation where the events A_{1}, \cdots, A_{n} are not exchangeable, and effectiveness of prediction of $P_{[0]}$ via partial knowledge is the object.

Table 1

Proportions passing			
	Mathematics	Physics	Chemistry

subject\end{array}\right]\)

If we take A_{1} =fail mathematics, $A_{2}=$ fail physics, $A_{3}=$ fail chemistry, $A_{4}=$ fail remaining subject, we wish to bound the probability of passing all subjects, $P_{[0]}=0.57$.
If the Sobel-Uppuluri-Galambos bounds are used in conjunction with 'ordinary' Bonferroni bounds 'of the same order' in the manner of [3], p. 27, then the results are:

	$u=0$	$u=1$	$u=2$
Lower bound	0.06	0.46	0.50
Upper bound	$\mathbf{0 . 7 7}$	0.85	$\mathbf{0 . 5 9}$

where bounds of form (4) with $r=0, n=4$ are shown in bold type. Thus even in the case $u=0$, where only the $P\left(A_{i}\right), i=1, \cdots, 4$ are used, the upper bound is a useful approximation in our setting, although the upper bound $\min _{i} P\left(\bar{A}_{2}\right)=0.67$ is better.

References

[1] Galambos, J. (1975) Methods for proving Bonferroni-type inequalities. J. London Math. Soc. (2) 9, 561-564.
[2] Galambos, J. (1977) Bonferroni inequalities. Ann. Prob. 5, 577-581.
[3] Galambos, J. (1978) The Asymptotic Theory of Extreme Order Statistics. Wiley, New York.
[4] Galambos, J. and Mucci, R. (1980) Inequalities for linear combinations of binomial moments. Publ. Math. (Debrecen) 27, 263-268.
[5] Sobel, M. and Uppuluri, V. R. R. (1972) On Bonferroni-type inequalities of the same degree for the probability of unions and intersections. Ann. Math. Statist. 43, 1549-1558.
[6] Walker, A. M. (1981) On the classical Bonferroni inequalities and the corresponding Galambos inequalities. J. Appl. Prob 18, 757-763.

