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Abstract
Current and future surveys rely on machine learning classification to obtain large and complete samples of transients. Many of these algo-
rithms are restricted by training samples that contain a limited number of spectroscopically confirmed events. Here, we present the first
real-time application of Active Learning to optimise spectroscopic follow-up with the goal of improving training sets of early type Ia super-
novae (SNe Ia) classifiers. Using a photometric classifier for early SN Ia, we apply an Active Learning strategy for follow-up optimisation
using the real-time FINK broker processing of the ZTF public stream. We perform follow-up observations at the ANU 2.3m telescope in
Australia and obtain 92 spectroscopic classified events that are incorporated in our training set. We show that our follow-up strategy yields
a training set that, with 25% less spectra, improves classification metrics when compared to publicly reported spectra. Our strategy selects
in average fainter events and, not only supernovae types, but also microlensing events and flaring stars which are usually not incorporated
on training sets. Our results confirm the effectiveness of active learning strategies to construct optimal training samples for astronomical
classifiers. With the Rubin Observatory LSST soon online, we propose improvements to obtain earlier candidates and optimise follow-up.
This work paves the way to the deployment of real-time AL follow-up strategies in the era of large surveys.
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1. Introduction

Photometric classification (PC) is becoming one of the most effi-
cient tools to harness the full power of large surveys detecting
transients and variables. In the last decade thousands of super-
novae have been detected by surveys such as the Dark Energy
Survey and the Zwicky Transient Facility (DES and ZTF; Bernstein
et al. 2012; Bellm et al. 2019). However, only a small percentage
has been spectroscopically followed-up and classified. Recently, in
the Dark Energy Survey, photometric classification has allowed to
identify more than 3 times more type Ia supernovae (SNe Ia) com-
pared to spectroscopic classification for cosmology analyses (DES
Collaboration et al. 2024; Möller et al. 2022), as well as a close-to-
complete sample of high-quality SNe Ia in the survey (Möller et al.
2024).

PC uses only light-curves, or flux evolution as a function of
time, together with other useful information, to obtain probabil-
ities of a light-curve being that of a given astrophysical event. In
the last decade, many PCmethods have been developed to identify
transients and variables. Most of them rely on Machine Leaning
(ML) algorithms trained either with real data or simulations for
SN classification (Möller et al. 2016; Möller & de Boissière 2020;
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Qu et al. 2021; Boone 2021; Gagliano et al. 2023), kilonovae
(Biswas et al. 2023), variables (Sánchez-Sáez et al. 2021) or iden-
tifying simultaneously many transients and variable classes (Fraga
et al. 2024; Cabrera-Vives et al. 2024). However, training sets are
far from complete at high redshifts and, in particular for rare and
new classes, scarce. Recent efforts have focused in improving train-
ing sets through refined simulations (Vincenzi et al. 2019) or by
combining real-data and simulations (Carrick et al. 2021).

Starting in 2025, for a decade, the Legacy Survey of Space and
Time (LSST) at the Vera C. Rubin Observatory will detect up to 10
million time-changing events per night, and more than a million
SNe during the whole survey (Rubin, LSST Science Collaboration
2009). It will be impossible to follow-up all transient candidates
spectroscopically or even a subset of such as all type Ia supernovae
(SNe Ia), SNe, nor rare transients. Thus, to harness the power of
LSST, it will be necessary to develop and apply PC methods to the
large volumes of Rubin data.

Spearheading the effort of identifying the most promising can-
didates for a variety of science cases are the Rubin Community
Brokers. During its ten year survey, LSST, will send in real-time all
transient and variable detections as a stream to 7 community bro-
kers: FINK (Möller et al. 2021), ALERCE (Förster et al. 2021), AMPEL
(Nordin et al. 2019), ANTARES (Mathesonm et al. 2021), Babamul,
LASAIR (Smith et al. 2019) and Pitt-Google.

The FINK broker, is designed to ingest and process large data
streams within minutes. Currently processing the ZTF stream
as a precursor, it will be deployed with Rubin LSST data from
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2025. To identify the most promising candidates for a variety
of science cases, it makes use of several different science mod-
ules which contain cross-matching capabilities, ML classifiers and
user-specified filters (Möller et al. 2021). An evaluation of cur-
rent and future FINK ML algorithms performance, including an
early SNIa classifier, using Rubin LSST simulations can be found
in Fraga et al. (2024). FINK also is actively developing novel sys-
tems that incorporate active learning for anomaly detection and
optimising follow-up resources.

Active learning (AL) has been shown to be a promising strategy
for anomaly detection (Ishida et al. 2021; Lochner & Bassett 2021)
and to optimise training sets. Using supernova light-curve simu-
lations from the Supernova Photometric Classification Challenge
(SNPCC, Kessler et al. 2010), Ishida et al. (2019) show that, for
SNIa classification, using only 12% of the training set, the AL
approach doubles purity with respect to the non AL approach.
More recently, Leoni et al. (2022) adapted this method to early
SNIa classification using real data from ZTF alerts. This work
uses photometric data and public labels from other follow-up pro-
grams, thus, it does not prioritise follow-up in real-time. Recently,
the RESSPECT group has created a recommendation system for
spectroscopic follow-up based on AL targeting SNIa cosmology
with simulations (Kennamer et al. 2020; Malz et al. 2023).

Here we present for the first time an AL approach for train-
ing set optimisation in real-time with spectroscopic follow-up.
This paper focuses on optimising spectroscopic training sets for
early SNe Ia classification using the ZTF public stream with FINK.
While this work can be extended to other transient and variables,
SNe Ia is a good benchmark for the following reasons. First, SNe
Ia are widely used in cosmology to constrain the expansion of
the Universe (DES Collaboration et al. 2024). This means they
are of great interest for accurate PC. Second, SNe Ia early light-
curves, within a couple of days of the explosion, are not properly
modelled and understood. This is an active area of research com-
prising the retraining of the SALT SNIa model (Guy et al. 2007;
Kenworthy et al. 2021), and coordinated observation programs
such as Dark Energy Bedrock All Sky Survey (DEBASS; Brout
et al. in prep.). These programs rely on identifying potential SNe
Ia early on to obtain spectra for improving the Spectral-Energy
Distribution (SED) model.

The goal of this work is to optimise follow-up in the context of
improving training sets for early SN Ia classification. This objec-
tive is very different from that of obtaining high-purity SN Ia
samples with complete light-curves for cosmology as done with
SUPERNNOVA (SNN; Möller & de Boissière 2020) for the Dark
Energy Survey cosmology analysis (DES Collaboration et al. 2024;
Möller et al. 2022). First, in this work we aim to classify early
SNe Ia which is a challenging task as our current SED mod-
els, which are used for simulations, are not complete. For DES
we classify complete light-curves which are much better under-
stood and thus simulated. SNN is a non-parametric Deep Learning
model that requires large training sets to achieve its full perfor-
mance and thus uses simulations. Second, the accuracy and purity
requirements are very different in both analyses. In particular, for
cosmology, we aim for high purity, thus contamination must be
small, not sensitive to training set perturbations and thoroughly
modelled. SNN has been shown to meet these requirements in the
DES analysis with accuracies >98% (Möller et al. 2022; Vincenzi
et al. 2021). In the case presented here, the relative improvement
in accuracy between the initial and the final state is more impor-
tant than the final overall accuracy – which, given an informative

training sample, can certainly be improved by different choices of
algorithm and hyper-parameters. In summary, the approach pre-
sented here does not seek to emulate that used for SN Ia cosmology
but instead aims to optimise spectroscopic follow-up to improve
training sets and potentially enhance our SED models used for
simulations.

This paper is organised as follows. First, we introduce the data
used for this work in Section 2. In Section 3, we present the
early SN Ia machine learning (ML) algorithm, feature extraction
method and evaluation metrics. To optimise follow-up we use an
Active Learning strategy in Section 4.2 which includes candidate
selection, communication, follow-up observations and retraining
of the MLmodel. We present the results from the FINK AL loop in
Section 5, including an comparison of ours with different follow-
up strategies. With the advent of the Rubin Observatory LSST, we
propose improvements for this follow-up strategy in Section 6.

2. ZTF data

We make use of the public alert stream from ZTF (Bellm et al.
2019) accessed using the FINK broker (Möller et al. 2021). The ZTF
alert stream is an unfiltered, 5-sigma photometry stream in the g
and r bandpasses. Each night, FINK ingests and processes in real-
time the alert packets sent by the telescope.

We used the photometric information contained in alerts
received by FINK. These correspond to the object identification,
the time of observation, the 5-sigma detection magnitude from
PSF-fit photometry and the error in magnitude, for each of the
ZTF filters. FINK also provides a cross-match with the SIMBAD
database within a 1” radius (Wenger et al. 2000).

In this work we make use of three samples of ZTF alerts: an
initial training sample, a testing sample and a loop sample.

The initial training and testing samples are selected from the
data used in Leoni et al. (2022) from the public ZTF stream
between November 2019 to March 2020. All the light-curves
have an assigned type from either the SIMBAD database or the
Transient Name Server.a As shown in Table 1, the initial training
sample consists of 30 light-curves of SNe and other variable events;
while the testing sample is composed by 2 340 SNe. We highlight
that the large number of SNe Ia in the test sample is a product of
the astrophysical rates together with the follow-up strategies for
different surveys that are reported in TNS.

The loop sample is composed of public alerts received in real-
time in FINK from the ZTF survey from September 2023 to 2024.
Wewill further filter this sample, constrain it to our follow-up pro-
gramme observing seasons, and use it chronologically as presented
in Section 4.1.

3. Machine learning classification

In this work we use a Machine Learning (ML) algorithm to
obtain classification probabilities for ZTF alerts. These proba-
bilities are then assessed with an Active Learning approach to
optimise follow-up observations (Section 4.2). We introduce the
ML algorithm in Section 3.1, the method to extract features from
light-curves for algorithm input in Section 3.2 and the metrics
used to evaluate its performance in Section 3.3. Both are based in
the approaches presented in Ishida et al. (2019) and adapted to the

ahttps://www.wis-tns.org/.

https://doi.org/10.1017/pasa.2025.20 Published online by Cambridge University Press

https://www.wis-tns.org/
https://doi.org/10.1017/pasa.2025.20


Publications of the Astronomical Society of Australia 3

Table 1.SIMBAD types of the samples used for initial training and
testing. The samples are subsets of those in Leoni et al. (2022).

Type Initial training sample Testing sample

AGN 1 0

C∗ 2 0

EB∗ 3 0

SN Ia 13 1587

Mira 1 0

QSO 7 0

RRLyr 4 0

SLSN-I 1 63

SLSN-II 0 30

SN 0 6

SN I 0 20

SN II 3 341

SN II-pec 0 2

SN IIP 1 51

SN IIb 0 24

SN IIn 1 106

SN Ib 1 21

SN Ib-pec 0 1

SN Ibn 0 7

SN Ic 0 73

SN Ic-BL 0 8

Star 1 0

Variable star 1 0

FINK broker by Leoni et al. (2022).We then train the initial version
of the classifier in Section 3.4.

3.1 Algorithm

The classification algorithm used in this work is a Random Forest
classifier (Ho 1995). A Random Forest is an ensemble method
that uses a number of decision trees, trained from different sub-
samples of the training set. The classification output is determined
by the majority of the predictions for the trees in the ensemble.

Random Forests have been successfully used for a variety of
astronomical classification problems (Ishida & de Souza 2013;
Möller et al. 2016; Leoni et al. 2022). Furthermore, ensemblemeth-
ods have been shown to be more robust in classification also for
Deep Learning applications in astronomy (Möller et al. 2022).

Moreover, for the specific purpose of this project, its most
important quality is the sensitivity to small changes in the training
set. Decision trees divide the parameter space into small regions
around each object in the training sample. Thus, in the small
training data regime, it quickly adapts classification results when
faced with a small number of new labels. This is a crucial feature
for any classifier which needs to work within an active learning
framework.

All Random Forest models trained in this work were con-
structed using 1 000 trees, to ensure good convergence in a
reasonable time. The algorithm is trained to provide high accu-
racy classification in the binary problem early SNe Ia vs non SNe

Ia, providing as output a probability of the light-curve being an
early SNe Ia, PIa.

3.2 Feature extraction

To extract features from multi-band light-curves, we follow the
procedure descried in Leoni et al. (2022). First, ZTF magnitudes
are converted to SNANA (Kessler et al. 2009) flux units, f , and its
corresponding error, �f ,

f = 10−0.4m+11, (1)

df = 1010 ∗ α ∗ dm ∗ exp
(
−αm

10

)
, (2)

where α = 4× ln 10∼9.21034. Then, observations in each filter
were independently fitted with a sigmoid, S. This sigmoid fit at
a given time ti is described by:

S(ti)= c
1+ e−a(�ti−b) , (3)

where �ti = ti −min(t) is the observation time of the i-th data
point since first detection. For each alert, three features in each
band are obtained for the best fit values of a, b and c using the least
square minimisation routine from Scipy (Virtanen et al. 2020).
Three other features were extracted per band: the quality of the fit
χ 2, the mean signal-to-noise ratio S/N, and the number of epochs
N used in the fit, as in Leoni et al. (2022).

In summary, for each alert we obtain six features,

a, b, c, χ 2, S/N,N (4)

per band. These are used as input for the classification algorithm
introduced in Section 3.1. We require at least one filter with 3
detections to extract features from a light-curve.

3.3 Evaluationmetrics

We evaluate the performance of the classification using the
metrics introduced by the Supernova Photometric Classification
Challenge (Kessler et al. 2010).

accuracy= CIa + Cnon-Ia

N
, (5)

efficiency= CIa

NIa
, (6)

purity= CIa

CIa +Wnon-Ia
, (7)

fom= efficiency× CIa

CIa +W∗ ×Wnon-Ia
, (8)

where fom stands for figure of merit, CIa is the number of correctly
classified Ias, Cnon-Ia denotes the number of correctly classified
non-Ias, N represents the total number of objects in the target
sample, N Ia is the total number of Ias in the target sample,Wnon-Ia
is the number of wrongly classified non-Ias, and W∗ = 3 (Kessler
et al. 2010) is a weight which penalises false positives.

These metrics were used only to evaluate the performance of
the trained ML algorithm in the independent testing sample and
they were not used in the decision-making process of the Active
Learning Loop.

3.4 Initial model

We train an initial model using the initial train sample of 30 light-
curves from the ZTF survey introduced in Section 2. These light-
curves are a subset of the sample by Leoni et al. (2022) and contain
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Figure 1. Active Learning loop schema. The loop starts with the Initial train samplewhich is used to train the Early SN Ia classifier, this algorithm is then applied to alerts processed
by the Fink broker from the ZTF public stream. We select alerts which obtain the closest PIa to 0.5 and schedule spectroscopic follow-up with the ANU 2.3m if they have no
spectroscopic classification. Once a label is obtained, we add the light-curves and labels for the selected events to the training set. The loop is repeated during the observing
period.

both SNe and variables. The algorithm is trained to select normal
early SNe Ia vs non SNe Ia.

The initial trained RF model has an accuracy of 0.47, an
efficiency of 0.26, purity 0.87, and a fom 0.18. It provides a clas-
sification which has high purity but low efficiency for SNe Ia. This
will be our starting point for the Active Learning strategy in this
work.

4 Active learning

In cases where unlabelled data is abundant but labelling is expen-
sive and/or time consuming, Active Learning (Settles et al. 2012)
provides a way to optimise the acquisition of labels that will
improve the model when incorporated to the training set.

For our work, we perform an observation campaign between
September 2023 and August 2024. In real time, as indicated in
Fig. 1 we select follow-up candidates from ZTF data (Section 4.1)
with an Active Learning strategy (Section 4.2). These candi-
dates are selected nightly and communicated through a FINK bot
(Section 4.3). In the subsequent night, we schedule follow-up using
the ANU 2.3m telescope (Section 4.4). Once a spectroscopic clas-
sification is obtained, new labels and light-curves are incorporated
to the training set (Section 4.5) and their performance assessed.
This is a chronologically ordered loop.

4.1 ZTF alerts selection

To select early SNIa-like events, we use a modified filtering
inspired by the early SNIa substream in Fink (Möller et al. 2021;
Leoni et al. 2022). We use the loop sample defined in Section 2,
which contains alerts within our follow-up programme dates (see
Section 4.4 and Table 2). Asides from the date constraints, we select
alerts which:

• Are not known variable stars or AGNs identified by cross-
matching their coordinates with SIMBAD database and a
1” radius.

• Have less than 20 days between their first and latest detec-
tion.

• Have less than 20 measurements.

We construct a light-curve using all detections available in the
public stream and then obtain light-curve features for each filter
individually using the fit, equation (3), in Section 3.2. We then
obtain a classification probability for each of these candidates.

4.2 Active learning strategy

In the context of classification, instead of selecting high proba-
bility candidates for a high efficiency or pure sample, an Active
Learning approach will select the most uncertain classifications for
label acquisition, in our case spectroscopic follow-up.

In Ishida et al. (2019), Leoni et al. (2022) they used Uncertainty
Sampling as the Active Learning strategy. Uncertainty sampling
(Sharma & Bilgic 2017) identifies the objects closest to the decision
boundary between classes at each iteration. As our classification is
a binary one, the selection would correspond to the object with
a classification probability closest to PIa ∼ 0.5. See, e.g., MacKay
(2003). For multi-class classifiers potential selection strategies can
be found in Xue & Hauskrecht (2019).

For this work, in the case of our binary classification, we find
that candidates with probability between 0.4<PIa<0.6 are quite
rare. Given further constraints to the follow-up observations such
as magnitude limit and weather condition, at each iteration, we
choose to select the closest 10 alerts to PIa = 0.5.
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4.3 Fink bot

In the following, we summarise three methods currently available
in the FINK broker to access filtered candidates. We then detail the
implementation of the FINK AL loop bot.

In the FINK broker, filtered candidates can be automatically
communicated in the following ways:

• Substream through the FINK client: receiving full-content
filtered candidates as they are processed.

• Substream through a FINK bot: receiving personalised
notifications based on filtered candidates using instant
messaging applications such as Slack or Telegram.

The delay between an observation is received, ingested, pro-
cessed and filtered by FINK has currently a median delay of 78
s. The 10 and 90 percentiles of this delay are 39 and 123 s. This
amounts to a delay between less than a minute and up to two min-
utes for accessing promising candidates after their data has been
received.

The use of instant messaging applications, such as Slack or
Telegram, has proven to be very convenient for users in Fink,
and the implementation of bots has been made easy thanks to
the availability of public and interoperable API. Users can then
receive information within the applications they already use regu-
larly, without the need to install a new tool or navigate to a separate
website.

We note that there is a third option to access candidates, by
manually querying the FINK Science Portal or using its API.b
However, the database used in this service is only populated at the
end of the night and thus has usually several hours delay to access
the promising candidates.

For the FINK AL loop, we choose the substream processing
with a Slack bot.We introduce an additional delay, as we choose to
communicate the 10 candidates closest to PIa = 0.5 for the night.
The whole operation takes typically less than aminute for an entire
night (about 200 000 alerts), dominated by the classification task.

These 10 candidates are automatically communicated via an
instant messaging application by a bot. The Slack message, which
is customisable, includes the most recent thumbnail and full light-
curve, together with a link to the object in the portal. Candidates
are then visually inspected by a community of users and some are
scheduled for follow-up observations if they are observable by the
ANU 2.3m (e.g. airmass, telescope availability andmagnitude limit
criteria).

4.4 Follow-up observations

We perform follow-up observations with the ANU 2.3m tele-
scope located in Siding Spring Observatory (SSO)in Australia. We
had four distinct follow-up periods due to weather and technical
constraints as shown in Table 2.

We use the Wide Field Spectrograph (WiFeS, Dopita et al.
2007) which has a field of view of 25 × 38 arcsec. We obtain R=
3 000 resolution spectra using the R3000 and B3000 gratings, for
the red and blue arms of the spectrograph and the RT560 dichroic.
The spectra obtained cover a wavelength range of 3 500–9 000 Å.

bhttps://fink-broker.readthedocs.io/en/latest/services/search/getting_started/.

Table 2.Date ranges for alerts used for this work.

Follow-up season Start End

1 25/09/2023 23/10/2023

2 25/02/2024 29/02/2024

3 04/04/2024 02/06/2024

4 24/06/2024 15/08/2024

We observed the candidates using the Nod & Shuffle (N&S)
mode to obtain a better signal-to-noise ratio. Depending on the
magnitude of the transient and the moon phase, we observed
either two or three N&S 1 200 s exposures (600 s on target, 600 s on
sky). If possible, we included the host-galaxy in the field-of-view to
obtain its spectra simultaneously.

If a host-galaxy spectrum is obtained, we use the software
MARZ (Hinton et al. 2016) to obtain its redshift. If the host is not
within the field or magnitude limits of our spectra, we search avail-
able catalogues for a redshift estimation whether spectroscopic or
photometric.

We then classify the candidates using their spectra. For this,
we use SUPERFIT classification package written in IDL (Howell
et al. 2005). SUPERFIT compares the given spectra to a set of tran-
sient and host templates. We provide an input spectrum and a
redshift range or host redshift if available. The input spectrum is
sequentially compared to each of these templates while iterating
through the redshifts if needed, reddening corrections and differ-
ent levels of host-galaxy contamination. We then visually inspect
the top matches to obtain a classification. Spectra with a quality
classification are then reported to the IAU Transient Name Server.

4.5 AL loop

Once a spectroscopic classification is obtained, the labelled light-
curve is added to the training and the ML model is retrained. This
new retrained model is deployed and it is used to obtain the next
night’s candidates for follow-up. The iterations continue with the
goal of improving the classification algorithm.

The labelled light-curve used for feature extraction and thus
retraining contains only photometry until the follow-up request.
For the following results, we choose to add the obtained label
the day following when the follow-up was requested. This is to
homogenise the system, as in reality, as discussed in Section 6.2
the label can be acquired days after it was selected by the bot. This
simplification does not alter the results found.

5. Active learning follow-up with FINK

We present here the results of the application of the Active
Learning strategy for follow-up with FINK using the ZTF public
alerts. First, we show the performance evolution of the FINK AL
loop chronologically in Section 5.1. Then, we analyse how the AL
approach optimises follow-up resources in Section 5.2. We con-
clude by exploring the differences between the FINK AL follow-up
targets and other follow-up strategies in Section 5.3.

In the following we will compare our FINK AL loop strategy
with labels available in TNS: i) those reported by the ZTF group
(ZTF); ii) all TNS available labels containing different follow-up
strategies (TNS). The latter, TNS, contains ZTF reported classifi-
cation together with the reports of all other groups.
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Figure 2. Evolution of classification metrics as a function of the number of normalised follow-up date from the FINK AL strategy and using all TNS reported ZTF classifications.
Metrics are evaluated on the independent testing set every date that a new label is available. The grey vertical lines show the observing seasons boundaries.

5.1 ML algorithm performance through time

Starting from the initial trained model in Section 3.4, we apply
the filtering described in Sections 4.1 and 4.2 to select follow-
up candidates from the ZTF public alert stream with FINK. We
scheduled follow-up with the ANU 2.3m and obtained labels if
the spectra had a signal-to-noise ratio high enough for classifica-
tion (Section 4.4). Chronologically, new labels and their respective
light-curves (with photometry up to the follow-up day) were
incorporated to the training set, the MLmodel was re-trained, and
its performance evaluated on the independent testing set.

We see the evolution of theML algorithm in Fig. 2 as a function
of a normalised date. The normalised date skips epochs between
observing seasons to show a continuous evolution. The metrics
are evaluated in the same independent testing sample each time
the algorithm is retrained with the acquired labels from the FINK
AL follow-up strategy. We compare, for the same date range, a
loop with all labels reported by ZTF in TNS. For the latter, to
select the portion of the light-curve to use in the loop consistent
with FINK AL early follow-up selection, we check the difference
between FINK’s follow-up date and their first detection. We find
that most of our follow-up targets are chosen 9 days after their
discovery or first detection date. We use this time span to select
the TNS reported light-curves. Thus, the TNS light-curves contain
only photometry for 9 days after discovery at all points in loop.

Both strategies start at the same initial state, which was defined
by the initial 30 objects (15 SNIa, 15 others, picked at random from
the sample curated by Leoni et al. 2022). In this state, efficiency is

low and purity is high. This is an indication of the low diversity
among the Ias present in this initial set. Since a low number of cells
in the forest are identified as SNIa, a very low number of Ia candi-
dates are identified, hence the low efficiency and high purity which
results in a low figure of merit. As more informative samples are
added to the training, this imbalance is corrected. Fig. 2 shows that
while the FINK and ZTF loops have similar performances with the
first acquired labels, after≈ 50 loops the FINK strategy consistently
increases its performance while the ZTF one does not, illustrat-
ing the fact that later objects in the ZTF sample do not contain
information which was not already present in training. We high-
light that in the last iterations, the ZTF loop performance strongly
decreases due to two light-curves which do not have a successful
feature extraction.

For the first 15 loops, we see an increase in efficiency in the SN
Ia classification and a decrease in the purity of the sample. This is
due to an increase in contaminant selection, from other SNe core-
collapse and super-luminous types. The main contaminants found
are type II and Ic SNe followed by SLSN-I. After the 20th loop, the
FINK AL model strongly reduces the SLSN and in a lesser extent
core-collapse SN contamination.

As our classifier improved we deployed it in the FINK broker to
select both new follow-up candidates and also, using a high prob-
ability cut, select promising early SNe Ia. Some of these SNe Ia
have been further analysed and incorporated to analyses such as
the Dark Energy Bedrock All Sky Survey (DEBASS; Brout et al. in
preparation).
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Figure 3. Evolution of classificationmetrics as a function of the number of spectra (n spectra) taken for the FINK AL strategy and using all TNS reported ZTF classifications. Metrics
are evaluated on the independent testing set every date that a new label is available. We used a normalised date which ignores breaks between follow-up observing seasons. The
grey vertical lines show the observing seasons boundaries.

5.2 Optimising follow-up resources

Spectroscopic follow-up resources are scarce for current and
future surveys. In this Section we explore whether the FINK AL
approach is efficient, expressed as the number of spectra, for
label acquisition to improve the performance of the classification
algorithm.

In Fig. 3 we compare the evolution of metrics with FINK AL
strategy with ZTF follow-up as a function of the number of spec-
tra acquired. This differs from a date evolution, as several spectra
can be acquired in a single observing night. For the same date
range, the FINK AL strategy has acquired around half of the spec-
tra of ZTF and obtained better performance. This shows that an
AL strategy can optimise follow-up resources for improving PC
training sets.

We further explore the optimisation of follow-up resources by
comparing the performance of our FINK AL strategy with respect
to the full TNS reported classifications in this period. To achieve
a similar performance, we require ≥ 127 TNS classified spectra
vs. 92 FINK ones (equivalent to a reduction of 25%). In telescope
time, taking our observing configuration of 1 200 s per target, this
represents around one and a half nights of observation out of 5.3
nights that are saved by this approach if all targets are observed.
As we will discuss in the next Section 5.3, we are not 100% effi-
cient in acquiring spectra, e.g. some spectra has not enough signal
to obtain a reliable classification. Thus, the number of scheduled
time is larger (around a factor 2) than the number of spectra in the
loop multiplied by the observing time.

5.3 Follow-up targets

With the FINK AL strategy we identify 178 follow-up candidates.
110 of these candidates have a label from our ANU 2.3m follow-
up, catalogues or reported in TNS (68, 7 and 35 respectively).

We find that most of the follow-up candidates are selected 9
days after first detection is reported. This is influenced by the need
of at least 3 detections in a given filter to extract features and the
observing cadence of ZTF. We explore a potential improvement
to target earlier light-curves in Section 6.

After quality cuts and post-processing, 90 enter into the loop.
Their final classification is shown in Table 3. We compare our
follow-up candidates with those obtained from TNS in Fig. 4,
grouping peculiar SNe with their normal classes. While the per-
centage of SN types between the different follow-up targets is
similar, with FINK AL we spectroscopically follow-up a SLSN and
other transients which include microlensing events and CV.

5.3.1 Candidate brightness

We find that the FINK AL follow-up candidates have a median
magnitude of 19.5± 0.7 when appearing in the bot, similar to
follow-up candidates from ZTF and all TNS. We highlight that
the depth achieved by the Nod & Shuffle mode with WiFeS allows
us to type early SNe Ia, such as ZTF24aaiypmpc for which we

chttps://fink-portal.org/ZTF24aaiypmp.
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Table 3.FINK targets in the AL loop with types
acquiredwith the ANU 2.3m spectra. Featureless
and other indicate spectra which have no fea-
tures consistent with a SN.

Type number

II 8

IIb 1

Ia 62

Ia-91T-like 2

Ia-pec 2

Iax[02cx-like] 1

Ibn 1

Ic-BL 1

SLSN 1

featureless 2

microlensing 2

other 5

star 2

Figure 4. Spectroscopic classes for follow-up candidates in the FINK AL loop. We show
from left to right panels FINK, ZTF and all TNS spectroscopic classifications. The per-
centage of SN families is similar to all strategies except for SLSN and other non-SN
types of transients characterised by FINK.

obtained spectra at 19.5 mag. ZTF24aaiypmp was classified as a
SNe Ia between -11 and -13 days before maximum light.

From the 178 candidates, 68 have a label from ANU 2.3m, 35
from TNS before we acquired spectra, 7 are catalogued stars, and
68 candidates were not classified. Most of these missing classifica-
tions are due to weather delays or prioritisation in the telescope
(thus the SN faded away before obtaining its spectra). A small por-
tion had spectra acquired which was not enough signal-to-noise
ratio for classification. These are found to be mostly faint sources
with a median magnitude 19.5± 0.5 when appearing in the bot. A
posteriori, we check the peak magnitude of these events, as shown
in Fig. 5. We find that most of the unlabelled candidates have a
peak detected magnitude around 19.2± 0.6. Thus, they are faint
SNe or other transients which peak shortly after the follow-up was
triggered.

5.3.2 Host-galaxies

In this analysis, we did not use any host-galaxy information in the
ML algorithm. In this Section, we inspect a posteriori the host-
galaxy properties of followed-up candidates.

To identify the candidates host-galaxies, we use the Legacy
Surveys DR10 (Dey et al. 2019) accessed through the NOIRLab

Figure 5. Magnitude distribution of candidates when triggering follow-up (top panel)
and detected peak (lower panel). We show the distribution for FINK follow-up pro-
gram with successful spectroscopic classification in solid lines and without in dotted
lines. We also show the magnitude distribution for ZTF classified and all TNS reported
spectroscopic samples during our FINK program.

Archive. We query a 1’ radius around the SN to select potential
hosts. For each candidate host, we compute the directional light
radius (DLR) as in Sullivan et al. (2006). This method computes
a dimensionless distance (dDLR) for each potential host-galaxy
measured between the SN position and the centroid of the galaxy,
in angular distance, normalised by the galaxy size in the direction
of the SN, also in angular distance.

Potential hosts only include those that hat have a Legacy value
for the radius, additionally we require that they have dDLR<4 as
in Qu et al. (2024). We then apply additional cuts using available
information from LS DR10 to eliminate multiple host candidates
from spurious detections as well to ensure the good galaxy profile
has been used.

• To ensure only galaxies are selected, we apply
0<excess_factor< 2.5. Excess_factor is the ratio of
fluxes (I) from Gaia bands (BP, RP and G) computed as
(IBP + IRP)/IG.

• To minimise contaminated photometry from blended
sources we require fracflux> 1 for any LS band. The
fracflux measures the the profile-weighted fraction of flux
from other sources divided by the total flux.

The host is selected as the closest host-galaxy, equivalent to
the one with minimum dDLR value, that passes the cuts. We
find that on average our FINK followed-up SNe are in slightly
fainter host-galaxies than those followed up by ZTF or reported
in TNS. The magnitude range varies on the colour in a range
of 0.4− 1 mag fainter but within an standard deviation of the
distributions.
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6. Improvements for Rubin LSST

The Vera C. Rubin Observatory is expected to obtain up to 10 mil-
lion alerts every night during its 10-yr Legacy Survey of Space and
Time (LSST; Bellm et al. 2019). Within these millions detections,
there will be rare transients and early SNe Ia. FINK will be pro-
cessing the alert stream of Rubin LSST in real-time for the next
decade.

Spectroscopic follow-up will be led by the 4MOST Time-
Domain Extragalactic Survey (TiDES; Frohmaier et al. in prepa-
ration, Swann et al. 2019) with an emphasis on SNe Ia, AGNs,
transients and their host-galaxies. However, other facilities will
be following-up spectroscopically other interesting transients and
variables for a wide science community. Even with additional sur-
veys, we will be unable to get spectroscopy of more than a handful
percent of the discovered transients.

As PC will be key to fully exploit the transient sample of Rubin,
it is paramount that we optimise follow-up resources to charac-
terise those classes that can substantially improve our PC training.
This will be particularly important for rare and new transients for
which our training samples are a small number of spectroscopi-
cally classified light-curves. Importantly, given the sheer volume
of data from LSST, it will be crucial to optimise resources for
spectroscopic follow-up.

In the following we discuss two potential improvements for
Rubin deployment targeting: earlier light-curves and a more auto-
matic follow-up.

6.1 Targeting earlier light-curves

One of the main limitations of our classificationmethod, is that we
require at least 3 detections in a given filter to extract features for
theML classification algorithm. Given the ZTF observing strategy,
this translates into ≈ 9 days post first detection for an event to be
a follow-up candidate. For Rubin LSST this time window will be
much larger depending on which field the observations are done
(e.g. Deep drilling fields vs Wide Fast Deep survey).

For observing strategies were the delta time between photo-
metric measurements is ≤ 3 days but in different filters, an option
would be two use inference methods such as RAINBOW (Russeil
et al. 2024). This method assumes a black-body and a temperature
evolution function to enable simultaneous multi-band light curve
fitting. Another option would be to treat all filters together, with
the drawback that colour information would be lost which can be
crucial for classification.

In this Section, we explore in detail another alternative. This
is to incorporate the last non-detection limiting magnitude as a
first measurement for the feature extraction process. If forced pho-
tometry were available in the survey, such as in the case of LSST,
another option would be to add the last values found using forced
photometry that is not a detection. In Fig. 6 we show an example
of light-curve with and without using the limiting magnitude of
the last non-detection.

Using the same follow-up candidates, we find that the loop
obtains similar performances in all metrics with the addition of
this extra photometric measurements for feature extraction.

To explore whether this approach provides earlier detection,
we reduce by a day the photometry used for feature extraction,
thus reducing a photometric epoch. We obtain the same number
of light-curves that pass feature extraction but nowwith less detec-
tion information. Since we can’t rerun the AL loop in real-time

Figure 6. Example of early light-curve of candidate ZTF23abdhvou and its feature
extraction. In the left panel we show the light-curve containing only detections. In the
right panel we show the light-curve containing the last limiting magnitude for each
filter and detections.

again using this new configuration, select new follow-up candi-
dates and obtain spectra, we choose to use the already acquired
labels and just evaluate the method’s performance. We find that
the metrics evolve in a similar trend, with less than 5% variation.

For Rubin, we plan to use both strategies. First, by adding infor-
mation regarding the last non-detection whether through limit-
ing magnitude or forced photometry. Second, by incorporating
colour information from the RAINBOW framework (Russeil et al.
2024).

6.2 Automatic follow-up deployment

Spectroscopic follow-up can only be achieved while the candi-
date is visible and above the limiting magnitude of the instru-
ment. Transients are generally short lived and to efficiently trigger
follow-up it is necessary rapid follow-up with facilities that can
observe them shortly after they occur. Recent work has shown
that prioritisation of follow-up candidates can be done using
FINK alerts with data from other telescopes and brokers to select
follow-up candidates (Sedgewick et al. 2025). Additionally, for
AL applications, it will be necessary to automatically reduce the
data and incorporate labels as quickly as possible to ensure the
optimisation of further follow-up.

A first improvement would be to select follow-up candidates
based on the real-time alerts. These would entail a delay of≈ 1min
between the reception, processing and communication of the can-
didates within FINK broker as shown in Section 4.3. Depending on
the science target, it would be valuable to reduce the spectroscopic
follow-up delay (e.g. fast evolving transients such as kilonovae,
GRB afterglows, FBOTs).

A second improvement would be the automation of follow-
up through a check on observability and robotic deployment
of the follow-up facility such as the one previewed for 4MOST
TiDES (Frohmaier et al. in prep). In this work, we have used
the ANU 2.3m telescope located at SSO. SSO is in the Southern
Hemisphere and west of the major transient discovery facilities in
South America such as Rubin.

The ANU 2.3m is currently a fully robotic telescope which
schedules and observes targets automatically. We are currently
building a Network that connects filtered streams from FINK,
deploys automatically follow-up observations with the ANU 2.3m
and other telescopes at SSO, and reduces data automatically. The
infrastructure connecting FINK and the telescopes at SSO, is based
on the TOM toolkit (Street et al. 2024).
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Such a system will allow us to reduce the delay between identi-
fying a follow-up candidate and obtaining its label. While for the
purpose of this analysis we have simplified our loop by assuming
that labels were acquired chronologically the next day after appear-
ance in the bot, the reality was that it would take from ≈ 1 to 5
days for the observation to be done, reduction of data, and the
label extracted. This delay does not change the results but would
change the chronological evolution.

7. Conclusions

In this work, we present the first real-time Active Learning appli-
cation on survey data to optimise follow-up with the goal of
improving PC training sets. We apply this method to improve
the classification of early type Ia supernovae. We make use of the
ZTF public alert stream processed by the FINK broker to identify
follow-up candidates. We perform spectroscopic follow-up obser-
vation with the ANU 2.3m WiFeS instrument located at SSO in
Australia.

Using the FINK broker infrastructure we deploy the ML clas-
sifier and filtering criteria to select the most promising follow-up
candidates to improve ML training sets. The processing is done
in real-time as the ZTF public alert stream is ingested and anal-
ysed. We communicate these candidates automatically through a
FINK bot and schedule subsequent spectroscopic follow-up. We
identify 177 follow-up candidates in 4 observing periods between
September 2023 and August 2024. From these candidates we
obtain 109 classifications, 92 are chronologically added to the
training set after quality cuts.

We find that the AL strategy identifies follow-up candidates
that improve the ML algorithm in a more effective way than
reported classifications from the ZTF survey. This is seen chrono-
logically as well as when comparing the number of spectra nec-
essary to achieve a given performance. Our method, reduces the
need to schedule more than one and a half nights of follow-up
when using 1 200 s exposures, equivalent to using 90 instead of
127 spectra.

The active learning strategy identifies candidates that are in
average ≈ 19 mag, similar to the magnitude post 9 days of discov-
ery of ZTF transients and variables. We find two main differences
between our spectroscopically classified events and those reported
in TNS by ZTF or other groups. First, we identify follow-up can-
didates that are overall fainter throughout their whole evolution.
Second, we identify a SLSN and several non-SN candidates for
follow-up that improve our performance, such as microlensing
events and CVs. These are not typically in the simulated train-
ing sets used for ML algorithm training nor in the traditional
follow-up surveys.

With the advent of Rubin LSST, it will be crucial to develop fast
PC algorithms to identify early, known and new classes of events.
For this, we need to optimise the way we construct training sets.
In this work, we have shown that AL is a good strategy for spec-
troscopic follow-up to improve training sets using the early SN Ia
problem. The AL strategy could be particularly useful to construct
training sets to improve the identification of rare transients. For
example, we could improve the classification of rare transients by
using a handful of observed light-curves together with potential
contaminants to train a classification algorithm and apply an AL
strategy. This strategy would then select both contaminants and
targets for follow-up and improve the photometric classifier. This

improved classifier can then be used in and independent dataset to
obtain larger samples of the target transient.

This works serves as pilot for other AL applications to improve
PC of, not only early SNe Ia light-curves, but new and rare astro-
physical transients. With spectroscopic resources being scarce
currently and in the future, the AL method is promising to opti-
mise follow-up resources for teams aiming to fully exploit the
power of future surveys such as Rubin.
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