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Abstract We consider a class of critical quasilinear problems

− div(|x|−ap|∇u|p−2∇u) − µ
|u|p−2u

|x|p(a+1) =
|u|q−2u

|x|bq
+ λf(x, u) in Ω,

u = 0 on ∂Ω,

where 0 ∈ Ω ⊂ R
N , N � 3, is a bounded domain and 1 < p < N , a < N/p, a � b < a+1, λ is a positive

parameter, 0 � µ < µ̄ ≡ ((N − p)/p−a)p, q = q∗(a, b) ≡ Np/[N − pd] and d ≡ a+1− b. Infinitely many
small solutions are obtained by using a version of the symmetric Mountain Pass Theorem and a variant
of the concentration-compactness principle. We deal with a problem that extends some results involving
singularities not only in the nonlinearities but also in the operator.

Keywords: degenerate quasilinear equation; p-Laplacian operator; variational methods;
concentration-compactness principle
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1. Introduction

In this paper, we are concerned with the following quasilinear elliptic problem:

− div(|x|−ap|∇u|p−2∇u) − µ
|u|p−2u

|x|p(a+1) =
|u|q−2u

|x|bq
+ λf(x, u) in Ω,

u = 0 on ∂Ω,

⎫⎪⎬
⎪⎭ (1.1)

where 0 ∈ Ω ⊂ R
N , N � 3, is a bounded domain and 1 < p < N , a < N/p, a � b < a+1,

λ is a positive parameter, 0 � µ < µ̄ ≡ ((N −p)/p−a)p, q = p∗(a, b) ≡ Np/[N −pd] is the
critical Hardy–Sobolev exponent and d ≡ a+1−b. Note that p∗(0, 0) = p∗ ≡ Np/(N −p).
With the help of the symmetric Mountain Pass Lemma due to Kajikiya [18] and the
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concentration-compactness principle, we prove that there are infinitely many small weak
solutions for equations (1.1) with the general nonlinearities f(x, u) in the dual of the
weighted Sobolev space D1,p

a (Ω).
Throughout this paper, we use the Sobolev space D1,p

a (Ω), defined as the completion
of the space C∞

0 (Ω) endowed with the norm

‖u‖D =
[ ∫

Ω

|x|−ap|∇u|p dx

]1/p

.

A well-known result by Caffarelli et al . [6] guarantees that the Euler–Lagrange energy
functional I : D1,p

a (Ω) �→ R given by

I(u) =
1
p

∫
Ω

[
|x|−ap|∇u|p − µ

|u|p
|x|p(a+1)

]
dx − 1

q

∫
Ω

|u|q
|x|bq

dx − λ

∫
Ω

F (x, u) dx (1.2)

is well defined, where

F (x, u) ≡
∫ u

0
f(x, t) dt.

By the standard elliptic regularity argument, we deduce that I ∈ C1(D1,p
a (Ω), R) and a

weak solution u of problem (1.1) is precisely a critical point of the functional I, that is,
I ′(u) = 0, where

〈I ′(u), v〉 =
∫

Ω

[
|x|−ap|∇u|p−2∇u∇v−µ

|u|p−2uv

|x|p(a+1)

]
dx−

∫
Ω

|u|q−2uv

|x|bq
dx−λ

∫
Ω

f(x, u)v dx

(1.3)
holds for all v ∈ D1,p

a (Ω).
Problem (1.1) is related to the Caffarelli–Kohn–Nirenberg inequality [6]:

( ∫
RN

|u|q
|x|bq

)p/q

� 1
C

∫
RN

|x|−ap|∇u|p dx for all u ∈ C∞
0 (RN ), (1.4)

which is also called the weighted Hardy–Sobolev inequality, where C is some positive
constant. For the sharp constants and extremal functions, see [16,27]. If b = a + 1, then
q = p∗(a, a + 1) = p and the following Hardy inequality holds [6,24]:

( ∫
RN

|u|p
|x|p(a+1)

)
� 1

µ̄

∫
RN

|x|−ap|∇u|p dx for all u ∈ C∞
0 (RN ), (1.5)

where µ̄ = ((N − p)/p − a)p is the best Hardy constant.
In this paper, we use the following norm:

‖u‖ :=
[ ∫

Ω

(
|x|−ap|∇u|p − µ

|u|p
|x|p(a+1)

)
dx

]1/p

.
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By (1.5) this is equivalent to the usual norm ‖u‖D of the space D1,p
a (Ω) if µ < µ̄.

According to (1.4) and (1.5), we can define the following best constants for µ < µ̄:

Λa,b := inf
u∈D1,p

a (Ω)\{0}
‖u‖p

( ∫
Ω

|u|p
|x|qb

dx

)−1

,

Sa,b := inf
u∈D1,p

a (Ω)\{0}
‖u‖p

( ∫
Ω

|u|q
|x|qb

dx

)q/p

.

Thus, Λa,b > 0 and Sa,b > 0.
For p = 2, µ = 0 and a = b = 0, such a problem has been studied extensively since the

publication of the celebrated paper by Brézis and Nirenberg [5]. For a singular potential,
the existence of infinitely many small solutions which converge to zero was obtained by
He and Zou [15]. Yang and Shen [30] studied the critical singular equation involving
the Caffarelli–Kohn–Nirenberg inequalities with the special case f(x, u) by using the
Lyusternik–Schnirelman Category Theory and obtained the existence of at least cat(Ω)
positive solutions. Some existence results for problem (1.1) with λ = 1, were obtained by
Huang and Wu [17] using variational methods and analysis techniques. In [28], Terracini
proved some results about the existence, uniqueness and qualitative behaviour of positive
solutions to a class of equations with a singular coefficient and a critical exponent by
using variational arguments and the moving-plane method. For other results we refer the
reader to [7–9,12].

For p 
= 2 and a = b = 0, in [14], Ghoussoub and Yuan considered problem (1.1)
by establishing Palais–Smale-type conditions around appropriately chosen dual sets and
obtained the existence of infinitely many non-trivial solutions on a bounded domain. On
the other hand, very little is known about singular problems with Hardy–Sobolev critical
exponents (the case p 
= 2) [10,25] under the general nonlinearities f(x, u). Also, a similar
problem in the case of the p-Laplacian, but with the special case λf(x, u) = up∗−1 was
analysed in [13]. In [23], Musina studied existence and multiplicity results for a weighted
p-Laplace equation involving Hardy potentials and critical nonlinearities; a survey on the
most recent results and new existence and multiplicity results are given therein. Chen
and Li [11] obtained the existence of infinitely many solutions by using the minimax
procedure in the case µ = 0 and f(x, u) = k(x)|u|r−2u, 1 < r < Np/(N − p). In all the
above-mentioned works, information on the sequence of solutions is not given.

For p 
= 2 and a 
= 0, b 
= 0, by using variational methods, the existence of positive
solutions to the problem (1.1) with special case f(x, u) was proved by Kang [19], who
obtained the properties of the extremal functions by which the best Hardy–Sobolev
constant was achieved. By using a version of the concentration-compactness lemma due
to Lions, the Krasnosel′skii genus and the symmetric Mountain Pass Theorem due to
Rabinowitz, multiplicity results were established in [1]. For other results we refer the
reader to [2,3,29]. These references, however, do not give any further information on the
sequence of solutions.

Recently, Kajikiya [18] established a critical point theorem related to the Symmetric
Mountain Pass Lemma and applied it to a sublinear elliptic equation. To the best of our
knowledge, there are no such results on singular quasilinear elliptic problems (1.1).
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Motivated by the reasons above, the aim of this paper is to show the existence of
infinitely many solutions for problem (1.1), and there exists a sequence of infinitely many
arbitrarily small solutions converging to zero by using a new version of the Symmetric
Mountain Pass Lemma due to Kajikiya [18]. In order to use the Symmetric Mountain
Pass Lemma, the main difficulty in solving this problem is the lack of compactness, which
can be illustrated by the fact that the embedding of D1,p

a (Ω) into Lp∗
(Ω) is no longer

compact. Hence, the concentration-compactness principle is used here to overcome this
difficulty.

Theorem 1.1. Suppose that f(x, u) satisfies the following conditions:

(H1) f(x, u) ∈ C(Ω × R, R), f(x,−u) = −f(x, u) for all u ∈ R;

(H2) lim|u|→∞ f(x, u)/|u|q = 0 uniformly for x ∈ Ω;

(H3) lim|u|→0+ f(x, u)/up−1 = ∞ uniformly for x ∈ Ω.

Then problem (1.1) has a sequence of non-trivial solutions {un} and un → 0 as n → ∞.

Remark 1.2. Without the symmetry condition (i.e. f(x,−u) = −f(x, u)), we can
obtain at least one non-trivial solution by using the method in this paper.

Remark 1.3. When p = 2, µ = 0 and a = b = 0, Li and Zou [20] proved the existence
of infinitely many solutions for (1.1) under conditions (H1)–(H3) and

(H4) 1
2f(x, u)u − F (x, u) � a − b|u|2∗

for almost every x ∈ Ω and u ∈ R, b � 0, a � 0.

But they did not give any further information on the sequence of solutions. When p = 2
and a = b = 0, He and Zou [15] obtained the existence of infinitely many small solutions
for (1.1) under conditions (H1)–(H3). Here we shall prove that this sequence of solutions
for (1.1) may converge to zero.

Remark 1.4. We should point out that Theorem 1.1 is different from the previous
results of [1,15,19,20] in three main directions:

1. p 
= 2, a 
= 0 and b 
= 0;

2. the nonlinearity f(x, u) does not satisfy condition (H4) as in [20];

3. we can obtain a sequence of non-trivial solutions {un} and un → 0 as n → ∞.

Definition 1.5. A C1 functional I on a Banach space X satisfies the Palais–Smale
condition at level c ((PS)c for short) if every sequence {un} satisfying

I(un) → c and I ′(un) → 0

contains a convergent subsequence.
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Under assumption (H2), we have

f(x, u)u = o

(
|u|q
|x|bq

)
,

F (x, u) = o

(
|u|q
|x|bq

)
,

which means that, for all ε > 0, there exist a(ε), b(ε) > 0 such that

|f(x, u)u| � a(ε) + ε
|u|q
|x|bq

, (1.6)

|F (x, u)| � b(ε) + ε
|u|q
|x|bq

. (1.7)

Hence, ∣∣∣∣F (x, u) − 1
p
f(x, u)u

∣∣∣∣ � c(ε) + ε
|u|q
|x|bq

, (1.8)

for some c(ε) > 0.
The remainder of the paper is organized as follows. In § 2 we shall prove that the

corresponding energy functional satisfies (PS)c. In § 3 we shall prove our main results.

2. Preliminary lemmas

In this section, we first give a concentration-compactness principle which is a weighted
version of the concentration-compactness principle in [29]. Denote by M+ the cone of
positive finite Radon measure. Since the proof of the following result is similar to that
of Lions [21,22] and is an adaptation of a lemma by Smets [26], we just state it here
without proof.

Lemma 2.1. Let 1 < p < N , −∞ < a < (N − p)/p, a � b � a + 1, q = p∗(a, b) =
Np/(N − dp), d = 1 + a − b ∈ [0, 1], and let M+(RN ) be the space of positive bounded
measures on R

N . Suppose that {un} ⊂ D1,p
a (RN ) is a sequence such that

un ⇀ u in D1,p
a (RN ),

||x|−a|∇un||p ⇀ ζ in M+(RN ),

||x|−b|un||q ⇀ ν in M+(RN ),

un → u a.e. on R
N .

Then the following conclusions hold.

1. There exists some at most countable set J , a family {xj : j ∈ J} of distinct points
in R

N and a family {νj : j ∈ J} of positive numbers such that

ν = ||x|−b|u||q +
∑
j∈J

νjδxj , (2.1)

where δx is the Dirac unitary mass concentrated at x ∈ R
N .
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2. The following inequality holds:

ζ � ||x|−a|∇u||p +
∑
j∈J

ζjδxj
, (2.2)

for some family {ζj : j ∈ J} satisfying

Sa,b(νj)p/q � ζj for all j ∈ J. (2.3)

In particular,
∑

j∈J(νj)p/q < ∞.

Lemma 2.2. Assume condition (H2) holds. Then for any λ > 0, the functional I

satisfies the local (PS)c in

c ∈
(

−∞,
d

N
S

N/pd
a,b − λc

(
d

2Nλ

)
|Ω|

)

in the following sense: if

I(un) → c <
d

N
S

N/pd
a,b − λc

(
d

2Nλ

)
|Ω|

and I ′(un) → 0 for some sequence in D1,p
a (Ω), then {un} contains a subsequence con-

verging strongly in D1,p
a (Ω).

Proof. First we prove that {un} ⊂ D1,p
a (Ω) is bounded in D1,p

a (Ω).
Let {un} be a sequence in D1,p

a (Ω) such that

I(un) =
1
p

∫
Ω

[
|x|−ap|∇un|p − µ

|un|p
|x|p(a+1)

]
dx

− 1
q

∫
Ω

|un|q
|x|bq

dx − λ

∫
Ω

F (x, un) dx

= c + o(1) (2.4)

and

〈I ′(un), v〉 =
∫

Ω

[
|x|−ap|∇un|p−2∇un∇v − µ

|un|p−2unv

|x|p(a+1)

]
dx

−
∫

Ω

|un|q−2unv

|x|bq
dx − λ

∫
Ω

f(x, un)v dx

= o(1)‖v‖. (2.5)

By (2.4) and (2.5), we have

I(un) − 1
p
〈I ′(un), un〉 =

(
1
p

− 1
q

) ∫
Ω

|un|q
|x|bq

dx − λ

∫
Ω

[
F (x, un) − 1

p
f(x, un)un

]
dx

= c + o(1)‖un‖,
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i.e.
d

N

∫
Ω

|un|q
|x|bq

dx = λ

∫
Ω

[
F (x, un) − 1

p
f(x, un)un

]
dx + c + o(1)‖un‖,

where d = a + 1 − b. Then by (1.8) we have(
d

N
− λε

) ∫
Ω

|un|q
|x|bq

dx � λc(ε)|Ω| + c + o(1)‖un‖.

Setting ε = d/2Nλ, we get ∫
Ω

|un|q
|x|bq

dx � M + o(1)‖un‖, (2.6)

where o(1) → 0 as n → +∞ and M is a positive number. On the other hand, by (1.7)
and (2.4), we have

c + o(1)‖un‖ = I(un)

� 1
p
‖un‖p − λb(ε)|Ω| −

[
1
q

+ λε

] ∫
Ω

|un|q
|x|bq

dx. (2.7)

Thus, (2.6) and (2.7) imply that {un} is bounded in D1,p
a (Ω). Therefore, we can assume

that

un ⇀ u in D1,p
a (Ω),

un ⇀ u in Lp(Ω, |x|−p(a+1)),

un ⇀ u in Lq(Ω, |x|−bq),

un → u a.e. on Ω.

From the concentration-compactness principle, there exist non-negative measures ζ, ν

and a countable family {xj} ⊂ Ω such that

||x|−b|un||q ⇀ ν = ||x|−b|u||q +
∑
j∈J

νjδxj ,

||x|−a|∇un||p ⇀ ζ � ||x|−a|∇u||p + Sa,b

∑
j∈J

(ζj)p/qδxj .

Now we prove that un → u in Lq(Ω, |x|−bq).
Since {un} is bounded in D1,p

a (Ω), we can assume that there exists η ∈ Lp′
(Ω, |x|−ap)

such that
|∇un|p−2∇un ⇀ η in Lp′

(Ω, |x|−ap),

where 1/p + 1/p′ = 1. On the other hand, |un|p−2un and |un|q−2un are also bounded in
Lp′

(Ω, |x|−ap) and Lq′
(Ω, |x|−bq), respectively. Thus, we have

|un|p−2un ⇀ |u|p−2u in Lp′
(Ω, |x|−ap),

|un|q−2un ⇀ |u|q−2u in Lq′
(Ω, |x|−bp),

https://doi.org/10.1017/S0013091509001813 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091509001813


188 S. Liang and J. Zhang

where 1/q + 1/q′ = 1. Taking n → ∞ in (2.5), we get∫
Ω

[
|x|−apη∇v − µ

|u|p−2uv

|x|p(a+1)

]
dx =

∫
Ω

|u|q−2uv

|x|bq
dx + λ

∫
Ω

f(x, u)v dx, (2.8)

for any v ∈ D1,p
a (Ω).

Let v = φun in (2.5), where φ ∈ C∞
0 (Ω); then it follows that

∫
Ω

[
|x|−ap|∇un|pφ − µ

|un|pφ
|x|p(a+1)

]
dx +

∫
Ω

|x|−ap|∇un|p−2∇un∇φ · un dx

=
∫

Ω

|un|qφ
|x|bq

dx + λ

∫
Ω

f(x, un)unφ dx. (2.9)

Taking n → ∞ in (2.9) we get∫
Ω

φ dζ −
∫

Ω

µ
|u|pφ

|x|p(a+1) dx +
∫

Ω

|x|−apη∇φ · u dx =
∫

Ω

φ dν + λ

∫
Ω

f(x, u)uφ dx. (2.10)

Let v = φu in (2.8); we have∫
Ω

|x|−apη∇φ · u dx +
∫

Ω

|x|−apη∇u · φ dx −
∫

Ω

µ
|u|pφ

|x|p(a+1) dx

=
∫

Ω

|u|qφ
|x|bq

dx + λ

∫
Ω

f(x, u)φu dx. (2.11)

Thus, (2.10) and (2.11) imply that∫
Ω

φ dζ −
∫

Ω

φ dν =
∫

Ω

|x|−apη∇u · φ dx −
∫

Ω

|u|qφ
|x|bq

dx,

i.e. ∫
Ω

φ dζ =
∑
j∈J

νjφ(xj) +
∫

Ω

|x|−apη∇u · φ dx. (2.12)

It follows from Lemma 2.1 that

Sa,b(νj)p/q � ζ(xj) = νj .

This result implies that
νj = 0 or νj � S

N/pd
a,b .

If the second case, νj � S
N/pd
a,b , holds for some j ∈ J , then from (1.8), (2.1), (2.4) and (2.5),

we have

c = lim
n→∞

(
I(un) − 1

p
〈I ′(un), un〉

)

=
(

1
p

− 1
q

)
lim

n→∞

∫
Ω

|un|q
|x|bq

dx − λ lim
n→∞

∫
Ω

[
F (x, un) − 1

p
f(x, un)un

]
dx

=
d

N

∫
Ω

dν − λ

∫
Ω

[
F (x, u) − 1

p
f(x, u)u

]
dx
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�
(

d

N
− λε

) ∫
Ω

|u|q
|x|bq

dx +
d

N
S

N/pd
a,b − λc(ε)|Ω|

� d

N
S

N/pd
a,b − λc

(
d

2Nλ

)
|Ω|,

where ε = d/2Nλ. This is impossible. Consequently, νj = 0 for all j ∈ J and hence∫
Ω

|un|q
|x|bq

dx →
∫

Ω

|u|q
|x|bq

dx.

Thus, the Brézis–Lieb Lemma [4] implies that un → u in Lq(Ω, |x|−bq).
Next we prove that there exists a convergent subsequence.
To show that un → u in D1,p

a (Ω), from the Brézis–Lieb Lemma [4], it suffices to show
that ∇un → ∇u a.e. in Ω and ‖un‖ → ‖u‖.

On the one hand, we have the inequality

|x|−ap(|∇un|p−2∇un − |∇u|p−2∇u) · (∇un − ∇u) � 0; (2.13)

the equality holds if and only if ∇un = ∇u.
On the other hand, let v = un and v = u in (2.5), respectively. Then, letting n → ∞,

we have

‖un‖p =
∫

Ω

(
|x|−ap|∇un|p − µ

|un|p
|x|p(a+1)

)
dx

=
∫

Ω

|un|q
|x|bq

dx + λ

∫
Ω

f(x, un)un dx + o(1)‖un‖

→
∫

Ω

|u|q
|x|bq

dx + λ

∫
Ω

f(x, u)u dx (2.14)

and ∫
Ω

[
|x|−ap|∇un|p−2∇un∇u − µ

|un|p−2unu

|x|p(a+1)

]
dx

=
∫

Ω

|un|q−2unu

|x|bq
dx + λ

∫
Ω

f(x, un)u dx

→
∫

Ω

|u|q
|x|bq

dx + λ

∫
Ω

f(x, u)u dx. (2.15)

From (2.14) and (2.15), it follows that∫
Ω

|x|−ap(|∇un|p−2∇un − |∇u|p−2∇u) · (∇un − ∇u) dx

=
∫

Ω

|x|−ap|∇un|p dx −
∫

Ω

|x|−ap|∇un|p−2∇un · ∇u dx

−
∫

Ω

|x|−ap|∇u|p−2∇u · (∇un − ∇u) dx → 0 as n → ∞. (2.16)
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From (2.13) and (2.16) we know that ∇un → ∇u a.e. in Ω. On the other hand, we have

o(1)‖un‖ = ‖un‖p −
∫

Ω

|x|−bq|un|q dx − λ

∫
Ω

f(x, un)un dx

= ‖un − u‖p + ‖u‖p −
∫

Ω

|x|−bq|u|q dx − λ

∫
Ω

f(x, u)u dx

= ‖un − u‖p + o(1)‖u‖,

since I ′(u) = 0. Thus, we prove that {un} converges strongly to u in D1,p
a (Ω). �

3. Existence of a sequence of arbitrarily small solutions

In this section, we shall prove that there exist infinitely many solutions for problem (1.1)
which tend to zero. Let X be a Banach space and define

Σ := {A ⊂ X \ {0} : A is closed in X and symmetric with respect to the origin}.

For A ∈ Σ, we define genus γ(A) as

γ(A) := inf{m ∈ N : there exists ϕ ∈ C(A, Rm \ {0}), −ϕ(x) = ϕ(−x)}.

If there is no mapping ϕ as above for any m ∈ N , then γ(A) = +∞. Let Σk denote the
family of closed symmetric subsets A of X such that 0 
∈ A and γ(A) � k. We list some
properties of the genus [18].

Proposition 3.1. Let A and B be closed symmetric subsets of X that do not contain
the origin. Then the following hold.

1. If there exists an odd continuous mapping from A to B, then γ(A) � γ(B).

2. If there exists an odd homeomorphism from A to B, then γ(A) = γ(B).

3. If γ(B) < ∞, then γ(A \ B) � γ(A) − γ(B).

4. The n-dimensional sphere Sn has a genus of n + 1 by the Borsuk–Ulam Theorem.

5. If A is compact, then γ(A) < +∞ and there exists δ > 0 such that Uδ(A) ∈ Σ and
γ(Uδ(A)) = γ(A), where Uδ(A) = {x ∈ X : ‖x − A‖ � δ}.

The following version of the Symmetric Mountain Pass Lemma is due to Kajikiya [18].

Lemma 3.2. Let E be an infinite-dimensional space and let I ∈ C1(E, R) and suppose
the following conditions hold.

(C1) I(u) is even, bounded from below, I(0) = 0 and I(u) satisfies the local Palais–Smale
condition, i.e. for some c̄ > 0, every sequence {uk} in E satisfying limk→∞ I(uk) =
c < c̄ and limk→∞ ‖I ′(uk)‖E∗ = 0 has a convergent subsequence.

(C2) For each k ∈ N , there exists an Ak ∈ Σk such that supu∈Ak
I(u) < 0.
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Then either (R1) or (R2) below holds.

(R1) There exists a sequence {uk} such that I ′(uk) = 0, I(uk) < 0 and {uk} converges
to zero.

(R2) There exist two sequences {uk} and {vk} such that I ′(uk) = 0, I(uk) < 0, uk 
= 0,
limk→∞ uk = 0, I ′(vk) = 0, I(vk) < 0, limk→∞ I(vk) = 0 and {vk} converges to a
non-zero limit.

Remark 3.3. From Lemma 3.2 we have a sequence {uk} of critical points such that
I(uk) � 0, uk 
= 0 and limk→∞ uk = 0.

Remark 3.4. In [18], the functional I(u) is required to satisfy the Palais–Smale
condition. However, if I(u) satisfies the local Palais–Smale condition with the critical
value levels c � 0, the results of [18, Theorem 1] remain true.

In order to get infinitely many solutions, we need some lemmas. Under the assump-
tions of Theorem 1.1, we take ε = 1/λ1 (where λ1 is the first eigenvalue of Lµu :=
− div(|x|−ap|∇u|p−2∇u)−µ|x|−p(a+1)|u|p−2u with Dirichlet boundary condition). Then,
by the definition of Sa,b, (1.7) and Lemma 2.2, for λ ∈ (0, λ1) we have

I(u) =
1
p

∫
Ω

[
|x|−ap|∇u|p − µ

|u|p
|x|p(a+1)

]
dx − 1

q

∫
Ω

|u|q
|x|bq

dx − λ

∫
Ω

F (x, u) dx

� 1
p

∫
Ω

[
|x|−ap|∇u|p − µ

|u|p
|x|p(a+1)

]
dx − 1 + λεq

q

∫
Ω

|u|q
|x|bq

dx − λb(ε)|Ω|

� 1
p
‖u‖p − 1 + q

q
S

−q/p
a,b ‖u‖q − λb

(
1
λ1

)
|Ω|

= A‖u‖p − B‖u‖q − λC,

where

A ≡ 1
p
, B ≡ 1 + q

q
S

−q/p
a,b , C ≡ b

(
1
λ1

)
|Ω|.

Let Q(t) = Atp − Btq − λC. Then

I(u) � Q(‖u‖).

Furthermore, there exists

λ∗ = min
{

λ1,
A(q − p)

qC

(
pA

qB

)p/(q−p)}
> 0

such that, for λ ∈ (0, λ∗), Q(t) attains its positive maximum, that is, there exists

R1 ≡
(

pA

qB

)1/(q−p)
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such that
e1 = Q(R1) = max

t�0
Q(t) > 0.

Therefore, for e0 ∈ (0, e1), we may find R0 < R1 such that Q(R0) = e0. Now we define

χ(t) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1, 0 � t � R0,

Atp − λC − e1

Btq
, t � R1,

C∞, χ(t) ∈ [0, 1], R0 � t � R1.

Then it is easy to see that χ(t) ∈ [0, 1] and χ(t) is C∞. Let ψ(u) = χ(‖u‖) and consider
the perturbation of I(u):

G(u) =
1
p

∫
Ω

[
|x|−ap|∇u|p − µ

|u|p
|x|p(a+1)

]
dx − ψ(u)

q

∫
Ω

|u|q
|x|bq

dx − λψ(u)
∫

Ω

F (x, u) dx.

(3.1)
Then

G(u) � A‖u‖p − Bψ(u)‖u‖q − λC

= Q̄(‖u‖),

where Q̄(t) = Atp − Bχ(t)tq − λC and

Q̄(t) =

{
Q(t), 0 � t � R0,

e1, t � R1.

From the above arguments, we have the following result.

Lemma 3.5. Let G(u) be defined as in (3.1). Then

(i) G ∈ C1(D1,p
a (Ω), R) and G is even and bounded from below,

(ii) if G(u) < e0, then Q̄(‖u‖) < e0 and, consequently, ‖u‖ < R0 and I(u) = G(u),

(iii) there exists λ∗ such that, for λ ∈ (0, λ∗), G satisfies a local (PS) condition for

c < e0 ∈
(

0, min
{

e1,
d

N
S

N/pd
a,b − λc

(
d

2Nλ

)
|Ω|

})
.

Proof. Items (i) and (ii) are immediate. Item (iii) is a consequence of item (ii) and
Lemma 2.2. �

Lemma 3.6. Assume that (H3) of Theorem 1.1 holds. Then, for any k ∈ N , there
exists δ = δ(k) > 0 such that γ({u ∈ D1,p

a (Ω) : G(u) � −δ(k)} \ {0}) � k.
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Proof. First, by (H3) of Theorem 1.1, for any fixed u ∈ D1,p
a (Ω), u 
= 0, we have

F (x, ρu) � M(ρ)(ρu)p with M(ρ) → ∞ as ρ → 0.

Next, given any k ∈ N , let Ek be a k-dimensional subspace of D1,p
a (Ω). There then exists

a constant σk such that

‖u‖ � σk|u|p for all u ∈ Ek.

Therefore, for any u ∈ Ek with ‖u‖ = 1 and ρ small enough, we have

G(ρu) = I(ρu)

=
ρp

p

∫
Ω

[
|x|−ap|∇u|p − µ

|u|p
|x|p(a+1)

]
dx − ρq

q

∫
Ω

|u|q
|x|bq

dx − λ

∫
Ω

F (x, ρu) dx

� ρp

p
‖u‖p − ρq

q

∫
Ω

|u|q
|x|bq

dx − λM(ρ)
∫

Ω

|u|p dx

�
(

1
p

− λM(ρ)
σp

k

)
ρp

= −δ(k) < 0,

since lim|ρ|→0 M(ρ) = +∞. Therefore,

{u ∈ Ek : ‖u‖ = ρ} ⊂ {u ∈ D1,p
a (Ω) : G(u) � −δ(k)} \ {0}.

This completes the proof. �

Proof of Theorem 1.1. Recall that

Σk = {A ∈ D1,p
a (Ω) \ {0} : A is closed and A = −A, γ(A) � k}

and define

ck = inf
A∈Σk

sup
u∈A

G(u).

By Lemma 3.5 (i) and 3.6, we know that −∞ < ck < 0. Therefore, assumptions (C1) and
(C2) of Lemma 3.2 are satisfied. This means that G has a sequence of solutions {un}
converging to zero. Hence, Theorem 1.1 follows by Lemma 3.5 (ii). �
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