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A model is presented for the ion distribution function in a plasma at a solid target with
a magnetic field B inclined at a small angle, α � 1 (in radians), to the target. Adiabatic
electrons are assumed, requiring α � √

Zme/mi, where me and mi are the electron and
ion mass, respectively, and Z is the charge state of the ion. An electric field E is present
to repel electrons, and so the characteristic size of the electrostatic potential φ is set by
the electron temperature Te, eφ ∼ Te, where e is the proton charge. An asymptotic scale
separation between the Debye length λD = √

ε0Te/e2ne, the ion sound gyro-radius ρs =√
mi(ZTe + Ti)/(ZeB) and the size of the collisional region dc = αλmfp is assumed, λD �

ρs � dc. Here ε0 is the permittivity of free space, ne is the electron density, Ti is the ion
temperature, B = |B| and λmfp is the collisional mean free path of an ion. The form of the
ion distribution function is assumed at distances x from the wall such that ρs � x � dc,
that is, collisions are not treated. A self-consistent solution of the electrostatic potential for
x ∼ ρs is required to solve for the quasi-periodic ion trajectories and for the ion distribution
function at the target. The large gyro-orbit model presented here allows to bypass the
numerical solution of φ(x) and results in an analytical expression for the ion distribution
function at the target. It assumes that τ = Ti/(ZTe) � 1, and ignores the electric force on
the quasi-periodic ion trajectory until close to the target. For τ � 1, the model provides
an extremely fast approximation to energy–angle distributions of ions at the target. These
can be used to make sputtering predictions.

Key words: plasma sheaths, fusion plasma

1. Introduction

When plasma is in contact with a solid surface, such as in fusion experiments (Stangeby
2000), Hall thrusters (Boeuf 2017), plasma probes (Hutchinson 2002), magnetic filters
(Anders, Anders & Brown 1995) and orbiting spacecraft (Hastings 1995), the resulting
interaction affects both the plasma and the surface. Among the many plasma–surface
interaction processes, one that is of particular concern is sputtering, where an ion from
the plasma reaches the surface material and knocks an atom off the surface. Ionization of
sputtered atoms in the plasma produces impurities, thus altering the plasma. Moreover, in
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FIGURE 1. Ion gyro-orbits, whose gyro-radius is ρi, reaching the target when the angle between
the magnetic field B and the target is small, α � 1. The axes (x, y, z) are labelled. (a) With no
normal electric field, the circular orbit moves closer to the target by αρi after a gyro-period and
thus the normal velocity of an ion at the target is vx ∼ √

αvt,i. (b,c) With the magnetic presheath

and Debye sheath electric field E, ions are accelerated to vx ∼
√

αv2
t,i + v2

B.

the long run sputtering causes erosion of the surface material. The amount of sputtering
depends on a wide variety of factors, including surface material, surface roughness, plasma
conditions and velocity distributions of particles striking the target (Cohen & Ryutov
1998b; Khaziev & Curreli 2015; Siddiqui et al. 2016; Drobny et al. 2017; Krasheninnikov
& Kukushkin 2017; Lasa et al. 2020).

In this paper, we focus on the calculation of the distribution function of plasma ions
striking the solid surface. We consider the target surface, or wall, to be smooth, planar and
absorbing all incident particles. We consider a plasma magnetized by a uniform magnetic
field B, with one ion species. The angle between the magnetic field and the wall is taken
to be small, α � 1 (measured in radians unless otherwise indicated). This situation is
particularly relevant in fusion plasmas, where divertors are designed so that the angle
between incident magnetic field lines and the target surface is as small as possible. We
define a set of right-handed Cartesian axes (x, y, z) where x measures the distance from the
wall, z measure displacements in the direction tangential to the wall, such that the magnetic
field is in the x–z plane, and y measures displacements in the remaining direction. The axes
are shown on the top-right of figure 1. For simplicity, we assume no gradients tangential
to the wall. Thus, the only gradients are in the x direction.

The standard picture of the plasma–wall boundary is as follows. Close to the wall, there
is a thin positively charged layer called the Debye sheath, with a characteristic size of
a few Debye lengths λD = √

ε0Te/e2ne, where a strong electric field E = −∇φ directed
towards the target is present to repel electrons (Riemann 1991; Hershkowitz 2005; Baalrud
et al. 2019). Here, e is the proton charge, ne is the number density of the electrons, ε0 is the
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permittivity of free space, Te is the temperature of the electrons and φ(x) is the electrostatic
potential as a function of the distance from the wall. The purpose of the electric field is
to achieve a steady state with comparable (or, in ambipolar conditions, equal) fluxes of
ions and electrons to the wall. The size of the electrostatic potential drop necessary to
repel electrons is |φ| ∼ Te/e. The kinetic energy gained by an ion of charge Ze in such a
potential is Ze|φ| ∼ ZTe. Hence, the parameter

τ = Ti

ZTe
, (1.1)

where Ti is the ion temperature, is a measure of the ratio of ion thermal energy divided by
ion kinetic energy gained from the electric field. At the edge of a fusion device one often
finds τ � 1 (Mosetto et al. 2015). Poisson’s equation,

ε0φ
′′(x) = Zeni(x) − ene(x), (1.2)

relates the charge separation to the electrostatic potential in the Debye sheath, where x ∼
λD. Here a prime denotes differentiation with respect to the argument, in this case x, of the
function. At distances from the wall comparable to the ion sound gyro-radius, ρs, the ion
population is depleted owing to a combination of ion gyro-orbit losses and acceleration
of ions by the electric field, as schematically shown in figure 1. Here, ρs = cs/Ω , where
cs = √

(ZTe + Ti)/mi is the ion sound speed, Ω = ZeB/mi is the ion gyro-frequency, B =
|B| and mi is the ion mass. As typically λD � ρs, the region x ∼ ρs can be assumed to be
quasi-neutral,

Zni(x) � ne(x), (1.3)

and is referred to as the magnetic presheath (and sometimes as the Chodura sheath). A
substantial fraction of the electrostatic potential drop between the plasma and the wall
must occur in the magnetic presheath, as an electric field is necessary to adjust the electron
and ion densities such that (1.3) is preserved. At typically even larger distances from the
target, dc � ρs, ions tend to collide with neutrals or other ions before reaching the target.
Thus, the magnetic presheath and Debye sheath can be assumed to be collisionless. In this
paper, the form of the ion distribution function in the region ρs � x � dc is assumed. This
region is known as the magnetic presheath entrance.

Several distinct approaches may be used to calculate the velocity distributions of ions
reaching the target. An approach that describes all the phenomena at play close to the
wall, including the effect of the collisional layer, is to numerically solve the kinetic
Vlasov equation for the ions and electrons self-consistently with the Poisson equation for
the electrostatic potential (Coulette & Manfredi 2016). An alternative, equally complete,
approach is the particle-in-cell (PIC) method (Tskhakaya & Kuhn 2003; Khaziev & Curreli
2015). Both the Vlasov and the PIC approaches offer the most complete description
of the plasma, but can be computationally expensive. Simplifying models can offer
more immediate calculations. For example, taking into account gyro-orbit losses at the
wall, but ignoring the electric field, one can solve for distribution functions at the
wall analytically, assuming an incoming Maxwellian (Parks & Lippmann 1994) or more
refined boundary conditions (Gunn et al. 2017). However, in neglecting the electric
field this model assumes that some ions can reach the target travelling tangentially,1
as the left ion in figure 1(a) does. By introducing an ad hoc analytical electrostatic

1One could add the kinetic energy gain of an ion in the Debye sheath ad hoc. However, the resulting velocity
distributions would vastly overestimate the energy going into the normal component of the ion velocity and the angle of
impact of ions with the target.
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potential function close to the wall to model the effect of gyro-orbit distortion, Borodkina
et al. (2016) numerically solved for ion trajectories near the target. The authors found
a substantial effect on erosion coefficients, as was also suggested by Siddiqui et al.
(2016). Daube & Riemann (1999) obtained self-consistent solutions of the electrostatic
potential and ion distribution function in a magnetic presheath by considering charge
exchange collisions with cold neutrals. They calculated the ion density as an integral
over characteristics originating at the last collision event. The resulting ion distribution
functions exhibit an interesting and involved structure with singularities, which are
expected to be smeared out by unstable ion cyclotron modes (Daube, Riemann & Schmitz
1998) and finite neutral temperature. Tskhakaya Sr & Kos (2014) analysed the plasma–wall
boundary layers using an asymptotic scale separation and an asymptotic expansion in
α � 1. They considered the ion gyro-orbits to have zero spatial extent, but retained
all other kinetic effects. In Geraldini, Parra & Militello (2017), the full approximately
periodic ion trajectories in the collisionless magnetic presheath were solved using an
expansion in α � 1. This expansion leads to the presence of an adiabatic invariant, as
first described by Cohen & Ryutov (1998a). A numerical scheme to efficiently calculate
the self-consistent electrostatic potential was developed by Geraldini, Parra & Militello
(2018). The final open piece of the ion trajectory near the wall was included in the ion
density calculation. Velocity distributions of ions reaching the Debye sheath, consistent
with a quasi-neutral magnetic presheath, were thus obtained. Although this treatment
applies only to grazing angles, it provides an efficient way to solve self-consistently
for the effect of the electric field on ion trajectories in the collisionless magnetic
presheath.

In this paper, a large gyro-orbit model for the ion distribution function at the target
is developed. The full solution of the self-consistent electrostatic potential is bypassed.
Instead, the electrostatic potential is assumed to distort ion gyro-orbits only just before
ions reach the Debye sheath. This assumption is expected to be more accurate for large
gyro-orbits, τ � 1. The model results are compared with distribution functions obtained
using the full self-consistent electrostatic potential solution in the magnetic presheath,
with good qualitative agreement for τ � 1. The agreement between the two methods is
better at larger values of τ , as expected.

The rest of the paper is structured as follows. In § 2, the orderings assumed in this
work are presented and discussed. In § 3, the electron model is introduced. In § 4 ion
trajectories in the collisionless magnetic presheath and Debye sheath regions are analysed.
Expressions for the velocity distributions of ions reaching the Debye sheath and of ions
striking the target are obtained in § 5. These expressions depend on the full electrostatic
potential solution in the magnetic presheath, φ(x). The trajectories of ions in large
gyro-orbits, for τ � 1, are analysed in § 6. From this analysis, a model for the ion velocity
distribution at the target is developed. In § 7 ion distribution functions obtained from the
large gyro-orbit model are compared with those obtained from the full self-consistent
electrostatic potential solution φ(x) in the magnetic presheath. Finally, in § 8, the results
of the paper are summarized.

2. Orderings

As mentioned in the introduction, the typical electrostatic potential variation across
the magnetic presheath and Debye sheath is ordered as |φ| ∼ Te/e. Hence, the kinetic
energy transferred by the electric field to an ion of charge Ze is Zeφ ∼ ZTe and the
characteristic speed of an ion owing to the energy gained from the electric field is the
Bohm velocity vB = √

ZTe/mi. The thermal energy of an ion is Ti and the thermal speed
of an ion is vt,i = √

2Ti/mi. Adding together the contributions to the energy, the typical
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kinetic energy of an ion is ZTe + Ti. The ion velocity, denoted by v = (vx, vy, vz) where
vk is the velocity component in the kth direction, is therefore ordered such that |v| ∼√

(ZTe + Ti)/mi = cs.
The presence of ion gyro-orbits and the grazing angle of the magnetic field with the

target modify the ordering for vx at the target as follows. Consider a circular ion gyro-orbit
with no electric field, as shown in figure 1(a). The component of the velocity parallel
to the magnetic field is denoted by v‖ and the magnitude of the gyrating component
of the velocity is denoted by v⊥. The gyro-phase angle of the ion is denoted by ϕ. In
the small-angle approximation, sin α � α, cos α � 1 and the component of the velocity
normal to the wall is given by vx � v⊥ sin ϕ − αv‖. If the gyro-orbit almost touches the
wall (x → 0) tangentially at a time t = 0, the distance from the wall at a later time t
is x � (v⊥/Ω)(1 − cos ϕ) − αv‖t. After a full gyro-period 2π/Ω , the orbit has drifted
a little closer to the wall. Therefore, the gyro-phase angle corresponding to x = 0 is no
longer ϕ = 0, yet it has only changed by a small amount. Solving for x = 0 at t = 2π/Ω

with 1 − cos ϕ � ϕ2/2 gives ϕ � √
4παv‖/v⊥, and thus vx � −√4παv‖v⊥ (Cohen &

Ryutov 1998a). The piece of vx equal to −αv‖ is smaller by a factor of
√

αv‖/(4πv⊥),
and can be neglected. Thus, the gyro-phase dependence of ions reaching the target gives
rise to an interval in allowed values of normal kinetic energy, 0 � v2

x/2 < 2παv‖v⊥. The
electric field, however, can still accelerate the ions by transferring an energy ∼ ZTe to the
normal component of the velocity, as depicted schematically in figure 1(b,c). Note that
this additional acceleration towards the target is not obvious. It only happens because, as
we will see, the electric field close to the target is sufficiently inhomogeneous (|φ′′(x)|
is sufficiently large) that it overcomes the magnetic force pulling the ion back away
from the target. Combining these two contributions to the normal kinetic energy gives
v2

x/2 ∼ ZTe + αTi. The velocity of the ion at the target therefore satisfies vx ∼ vB
√

1 + ατ

and vy ∼ vz ∼ cs.
As was discussed in the introduction, the Debye sheath, the magnetic presheath and the

collisional region are assumed to satisfy the scale separation λD � ρs � dc. At distances
x ∼ dc � ρs, the ion motion is restricted along a field line. Therefore, the size of the
collisional region can be expressed as dc ∼ αλmfp, where λmfp is the mean free path of
an ion near the target. It follows that the angle α must satisfy α � ρs/λmfp in order for
ρs � dc to be valid.

In order to simplify the treatment of the electrons, the electron gyro-radius ρe =√
2meTe/(eB) is assumed to be much smaller than the Debye length, such that ρe � λD

(Loizu et al. 2012; Stangeby 2012). Being tightly bound to the magnetic field lines,
electrons have to travel along the magnetic field in order to reach the wall. The typical
speed of an electron is the electron thermal speed, vt,e = √

2Te/me. Conversely, the typical
ion velocity close to the wall is ∼vB

√
1 + ατ towards the wall. When unopposed by an

electric field, the electrons reach the wall much more quickly than the ions provided that
αvt,e � vB

√
1 + ατ , or

√
(1 + ατ)Zme/mi � α. For ατ � 1, the ordering α � √

Zme/mi
emerges. For ατ � 1, the ordering α � meτZ/mi emerges instead. Putting these last
two orderings together gives 1/α � τ � αmi/meZ, which can only be satisfied if, again,
α � √

Zme/mi. To summarize, for α � √
Zme/mi the electrons reach the target much

more quickly than the ions. An electric field must therefore set up to repel most of the
electrons from the target.

Summarizing the orderings of this work, the physical length scales satisfy

ρe � λD � ρs � dc. (2.1)
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FIGURE 2. An electron gyro-orbit, whose gyro-radius is ρe, streaming towards the wall along
the magnetic field B with velocity w‖.

The angle and mass ratio satisfy

√
Zme

mi
� α � 1. (2.2)

The validity of these orderings is examined for a current fusion experiment such as
JET. In a deuterium plasma, the angle obtained from the square root of mass ratio is√

Zme/mi ≈ 0.02 rad ∼ 1◦. From Militello & Fundamenski (2011), we estimate for JET:
B ∼ 2 T, Te ∼ Ti ∼ 30 eV, ne ∼ ni ∼ 1019 m−3, giving ρs ∼ 1 mm, λD ∼ ρe ∼ 0.01 mm
and α ≈ 0.07 rad ≈ 4◦. As, of all the orderings in this paper,

√
Zme/mi � α and ρe � λD

are the least well-satisfied in fusion devices, it will be necessary to study in more detail
the effect of electron inertia and gyro-radius.

3. Electron model

In this work, Maxwellian electrons are assumed to enter the magnetic presheath. We
proceed to obtain the relationship between the electron current to the wall and the
electrostatic potential at the wall. We also derive, using the ordering (2.2), the Boltzmann
expression for the electron density in the magnetic presheath.

According to (2.1), the electron gyro-radius is so small that electrons are essentially
tied to the magnetic field line, as shown in figure 2. The electrons stream parallel to the
magnetic field with a velocity given by w‖. At the very small length scale ρe � λD, the
electron gyro-motion is unaffected. The electron distribution function entering (that is, for
w‖ > 0) the magnetic presheath is assumed to be a half-Maxwellian,

gMPE(w‖) = Zn̄MPE

(
me

2πTe

)1/2

exp

(
−mew2

‖
2Te

)
, for w‖ > 0, (3.1)

with density denoted as ZnMPE,

ZnMPE =
∫ ∞

−∞
gMPE(w‖) dw‖. (3.2)

We set the zero of the electrostatic potential to be at the magnetic presheath, φMPE = 0.
Assuming the electrostatic potential to be a monotonically increasing function of x, the
number of electrons that enter the magnetic presheath and come back out of it depends on
the electrostatic potential at the wall relative to the magnetic presheath entrance, denoted
by φW = φ(0) < 0. Therefore, the constant n̄MPE depends on nMPE and φW .
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In the magnetic presheath and Debye sheath, the component of the electron velocity
parallel to the magnetic field as a function of x is obtained by energy conservation,

w‖ = σ

√
w2

‖MPE + 2eφ(x)
me

. (3.3)

Here, w‖MPE is the electron velocity at the magnetic presheath entrance. The E × B and
gyration velocities of an electron remain unaffected by electrostatic potential variations
as these have a much longer scale length than the electron gyro-radius, λD � ρe. In (3.3),
σ = ±1 for those electrons reflected before reaching the wall and σ = 1 for those electrons
that are not reflected. At x = 0 the electron velocity is zero if w2

‖MPE = −2eφW/me. Hence,
reflected electrons satisfy

w2
‖MPE < −2eφW

me
, (3.4)

as they cannot reach x = 0. Therefore, the full electron distribution function at the
magnetic presheath entrance is

gMPE(w‖) = Zn̄MPE

(
me

2πTe

)1/2

exp

(
−mew2

‖
2Te

)
Θ

(
w‖ +

√
−2eφW

me

)
, (3.5)

where Θ is the Heaviside step function,

Θ(ξ) =
{

1, for ξ � 0,

0, for ξ < 0.
(3.6)

Assuming erf(
√−eφW/Te) � 1, which will be justified in the next paragraph, we obtain

n̄MPE = 2nMPE(
1 + erf

(√−eφW/Te
)) � nMPE. (3.7)

The electron current je‖ is obtained from the first moment of the distribution function
(3.5) (the flux of electrons) multiplied by the electron charge, −e. The current directed
towards the wall is the geometric projection of the parallel current, je,x = −je‖ sin α �
−αje‖,

je,x � αZenMPE

(
Te

2πme

)1/2

exp
(

eφW

Te

)
. (3.8)

As the electron charge is negative and the electron flow is directed towards the wall
(negative), the electron current is directed away from the wall (positive). The electron and
ion current are assumed to be similar in size. To be consistent with the Chodura condition
(Chodura 1982) at the magnetic presheath entrance, the ion current is assumed to be of the
order of the sound speed, giving je,x ∼ αZenMPEcs. Hence, the electrostatic potential at the
wall is

eφW

Te
∼ ln

(√
2πme(1 + τ)

mi

)
, (3.9)

where
√

2πme(1 + τ)/mi � 1, justifying erf(
√−eφW/Te) � 1.
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The electron distribution function at any point in the magnetic presheath and Debye
sheath is (Stangeby 2012)

g(x, w‖) � ZnMPE

(
me

2πTe

)1/2

exp

(
eφ(x)

Te
− mew2

‖
2Te

)
Θ

(
w‖ +

√
2e(φ(x) − φW)

me

)
.

(3.10)

Hence, the electron density is

ne(x) � 1
2

(
1 + erf

(√
e(φ(x) − φW)

Te

))
ZnMPE exp

(
eφ(x)

Te

)
. (3.11)

In the magnetic presheath the electrostatic potential is at its smallest at the Debye sheath
entrance, λD � x � ρs, where φ(x) � φDSE. Thus, provided erf(

√
e(φDSE − φW)/Te) � 1,

the electron density in the magnetic presheath is given by the Boltzmann distribution

ne(x) � ZnMPE exp
(

eφ(x)
Te

)
. (3.12)

We proceed to justify (3.12). The ion flow speed parallel to the magnetic field at
the magnetic presheath entrance, ρs � x � dc, is of the order of the sound speed ∼ cs.
Projecting this parallel flow in the direction normal to the target gives αcs ∼ α

√
1 + τvB.

The ion velocity component perpendicular to the magnetic field averages to zero at the
magnetic presheath entrance, as the electric field is small and the target is too far away to
capture ions during their gyro-motion. Conversely, at the Debye sheath entrance the size
of the ion flow is determined by the ordering for the velocity component normal to the
target, vx ∼ √

1 + ατvB. As the number of ions in the magnetic presheath is conserved in
steady state, the ion flux into the magnetic presheath, αnMPE

√
1 + τvB, and the ion flux

out of the magnetic presheath, nDSE
√

1 + ατvB, are equal. The ion density at the Debye
sheath entrance is thus nDSE ∼ αnMPE

√
1 + τ/

√
1 + ατ . Hence, we find

eφDSE

Te
∼ ln

(
α
√

1 + τ√
1 + ατ

)
(3.13)

and

e(φW − φDSE)

Te
∼ ln

(
1
α

√
2πme(1 + ατ)

mi

)
. (3.14)

Upon neglecting the factors of ατ , the estimates in (3.9), (3.13) and (3.14) are consistent
with those in Stangeby (2012). Equation (3.12) follows from expanding (3.11), with φ(x) �
φDSE, using the orderings (3.14) and

√
Zme/mi � α. Note that (3.9), (3.13) and (3.14) are

all negative, with the arguments of the logarithm smaller than unity.
The results of this section that will be used in the rest of the paper are (3.12) for the

electron density in the magnetic presheath and (3.8) for the relationship between electron
current and wall potential.
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4. Ion trajectories

In this section the trajectories of ions in the magnetic presheath and the Debye sheath are
analysed in detail. The goal of this section is to relate the velocity of an ion at the target
to the energy and magnetic moment of its circular gyro-orbit at the magnetic presheath
entrance ρs � x � dc. We analyse the ion trajectories first in the magnetic presheath,
§ 4.1, and then in the Debye sheath, § 4.2.

4.1. In the magnetic presheath
We proceed to focus on the magnetic presheath, where x ∼ ρs. Ions move under the
influence of a wall-normal electrostatic electric field and a magnetic field at an angle α

with the wall. The ion equations of motion are

v̇x = −Ωφ′(x)
B

+ Ωvy cos α, (4.1)

v̇y = −Ωvx cos α − Ωvz sin α, (4.2)

v̇z = Ωvy sin α. (4.3)

For grazing angles, α � 1, the equations simplify to

v̇x � −Ωφ′(x)
B

+ Ωvy, (4.4)

v̇y � −Ωvx − αΩvz, (4.5)

v̇z � αΩvy, (4.6)

where only small terms linear in α were retained. It will be useful to introduce two orbit
parameters,

x̄ = x + vy

Ω
, (4.7)

U⊥ = 1
2
v2

x + 1
2
v2

y + Ωφ(x)
B

, (4.8)

whose time derivatives satisfy ˙̄x � −αvz and U̇⊥ � −αΩvyvz. The third orbit parameter,

U = 1
2
v2

x + 1
2
v2

y + 1
2
v2

z + Ωφ(x)
B

, (4.9)

is just the total energy of an ion and is exactly conserved, U̇ = 0. From the definitions
(4.7)–(4.9), we obtain

vz =
√

2 (U − U⊥), (4.10)

vy = Ω(x̄ − x), (4.11)

and
vx = ±

√
2 (U⊥ − χ(x, x̄)). (4.12)

In (4.12) an effective potential function,

χ(x, x̄) = 1
2
Ω2 (x − x̄)2 + Ωφ(x)

B
, (4.13)

was introduced. Note that, to lowest order in α � 1, vz is equivalent to the velocity
component parallel to the magnetic field. The electric field slowly (owing to the grazing

https://doi.org/10.1017/S002237782000166X Published online by Cambridge University Press

https://doi.org/10.1017/S002237782000166X


10 A. Geraldini

angle) pushes ions in the direction parallel to the magnetic field towards larger vz
(Geraldini et al. 2017). All ions enter the magnetic presheath with a parallel velocity
directed towards the target, and so they have vz � 0 to lowest order in α. As the parallel
velocity towards the wall increases in the magnetic presheath, ions with vz < 0 are not
present. Therefore, in (4.10) we have set vz � 0.

The orbit parameter x̄ is referred to as the orbit position, and U⊥ as the perpendicular
energy (perpendicular to the magnetic field). As ˙̄x/ρs ∼ U̇⊥/c2

s ∼ αΩ � Ω , the orbit
position and perpendicular energy only change by a very small amount during
the timescale ∼1/Ω . Neglecting the small change in the orbit parameters (which
is a good approximation for a time � 1/(αΩ)), particle orbits are solved for as
follows. Consider a stationary point of the effective potential, χst(x̄) = χ(xst, x̄), such
that χ ′(xst, x̄) = Ω2(xst − x̄) + Ωφ′(xst)/B = 0. Here, it is understood that χ ′(x, x̄) =
∂χ(x, x̄)/∂x. Rearranging this equation gives the orbit parameter as a function of the
position of a stationary point,

x̄ = xst + φ′(xst)

ΩB
. (4.14)

A stationary point is a minimum, xst = xm, if χ ′′(xm, x̄) = Ω2 + Ωφ′′(xm)/B > 0, leading
to

φ′′(xm) > −ΩB. (4.15)

At the magnetic presheath entrance, the electrostatic potential is assumed to monotonically
converge to the value φMPE = 0. We further assume that φ′′(x) is negative (the magnitude
of the electric field, φ′(x), decreases away from the wall) and monotonically converges
to zero at the magnetic presheath entrance. Hence, the stationary point is a minimum
for xst > xc, where φ′′(xc) = −ΩB if φ′′

DSE � −ΩB or λD � xc � ρs if φ′′
DSE > −ΩB.

Here φ′′
DSE denotes φ′′(x) at the Debye sheath entrance, λD � x � ρs, and xc is a critical

point corresponding to the inflection point of χ , if it exists, or the Debye sheath entrance
λD � xc � ρs. There are either two or one solutions for stationary points of the effective
potential according to (4.14), depending on whether the function x + φ′(x)/(ΩB) has a
stationary point or not. This leads to the distinction between two orbit types in the magnetic
presheath. Type I orbits occur when the effective potential χ(x, x̄) has only one stationary
point: a minimum xm. Type II orbits occur when χ(x, x̄) has two stationary points: a
minimum xm and a maximum xM < xm. For x̄ > φ′

DSE/(ΩB), where φ′
DSE denotes φ′(x)

at the Debye sheath entrance, there is only one solution to (4.14) in the magnetic presheath
and therefore there are only type I ion orbits. For both type I and type II orbits, the motion
is periodic in the neighbourhood of the minimum. The turning points xb (for ‘bottom’) and
xt (for ‘top’) of the periodic motion satisfy xM � xb < xm and xt > xm. They are obtained
by solving for the positions at which vx = 0, that is, U⊥ = χ(xb,t, x̄).

The slow change in x̄ and U⊥ cannot be neglected entirely, as it leads to ions eventually
reaching the wall. Ion trajectories are approximately periodic over a short timescale,
∼1/Ω . Over a long enough timescale, ∼1/(αΩ), the effect of the slow variation in x̄
and U⊥ becomes significant. Nonetheless, the quasi-periodic motion of the ion has an
adiabatic invariant

μ = 1
π

∫ xt

xb

√
2 (U⊥ − χ(x, x̄)) dx, (4.16)

which is conserved to lowest order in α � 1 during the entire ion trajectory in the magnetic
presheath (Cohen & Ryutov 1998a; Geraldini et al. 2017). At the magnetic presheath
entrance, ρs � x � dc, φ(x) = 0 and so the adiabatic invariant of (4.16) is given by
μ = (1/π)

∫ xt

xb
ds
√

2U⊥ − Ω2(s − x̄)2 with xb = x̄ − √
2U⊥/Ω and xt = x̄ + √

2U⊥/Ω .
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Upon changing variables to ϕ using s = x̄ − (
√

2U⊥/Ω) cos ϕ, the adiabatic invariant
becomes μ = (2U⊥/(πΩ))

∫ π

0 dϕ sin2 ϕ = U⊥/Ω . Using this result and (4.8) for U⊥,
with φ(x) = 0, we obtain μ = (v2

x + v2
y )/(2Ω). This is equivalent to the magnetic moment

to lowest order in α � 1; the small difference is geometric and arises because vx is not
exactly perpendicular to the magnetic field.

The ion motion can be described as approximately periodic only insofar as it is not about
to be interrupted by the absorbing wall. If the perpendicular energy becomes larger than a
threshold value, the ion gyro-orbit becomes sufficiently large that the bottom bounce point
disappears. The threshold value of U⊥ is the maximum value of the effective potential
function between the position of the minimum, x = xm, and the wall, x = 0,

χM(x̄) ≡ χ(xM, x̄) = max
x∈[0,xm]

χ(x, x̄). (4.17)

For type I orbits, the effective potential maximum lies at the Debye sheath entrance
λD � xM � ρs, such that χM(x̄) � Ω2x̄2/2 + ΩφDSE/B. For type II orbits, the effective
potential maximum lies in the magnetic presheath xM ∼ ρs, such that χM(x̄) = Ω2(xM −
x̄)2/2 + Ωφ(xM)/B. In this case, xM is a stationary point. As the variation of U⊥ and
x̄ is slow compared with the timescale of ion motion, ions quickly reach the wall once
U⊥ > χM(x̄), and therefore these ions have U⊥ � χM(x̄). Any ion reaching the wall must,
because it comes from an approximately periodic orbit, have a value of orbit position
such that an effective potential minimum exists. From (4.14), the smallest value of orbit
position, denoted by x̄c, for ions in the magnetic presheath is

x̄c = min
(

x + φ′(x)
ΩB

)
= xc + φ′(xc)

ΩB
. (4.18)

Note that the second equality defines the value of xc, which is consistent with the
discussion after (4.15) where xc is first introduced.

4.2. In the Debye sheath
Here, we focus on ions in the Debye sheath, x ∼ λD � ρs. Considering x̄ ∼ ρs and
neglecting x � ρs in (4.11) gives

vy � Ω x̄. (4.19)

For every ion in the Debye sheath, we can trace back its trajectory to a quasi-periodic orbit.
The associated value of μ is a function of x̄(� vy/Ω) only, because U⊥ � χM(x̄) for ions
reaching the target,

μop(x̄) = 1
π

∫ xt

xM

√
2 (χM(x̄) − χ(x, x̄)) dx. (4.20)

Here we have used xb = xM for U⊥ = χM(x̄). The value of vz is determined by the total
energy U,

vz �
√

2 (U − χM(x̄)). (4.21)

In order to calculate vx in the Debye sheath, the final piece of the ion trajectory in
the magnetic presheath must be considered. This is a transition from a quasi-periodic
orbit, with at least one turning point in its future trajectory, to an open orbit, with no
turning points in its future trajectory. The small change of x̄ and U⊥ causes the value
of U⊥ − χM(x̄) to increase until U⊥ > χM(x̄). The increase is slow and so the change in
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U⊥ − χM(x̄) incurred by an ion transitioning from U⊥ < χM(x̄) to U⊥ > χM(x̄) can be
calculated approximately by assuming a periodic orbit with fixed U⊥ = χM(x̄), as shown
in appendix A. Such an orbit is fictitious: it has a bottom turning point coinciding with
the position of the effective potential maximum, xM, and for a type II orbit it takes an
infinite time to turn around at xM. The true orbit turns at xb > xM (with U⊥ < χM), then
once more at xt and then passes xM (with U⊥ > χM) in a finite time ∼ ln(1/α)/Ω moving
towards the wall. Yet, despite the approximate orbit being qualitatively different from the
true orbit, the change in U⊥ − χM(x̄) is accurate to lowest order in α when calculated from
the approximate orbit. This is because the long time spent near xM does not contribute to a
significant change in U⊥ − χM(x̄), as the time derivatives of U⊥ and of χM(x̄) coincide at
x = xM. The overall change in the quantity U⊥ − χM(x̄) during the last gyro-orbit is

ΔM(x̄, U) = 2παV‖ (χM(x̄), U) μ′
op(x̄), (4.22)

where μ′
op(x̄) = dμop(x̄)/dx̄. Equation (4.22) is derived in appendix A.

The implication of this discussion for ion trajectories in the Debye sheath is that there
is a band of possible values of vx for a given value of x̄ (or μ) and U. Considering v2

x �
2U⊥ − Ω2x̄2 − 2Ωφ(x)/B, which follows from (4.12), (4.13) and x ∼ λD � ρs, we obtain
the range

χM(x̄) − 1
2
Ω2x̄2 − Ωφ(x)

B
� v2

x

2
< χM(x̄) + ΔM(x̄, U) − 1

2
Ω2x̄2 − Ωφ(x)

B
. (4.23)

Equation (4.23) is valid at any point in the Debye sheath, including the Debye sheath
entrance and the target. For

√
Zme/mi � 1 the Debye sheath repels most electrons from

the wall and attracts all ions to the wall, so ions in the Debye sheath must have vx < 0.

5. Ion velocity distribution

The ion distribution function at the magnetic presheath entrance, ρs � x � dc, is
denoted by fMPE(vx, vy, vz). The exact distribution function in this region includes a small
number of ions with vz < 0, which are travelling out of the magnetic presheath towards
the collisional presheath. However, to lowest order in ρs � dc there are no such ions,

fMPE(vz < 0) = 0. (5.1)

It can be shown that the distribution function is independent of the gyro-phase angle
(Cohen & Ryutov 1998a; Geraldini et al. 2017) and therefore can be expressed in the
form F(μ, U). The relationship between fMPE and F is obtained by recalling that μ =
(v2

x + v2
y )/(2Ω) at the magnetic presheath entrance,

fMPE(vx, vy, vz) = F

(
v2

x + v2
y

2Ω
,
v2

x + v2
y + v2

z

2

)
. (5.2)

The function F(μ, U) is conserved across the magnetic presheath to lowest order in α � 1,
because μ and U are conserved.
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The ion density at the magnetic presheath entrance, denoted by nMPE, is

nMPE = 2π

∫ ∞

0
Ω dμ

∫ ∞

Ωμ

F(μ, U) dU√
2 (U − Ωμ)

=
∫

fMPE(vx, vy, vz) d3v. (5.3)

The ion current towards the wall, ji,x, is obtained from the projection of the flow in the
direction parallel to the magnetic field. For α � 1, this is approximately equal to

ji,x

Ze
� −2πα

∫ ∞

0
Ω dμ

∫ ∞

Ωμ

F(μ, U) dU = −α

∫
fMPE(vx, vy, vz)vz d3v. (5.4)

We define the total current normal to the wall as

jx = je,x + ji,x. (5.5)

From (3.8) and (5.5), the electrostatic potential at the wall is

exp
(

eφW

Te

)
� −ji,x + jx

αZenMPE

√
2πme

Te
. (5.6)

The ion current is determined by (5.4), which leads to

eφW

Te
� ln

[√
2πme

Te

(
1

nMPE
2π

∫ ∞

0
Ω dμ

∫ ∞

Ωμ

dUF (μ, U) + jx

αZenMPE

)]
. (5.7)

The numerical results of this paper, presented in § 7, are obtained assuming ambipolarity,
jx = 0.

As was shown in § 4, every value of μ and U, originally associated with a circular
gyro-orbit entering the magnetic presheath, is associated with a specific value of vy � Ω x̄
and vz � √

2(U − χM(x̄)) at the Debye sheath entrance, where μ = μop(x̄). Here, vx is
given by (4.23) with φ(x) = φDSE. Conservation of the phase space distribution function
F(μ, U) leads to the following velocity distribution (Geraldini et al. 2018),

fDSE(vx, vy, vz) � F
(
μop(x̄), U

)
Θ (x̄ − x̄c)Θ (−vx)

× Π̂

(
1
2
v2

x − χM(x̄) + 1
2
Ω2x̄2 + ΩφDSE

B
, 0,ΔM(x̄, U)

)
. (5.8)

Here, we have defined the top-hat function

Π̂(ξ, ξ1, ξ2) =
{

1, for ξ1 � ξ < ξ2,

0, otherwise.
(5.9)

In appendix B it is shown that the ion current normal to the wall calculated from (5.8)
is equal to (5.4), and thus (5.8) satisfies ion conservation. At the wall, where x = 0, the
range of possible values of vx associated with each value of x̄ and U is given by (4.23)
with φ(0) = φW ,

fW(vx, vy, vz) � F
(
μop(x̄), U

)
Θ (x̄ − x̄c)Θ (−vx)

× Π̂

(
1
2
v2

x − χM(x̄) + 1
2
Ω2x̄2 + ΩφW

B
, 0,ΔM(x̄, U)

)
. (5.10)
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In order to obtain fDSE, and consequently fW , it is necessary to determine the constants
x̄c and φDSE, and the functions χM(x̄) and μop(x̄). Recall that, by (4.22), χM(x̄) and μop(x̄)
also determine ΔM(x̄, U). These quantities are specified by the electrostatic potential
profile φ(x), which is obtained by solving the quasi-neutrality (1.3). Thus, (5.8) does
not per se fully specify fDSE(vx, vy, vz). Geraldini et al. (2018) derived an expression
for the ion density ni(x) for α � 1, as a functional of the electrostatic potential φ(x).
Using this expression, an iterative scheme to obtain the numerical solution φ(x) of the
quasi-neutrality (1.3) was presented. In the next section, a model for fDSE(vx, vy, vz) is
presented, which allows one to bypass obtaining a numerical solution of φ(x) across the
whole magnetic presheath.

6. Large ion gyro-orbit model

In this section, we derive a closed set of equations for the quantities x̄c, φDSE, χM(x̄)
and μop(x̄) appearing in (5.8) for fDSE and (5.10) for fW . The derivation assumes τ � 1
and exploits the approximately undistorted nature of ion gyro-orbits in this limit. In
§ 6.1, the quasi-neutrality equation is expanded in the magnetic presheath close to the
Debye sheath entrance, λD � x � ρs, to obtain a relationship between the distribution
function and electric field. Then, in § 6.2, the expression for the electric field is used
to derive expressions for the functions χM(x̄) and μop(x̄). This procedure is strictly not
self-consistent, as the expression for the electric field derived in the previous subsection is
valid closer to the wall than where it is used. To determine the large gyro-orbit distribution
function, only the two parameters x̄c and φDSE remain to be specified. In § 6.3, a method to
solve for the two parameters is presented.

6.1. Quasi-neutrality at the Debye sheath entrance
In general, solving (1.3) in the magnetic presheath is a numerical task. However, near the
Debye sheath entrance the quasi-neutrality equation can be expanded to obtain analytical
expressions relating the electric field to the distribution function in this region. This
analysis is valid for

√
Zme/mi � α, as it assumes (3.12) for the electron density.

The variation in density in the magnetic presheath, close to the Debye sheath entrance,
for both ions and electrons is related to the variation in the electrostatic potential,
δφ(x) = φ(x) − φDSE. The Boltzmann distribution (3.12) is expanded near the Debye
sheath entrance to obtain

ne(x) � ZnMPE exp
(

eφDSE

Te

)(
1 + eδφ

Te
+
(

eδφ
Te

)2
)

. (6.1)

The form of the expansion of the ion density in δφ(x) depends on whether ions with vx = 0
are present or not at the Debye sheath entrance, that is, whether fDSE(vx = 0) = 0 or not. If
fDSE(vx = 0) �= 0, (5.8) requires that χM(x̄) = Ω2x̄2/2 + ΩφDSE/B for at least some values
of x̄, that is, type I ion orbits must be present. Thus, there are ions whose bottom turning
point lies very close to the Debye sheath entrance at xb � x. Such ions have a velocity range
between |vx| = 0 (xb = x) and |vx| = √

2(χM(x̄) − χ(x, x̄)) � √
2(Ω2x̄x − Ωδφ(x)/B) ∼√

δφ (xb � 0), and can have both positive and negative values of vx. These ions contribute
to a term in the ion density proportional to

√
δφ (Geraldini et al. 2018), heuristically owing

to the size of the additional integration region in vx. As no term in the electron density is
proportional to

√
δφ, type I ion orbits must be absent, requiring

fDSE(vx = 0) = 0. (6.2)

https://doi.org/10.1017/S002237782000166X Published online by Cambridge University Press

https://doi.org/10.1017/S002237782000166X


Wall ion velocity distribution in a low-angle magnetic field 15

Recall from § 4 that all ions with x̄ > φ′
DSE/(ΩB), corresponding to a sufficiently large

value of μ = μop(x̄), are in type I orbits. For there to be a complete absence of type I
orbits, φ′(x) must be divergent at the Debye sheath entrance on the magnetic presheath
scale, φ′

DSE → ∞.2 As shown in the next subsection, this divergence also causes the
asymptotic distribution function fDSE to decay exponentially for vx → 0 provided F(μ, U)

decays exponentially for U → ∞.
Excluding the presence of type I orbits, the ion density near the Debye sheath entrance

is obtained by following ion characteristics backwards from the Debye sheath entrance. To
lowest order in α, the orbit parameters x̄ and U⊥ are constant; in addition, the total energy
U is exactly constant. Consider (4.10), (4.11) and (4.12) for the ion velocity in the magnetic
presheath. The quantities vz, vy + Ωx and −√v2

x + 2Ωδφ(x)/B − 2Ω2x̄x + Ω2x2 are
constant and, from (4.19), (4.21) and (4.23), are equal to the components of the velocity
at the Debye sheath entrance. Thus, the ion density at a distance x from the wall, near the
Debye sheath entrance, is

ni(x) �
∫

fDSE

(
−
√

v2
x + 2Ωδφ(x)

B
− 2Ωvyx, vy + Ωx, vz

)
d3v. (6.3)

Here, we have neglected the term Ω2x2 � 2Ωvyx. The quasi-neutrality equation (1.3) to
lowest order in eδφ(x)/Te � v2

x/v
2
B and3 x � v2

x/(Ωvy) ∼ v2
x/(Ωcs) gives an equation for

φDSE,

nDSE ≡
∫

fDSE(v) d3v = nMPE exp
(

eφDSE

Te

)
. (6.4)

In (6.4) we have denoted the lowest-order ion density at the Debye sheath entrance as nDSE.
Considering the exponential decay of fDSE for |vx| → 0, the first argument of fDSE in

(6.3) can be expanded in eδφ(x)/Te � v2
x/v

2
B and x � v2

x/(Ωcs) to give

ni(x) �
∫

fDSE

(
vx + Ωδφ

Bvx
− Ωvyx

vx
− Ω2δφ2

2B2v3
x

, vy + Ωx, vz

)
d3v. (6.5)

The result of Taylor expanding the integrand in (6.5) and subsequently integrating by parts
is

ni(x) �
∫

fDSE(v) d3v + Ωδφ

B

∫
fDSE(v)

v2
x

d3v − Ωx
∫

vyfDSE(v)

v2
x

d3v

+ 3
2

(
Ωδφ

B

)2 ∫ fDSE(v)

v4
x

d3v. (6.6)

An alternative derivation of the same result is obtained by integrating the top-hat function
in vx first and then expanding the resulting expression (Geraldini et al. 2018). Note that the
Taylor expansion of the second argument of fDSE in (6.3), vy + Ωx, about vy did not give
a variation in x. Collecting terms that are higher order than (6.4) in the quasi-neutrality

2The divergence in φ′(x) is resolved by retaining the term ε0φ
′′(x), small in λD/ρs � 1, in Poisson’s equation (1.2).

3For vy = Ω x̄ � cs the distribution function is exponentially small provided it is exponentially decaying at large
energies, and therefore the typical value vy ∼ cs can be used.
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equation gives an equation relating electrostatic potential variation and position,

eδφ
Te

(∫
fDSE(v) d3v − v2

B

∫
fDSE(v)

v2
x

d3v

)

+ 1
2

(
eδφ
Te

)2 (∫
fDSE(v) d3v − 3v4

B

∫
fDSE(v)

v4
x

d3v

)
+ Ωx

∫
fDSE(v)vy

v2
x

d3v � 0.

(6.7)

As was concluded in the previous paragraph, because the electric field must diverge for
x → 0, the appropriate balance of terms in (6.7) is δφ2 ∝ x. Therefore, the term linear in
δφ must be set to zero, and we obtain the marginal form of the kinetic Bohm condition
(Geraldini et al. 2018),

IBohm ≡ v2
B

∫
fDSE(v)

v2
x

d3v = nDSE. (6.8)

In (6.8) we have defined the Bohm integral, IBohm, and we have used the definition of nDSE
in (6.4).

The condition (6.8) applies to the lowest-order distribution function in the region
λD � x � ρs. It does not apply to the exact distribution function measured near a target
in an experiment (Baalrud & Hegna 2012; Riemann 2012). There are small corrections
to the asymptotic distribution function fDSE(v) in the region λD � x � ρs. With a finite
but large electric field, φ′(x), the distribution function in this region does not exactly
satisfy f (x, v) = 0 for vx = 0. One reason for this is the presence of a small number
of very high-energy ions whose bottom turning point is only a few Debye lengths from
the target, xb ∼ λD. A very small number of ion collisions or reflections from the target,
both neglected, would also cause f (x, v) �= 0 for vx � 0. If the exact distribution function,
f (x, v), were used instead of the asymptotic one, fDSE(v), in the kinetic Bohm condition
(6.8), then the left-hand side would diverge,

∫
( f (x, v)/v2

x ) d3v → ∞, and the condition
could not even be approximately satisfied. Nonetheless, fDSE(v) is, within the validity of
the underlying orderings, an approximation of the true distribution function in the region
λD � x � ρs.

Imposing (6.8), (6.7) becomes

(
eδφ
Te

)2 (∫
fDSE(v) d3v − 3v4

B

∫
fDSE(v)

v4
x

d3v

)
+ 2Ωx

∫
fDSE(v)vy

v2
x

d3v � 0. (6.9)

The electrostatic potential variation in the magnetic presheath, near the Debye sheath
entrance, is thus given by

e (φ(x) − φ(0))

Te
�

√
2x̄avx
ρB

, (6.10)

with x̄av, denoting a kinetic average of x̄ = vy/Ω , given by

x̄av

ρB
= vB

∫ (
vyfDSE (v) /v2

x

)
d3v∫

fDSE (v)
(
3v4

B/v
4
x − 1

)
d3v

∼
√

1 + τ

(1 + ατ)
. (6.11)

Here, ρB = vB/Ω is referred to as the Bohm gyro-radius. As fDSE is exponentially small
near vx = 0, the integral in the denominator of (6.11) is convergent. The ordering in (6.11)
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can be obtained as follows. Consider the smallest value of |vx| in the range (4.23) at the
Debye sheath entrance (φ(x) = φDSE),

Vx,slow(x̄) =
√

2
(

χM(x̄) − 1
2
Ω2x̄2 − ΩφDSE

B

)
. (6.12)

Ions with vx � −Vx,slow are referred to as ‘slow’ ions. From (6.4) and the ordering |vx| ∼
vB

√
1 + ατ for typical values of vx, the marginalized distribution function is ordered∫

fDSE dvy dvz ∼ nDSE/(vB
√

1 + ατ). The kinetic Bohm condition (6.8) determines the size
of slow ions,

∫
( fDSE/v

2
x ) d3v ∼ (

∫
fDSE dvy dvz)/Vx,slow ∼ nDSE/(Vx,slowvB

√
1 + ατ). This

gives the ordering Vx,slow ∼ vB/
√

1 + ατ . Note that Vx,slow � vB
√

1 + ατ only if ατ � 1,
so that for ατ � 1 the normal velocity of slow ions is similar in size to the normal
velocity of a typical ion. The size of x̄av is obtained by considering the contribution of
slow ions to the integrals in (6.11) and using also vy ∼ cs, giving x̄av/ρB ∼ csV2

x,slow/v3
B ∼√

1 + τ/(1 + ατ).
The region of validity of (6.10) is obtained by investigating the validity of the expansion

(6.7). For the expansion to be valid, the orderings eδφ(x)/Te � v2
x/v

2
B and x � v2

x/(Ωcs)
must be satisfied. Using x � V2

x,slow/(Ωcs), the ordering x � ρs/[(1 + τ)(1 + ατ)] for
the region of validity of the expansion is obtained. The same ordering results from
eδφ(x)/Te � V2

x,slow/v2
B using (6.10) and (6.11).

6.2. Ion trajectories and ion distribution function for τ � 1
In order to obtain fDSE(v) from (5.8), the electrostatic potential in the magnetic presheath is
necessary to calculate: the function χM(x̄) from (4.17), the function μop(x̄) from (4.20), the
quantity x̄c from (4.18) and the quantity φDSE. These quantities are calculated here using a
model obtained by considering ion trajectories for τ � 1 in the electrostatic potential of
(6.10).

For τ � 1, the thermal velocity of an ion is much larger than the Bohm velocity,
v2

t,i ∼ τv2
B � v2

B. To calculate the adiabatic invariant, we can therefore neglect the small
electrostatic potential variation throughout the orbit, Ωφ(x)/B ∼ v2

B � Ωμop(x̄) ∼ v2
t,i,

and using (4.20) obtain μop(x̄) � U⊥/Ω � χM(x̄)/Ω . This does not specify the functional
form of μop(x̄) and χM(x̄), but in relating them reduces the number of unknown functions
from two to one. The approximate equivalence of U⊥ and Ωμ and the conservation of
U and μ imply that vz = √

2(U − U⊥), has remained approximately unchanged from its
value at the magnetic presheath entrance,

√
2(U − Ωμ). The quantity x̄c, defined in (4.18),

corresponds to the orbit position of a gyro-orbit with adiabatic invariant equal to zero
(since xb = xt = xc), and thus x̄c is obtained through μop(x̄c) = 0.

When an ion in a large gyro-orbit gets sufficiently close to the target, its gyro-motion
is distorted as shown in figure 1(b). The net force away from the wall on an ion at a
given instant is given by the effective potential gradient, χ ′(x, x̄). The distortion of ion
gyro-orbits is caused by a competition between the magnetic force pulling away from the
wall and the electric force pushing towards the wall. As type I orbits are absent, xM is a
stationary point where the electric force on the ion exactly balances the magnetic force. Its
location can be obtained from (4.14) with xst = xM < xc,

x̄ = xM + φ′(xM)

ΩB
. (6.13)

In what follows, the electrostatic potential in (6.10) is used to approximate the
electrostatic potential at distances from the wall corresponding to typical values
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of xM. From (6.10) we obtain φ′(xM) = (Te/eρB)
√

x̄av/2xM. Using the ordering xM � x̄ ∼
φ′(xM)/ΩB ∼ ρs in (6.13), we obtain

xM = x̄avρ
2
B

2x̄2
. (6.14)

By inserting (6.14) into χM(x̄) = Ω2(xM − x̄)2/2 + Ωφ(xM)/B, neglecting the term
Ω2x2

M/2 and remembering that μop(x̄) � χM(x̄)/Ω , we obtain

Ωμop(x̄) � χM(x̄) � 1
2
Ω2x̄2 + v2

Bx̄av

2x̄
+ ΩφDSE

B
. (6.15)

Imposing μop(x̄c) = 0 in (6.15) gives

x̄c = ρB

√
−2eφDSE

Te
− v2

c

v2
B
, (6.16)

where the quantity vc = vB
√

x̄av/x̄c, called the critical velocity, has been defined. With this
definition, x̄av is given by

x̄av = v2
c

v2
B

x̄c. (6.17)

From (6.15) and (4.23), large gyro-orbits at the Debye sheath entrance have a range of
normal velocities given by

v2
c x̄c

2x̄
� v2

x

2
<

v2
c x̄c

2x̄
+ 2παμ′

op(x̄)
√

2
(
U − Ωμop(x̄)

)
. (6.18)

Inserting the velocity spread (6.18) in the distribution function (5.8) the velocity
distribution of ions in large gyro-orbits is

fDSE(vx, vy, vz) � F
(
μop(x̄), U

)
Θ (x̄ − x̄c)Θ (−vx)

× Π̂

(
1
2
v2

x − v2
c x̄c

2x̄
, 0, 2παμ′

op(x̄)
√

2
(
U − Ωμop(x̄)

))
. (6.19)

Despite being a useful analytical model for the ion distribution function, the large
gyro-orbit model presented here is strictly not asymptotically self-consistent. For τ � 1,
x̄ ∼ ρi and x̄av ∼ ρi/(1 + ατ), where ρi = vt,i/Ω is the thermal ion gyro-radius. Using
(6.14), it follows that xM ∼ ρi/[τ(1 + ατ)]. Recall from the final paragraph of § 6.1 that
the expansion used to derive (6.10) is valid, for τ � 1, in the region xM � ρi/[τ(1 + ατ)].
Therefore, (6.14) is not valid for the majority of ions. There is, however, a minority of
ions for which μ � v2

t,i/Ω and x̄ � ρi, which have xM � ρi/[τ(1 + ατ)]. For these ions
(6.14) is accurate. This can be used to derive the exponential decay of fDSE at |vx| → 0 as
follows. The distribution function F(μ, U) is assumed to exponentially decay for U → ∞
and consequently, because U � Ωμ, for Ωμ → ∞, such that F ∼ exp(−2Ωμ/v2

t,i). If
follows from (6.15) and x̄ → ∞ that F ∼ exp(−Ω2x̄2/v2

t,i). The slowest value of |vx| in
the top-hat function in (5.8) is given by the function Vx,slow in (6.12), which in the model is

Vx,slow(x̄) = vc

√
x̄c

x̄
. (6.20)
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For the top-hat function in (5.8) to be non-zero we require Vx,slow(x̄) � |vx| and so
x̄ � x̄cv

2
c/v

2
x . Therefore, the largest value of fDSE for an ion with vx → 0 satisfies fDSE ∼

exp(−Ω2x̄2
cv

4
c/(v

2
t,iv

4
x )), which is exponentially small.

The critical velocity is the value of |vx| for an ion at the Debye sheath entrance with μ =
0, which came from an infinitesimally small gyro-orbit, vc = Vx,slow(x̄c). These ions should
have μ′

op(x̄c) = 0 and thus ΔM(x̄c, U) = 0 for all values of U, which would give vx = −vc
as the only allowed value according to the velocity distribution (5.8). However, ions with
μ = 0 in the model have a finite range of velocities owing to the fact that μ′

op(x̄c) = 0 is
not imposed in order not to overconstrain the model. This could be concerning, because
if μ′

op(x̄c) < 0 (and so ΔM(x̄c, U) < 0), the range of values of v2
x in (4.23) would allow

for non-real values of vx. Fortunately, μ′
op(x̄c) = Ω x̄c − v2

c/(2Ω x̄c) is always positive if α

is sufficiently small that e|φDSE|/Te ∼ ln α � 1, as (6.16) leads to 2(Ω x̄c)
2 ∼ | ln α|v2

B �
v2

c ∼ v2
B. In practice, μ′

op(x̄c) > 0 for all values of α � 5◦ considered in this paper. With
μ′

op(x̄c) > 0, ions with μ = 0 (x̄ = x̄c) have a non-zero range of values of vx according
to (4.22) and (4.23). In the model, |vx| = vc is therefore the smallest value of |vx| for
an ion with μ = 0. Although μ′

op(x̄c) �= 0 may look like a serious shortcoming of the
model, for τ � 1 the large discrepancy in the function μ′

op(x̄) is expected only for a
small number of particles near x̄ = x̄c. In other words, the model does not correctly
capture the small gyro-orbits, but there are assumed to be only a small number of them
anyway.4

6.3. Model closure: calculating φDSE and vc

The only unknowns that specify the model distribution function (6.19) are the two
constants φDSE and vc. The value of φDSE is determined from quasi-neutrality at the
Debye sheath entrance (6.4). The value of vc is determined by imposing the kinetic Bohm
condition (6.8).

For numerical evaluation, it is best to re-express all velocity moments as∫
fDSE(v)va

x d3v =
∫ ∞

x̄c

Ω dx̄
∫ ∞

Ωμop(x̄)
F
(

μop(x̄),Ωμop(x̄) + 1
2
v2

z

)

× va+1
c

a + 1

((
x̄c

x̄
+ 4παμ′

op(x̄)vz

v2
c

)(a+1)/2

−
(

x̄c

x̄

)(a+1)/2
)

dvz, (6.21)

obtained from (6.19) using the change of variables vy = Ω x̄ and vz = √
2(U − Ωμop(x̄)),

and substituting (6.17). In particular, to solve (6.4) and (6.8) for φDSE and vc, we require
the density,

nDSE =
∫ ∞

x̄c

Ω dx̄
∫ ∞

Ωμop(x̄)
F
(

μop(x̄),Ωμop(x̄) + 1
2
v2

z

)

× vc

((
x̄c

x̄
+ 4παμ′

op(x̄)vz

v2
c

)1/2

−
(

x̄c

x̄

)1/2
)

dvz, (6.22)

4The asymptotic theory of the ion trajectories is also inaccurate for small gyro-orbits, albeit not as evidently. This
inaccuracy is unimportant if τ is sufficiently large that the asymptotic theory correctly describes the majority of ion orbits.
It was shown in Geraldini, Parra & Militello (2019) that when τ � α1/3, the asymptotic theory fails for an appreciable
fraction of the ions.
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and the Bohm integral,

IBohm = v2
B

∫ ∞

x̄c

Ω dx̄
∫ ∞

Ωμop(x̄)
F
(

μop(x̄),Ωμop(x̄) + 1
2
v2

z

)

× 1
vc

((
x̄c

x̄

)−1/2

−
(

x̄c

x̄
+ 4παμ′

op(x̄)vz

v2
c

)−1/2
)

dvz. (6.23)

Note that the value of IBohm decreases by increasing vc, and vice versa.
Iterative expressions are used to determine φDSE from (6.4) and vc from (6.8). The first

guesses, or zeroth iterates, are defined by φDSE,0 = (Te/e) ln α and vc,0 = vB, and iteration
values are denoted by φDSE,ν and vc,ν . At each iteration, nDSE,ν and IBohm,ν are evaluated
from (6.22) and (6.23). The iterates φDSE,ν+1 and vc,ν+1 are obtained using

φDSE,ν+1 = Te

e
ln
(

nDSE,ν

nMPE

)
, (6.24)

vc,ν+1 = vc,ν

IBohm,ν

(
IBohm,ν − nDSE,ν

)
, if IBohm,ν > nDSE,ν,

= εvc, otherwise.

⎫⎬
⎭ (6.25)

Equation (6.24) originates from the rearranged form of (6.4), φDSE = (Te/e) ln(nDSE/nMPE).
Equation (6.25) is based on a Newton method with the approximations dnDSE/dvc ≈ 0 and
dIBohm/dvc ≈ −IBohm/vc. The iteration is truncated when

nDSE,N − nDSE,N−1

nDSE,N
< εn, (6.26)

∣∣∣∣ IBohm,N

nDSE,N
− 1

∣∣∣∣ < εI. (6.27)

In the earliest iterations, it may happen that vc,ν+1 � 0, which is prevented by setting vc,ν+1
to be a small number above zero (smaller than the solution vc), denoted by εvc . The Nth
iteration values of φDSE and vc, satisfying conditions (6.26) and (6.27), are considered to
be acceptable numerical solutions of (6.4) and (6.8). The value of x̄av is obtained from vc
using (6.17). To obtain the results presented in the next section, εn = εI = εvc = 10−10 was
used.

Having solved (6.4) and (6.8) for φDSE and vc = vB
√

x̄av/x̄c, (4.19), (4.21), (6.15), (6.16)
and (6.19) completely specify the large gyro-orbit model distribution function at the
Debye sheath entrance, fDSE(v). The model distribution function at the wall is obtained
by replacing (6.19) with

fW(v) � F
(
μop(x̄), U

)
Θ (x̄ − x̄c) Θ (−vx)

× Π̂

(
1
2
v2

x − v2
c x̄c

2x̄
− Ω

B
(φDSE − φW) , 0, 2παΩ x̄

√
2
(
U − Ωμop(x̄)

))
,

(6.28)

where (5.7) determines the wall potential φW .
To conclude this section, the application of the model to τ � 1 is discussed. We

have seen that the model is derived assuming τ � 1, although it is not asymptotically
self-consistent even in this limit. The Bohm condition closure (6.8) used in the model to

https://doi.org/10.1017/S002237782000166X Published online by Cambridge University Press

https://doi.org/10.1017/S002237782000166X


Wall ion velocity distribution in a low-angle magnetic field 21

obtain vc (and x̄c) is nonetheless valid for all τ . Therefore, for τ � 1 the model correctly
recovers a distribution function that is centred around vx � −vB, as expected from the
fluid cold-ion result (Chodura 1982). This extends the applicability of the model to smaller
values of τ , though with less-accurate results. A measure of the accuracy of the model can
be obtained by calculating the value of x̄av from (6.11) and comparing it with the model
value in (6.17). For ατ � 1, the two values are found to approach each other. For τ � 1
the two values are found to differ approximately (with an O(α) error) by a factor of two:
indeed, (6.11) results in x̄av � x̄c/2 upon using a cold-ion distribution function centred at
vx = −vB and vy = Ω x̄c, whereas the model value from (6.17) is x̄av � x̄c.

7. Numerical results

In this section, a comparison is presented of ion velocity distributions obtained from:

(i) equations (5.8), (5.10) and the full numerical solution φ(x) of the quasi-neutrality
equation in the magnetic presheath entrance; and

(ii) equations (6.19), (6.28) and the closure equations of the large gyro-orbit model.

To obtain the solutions (i), the numerical scheme in Geraldini et al. (2018) is used. In § 7.1,
the boundary conditions for the distribution function at the magnetic presheath entrance,
as a function of τ , are given. Then, in § 7.2, results for the distribution of the component vx
of the ion velocity at the Debye sheath entrance, obtained using (i) and (ii), are presented.
Finally, results for the energy–angle distributions of ions at the wall are presented in § 7.3
for some values of α and τ . The possibility to extend the model for α ∼ √

Zme/mi is briefly
discussed in § 7.4.

7.1. Boundary conditions at the magnetic presheath entrance
The ion velocity distribution at the magnetic presheath entrance, ρs � x � dc, is taken to
be

fMPE (v) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
N nMPE

4v2
z

π3/2v5
t,i

exp

(
−
∣∣v − uvt,iêz

∣∣2
v2

t,i

)
Θ (vz) , for τ � 1,

N nMPE
4v2

z

π3/2v3
t,i

(
v2

t,i + rv2
z

) exp
(

−|v|2
v2

t,i

)
Θ (vz) , for τ > 1,

(7.1)

for any prescribed value of τ , where Θ is the Heaviside step function defined in (3.6) and
êz is a unit vector in the z direction. The family of velocity distributions (7.1) is the same as
used in Geraldini et al. (2019) to study the dependence of the magnetic presheath solution
on ion temperature, and is chosen to satisfy the marginal kinetic Chodura condition
(Geraldini et al. 2018)

v2
B

∫
fMPE (v)

v2
z

d3v = nMPE. (7.2)

The value of the normalization constant N is obtained from (5.3), giving

N =

⎧⎪⎪⎨
⎪⎪⎩

[(
1 + 2u2

)
(1 + erf(u)) + 2u√

π
exp(−u2)

]−1

, for τ � 1,

r3/2

[
2
√

r − 2
√

π exp
(

1
r

)(
1 − erf

(
1√
r

))]−1

, for τ > 1.

(7.3)
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The values of u and r are obtained by imposing (7.2), leading to

1 + erf(u) = τ

[(
1 + 2u2) (1 + erf(u)) + 2u√

π
exp(−u)

]
, (7.4)

r
√

π exp
(

1
r

)(
1 − erf

(
1√
r

))
= τ

[
2
√

r − 2
√

π exp
(

1
r

)(
1 − erf

(
1√
r

))]
. (7.5)

7.2. Narrowing of the wall-normal velocity distributions
The marginalized distribution function

fx,DSE(vx) =
∫∫

fDSE(v) dvy dvz, (7.6)

is the distribution of wall-normal velocities vx of ions at the Debye sheath entrance. The
numerical results obtained for fx,DSE(vx) with the model and the theory for τ = 1 and
τ = 5, for a number of angles α, are shown in figure 3. The first thing to note is that the
model distribution function (dashed lines) captures the essential features of the distribution
function obtained from the full solution of the magnetic presheath electrostatic potential
φ(x) (solid lines). Moreover, the agreement is better for the largest value of τ = Ti/(ZTe),
τ = 5, as expected.

The width of the function fx,DSE(vx) narrows as α decreases, a feature that was observed
in Geraldini et al. (2018). The width of this function can be quantified using the variance
〈ṽ2

x 〉, defined using the second moment of fx,DSE(vx),

〈ṽ2
x 〉 =

√∫
(vx − ux,DSE)2fx,DSE(vx) dvx∫

fx,DSE(vx) dvx
. (7.7)

Here

ux,DSE =
∫

vxfx,DSE(vx) dvx∫
fx,DSE(vx) dvx

(7.8)

is the average wall-normal velocity at the Debye sheath entrance. As can be seen in
figure 3, the variance of the distribution function scales linearly with α.

The scaling of the variance can be explained as follows. The ion velocity can
be decomposed into two pieces: a piece coming from the electric field acceleration
which depends only on x̄ (or μ), Vx,slow(x̄) = √

2(χM(x̄) − Ω2x̄2/2 − ΩφDSE/B), and
an additional gyro-phase dependent piece which gives the velocity range in (4.23). In
figure 4 the behaviour of Vx,slow(x̄) as a function of μop(x̄) is shown for some values of
τ and α. The slow decay of Vx,slow with μ is approximately captured by the model for
τ = 5, and for (τ, α) = (1, 5◦). For (τ, α) = (1, 1◦), the dependence of Vx,slow on μ is
stronger than predicted by the model, but is nonetheless fairly weak. As Vx,slow is only a
weakly decreasing function of μ, the distribution function sharply drops to zero around
|vx| ≈ Vx,slow(ρs), a feature common to all velocity distributions in figure 3. The dominant
contribution to the variance 〈ṽ2

x 〉 therefore comes from the range of allowed values of
|vx| in (4.23), instead of the dependence of Vx,slow on μ. For τ � 1, we order Ωμop ∼
Ω2x̄2/2 ∼ v2

t,i and
√

2(U − Ωμop(x̄)) ∼ vt,i, and obtain 2παμ′
op(x̄)

√
2(U − Ωμop(x̄)) ∼

2παv2
t,i. Hence, the variance is 〈ṽ2

x 〉 ∼ αv2
t,i ∼ ατv2

B, as seen in the numerical results. The
dependence of Vx,slow on μ does not cause a significant contribution to 〈ṽ2

x 〉 unless ατ is
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(a) (b)

(c) (d)

FIGURE 3. (a,c) Wall-normal velocity distributions at the Debye sheath entrance from the
numerical solution of φ(x) in the magnetic presheath (solid lines) and from the large gyro-orbit
model (dashed lines), for τ = 1 (a) and τ = 5 (c) for angles α = 1◦, 3◦, 5◦. (b,d). The variance
〈ṽ2

x 〉 of the distributions from the numerical solution of φ(x) (circles) and from the model
(crosses) for values of α between 0.5◦ and 5◦ for τ = 1 (b) and τ = 5 (d). The dotted lines
are drawn to guide the eye, showing the linear scaling 〈ṽ2

x 〉/v2
t,i ∼ α for α � 1◦. (Note: here α is

measured in degrees.).

FIGURE 4. The velocity of slow ions, Vx,slow(x̄), is shown as a function of the adiabatic invariant
μop(x̄) with (τ, α) labelled. Solid lines are obtained from the numerical solution of φ(x); dashed
lines are obtained from the large gyro-orbit model.
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FIGURE 5. The quantity 2Δ̄M/(Ω2x̄2 + v2
t,i), with Δ̄M(x̄) = 2παμ′

op(x̄)vt,i, is shown as a
function of the adiabatic invariant μop(x̄) for labelled values of (τ, α). Solid lines are obtained
from the numerical solution of φ(x); dashed lines are obtained from the large gyro-orbit model.
For 2Δ̄M/(Ω2x̄2 + v2

t,i) � 1 the asymptotic theory in α � 1 is valid.

extremely small, seen in the numerical results of figure 3 as a saturation of the decrease of
the variance for α � 1◦.

When deriving the scaling of (6.11), the typical value of |vx| of slow ions was found to
be Vx,slow ∼ vB/

√
1 + ατ . From figure 4 it appears that the ordering ατ � 1 is satisfied,

as Vx,slow(x̄) is smaller than vB in most cases shown here. It may appear concerning that
Vx,slow/vB is quite small also for (τ, α) = (1, 5◦), as this suggests that ατ is large for τ = 1
and for a value of α (= 5◦ ≈ 0.09 radians) which is considered small. This observation
prompts a closer analysis of the validity of the asymptotic theory of the ion orbits, which
assumes α � 1. One of the consequences of this ordering is that the function ΔM(x̄, U)

is small. For τ � 1, the smallness of ΔM(x̄, U) is measured relative to the kinetic energy
of the ion,5 estimated from the tangential components of the ion velocity, (v2

y + v2
z )/2 ∼

(Ω2x̄2 + v2
t,i)/2. The ratio 2Δ̄M/(Ω2x̄2 + v2

t,i) is shown in figure 5 and highlights that,
although for α = 5◦ the validity of the asymptotic theory is not robust, the contribution
of ΔM to the ion energy is smaller than the total kinetic energy for most ions, albeit by a
factor of approximately two only. Note that α = 5◦ corresponds to 2πα ≈ 0.6 radians, and
so the factor of 2π in (4.22) explains why the expansion in α starts to becomes inaccurate
at α ≈ 5◦.

Although this subsection presented ion distribution functions at the Debye sheath
entrance, fx,DSE(v), the validity of the scaling 〈ṽ2

x 〉 ∼ αv2
t,i is expected to apply also to

the ion velocity distribution at the wall, fx,W(v). In the next subsection, ion velocity
distributions at the wall are considered for parameters where φDSE > φW , such that the
assumption of Boltzmann electrons (recall (3.14)) remains at least approximately correct.

7.3. Energy–angle distributions at the target
As sputtering predictions depend on the distribution of kinetic energy and angle of impact
of ions reaching the target, it is useful to calculate the energy–angle distribution of ions

5For τ � 1, enlarging ion gyro-orbits make this analysis insufficient (Geraldini et al. 2019).
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at the wall. To obtain our results, we considered a Deuterium plasma such that
√

me/mi =
0.0165 and Z = 1.

The kinetic energy of an ion at the wall is E = U − ΩφW/B and the angle of impact of
an ion with the wall surface is sin θ = |vx|/

√
2E. Thus, the components vz and vx of the

ion velocity can be expressed as functions of x̄, E and θ via

vx = −
√

2E sin θ, (7.9)

vz =
√

2
(

E − χM(x̄) + ΩφW

B

)
. (7.10)

The energy–angle distribution ζW(E, θ) is calculated from fW(v) using the equation

ζW(E, θ) =
∫ χ−1

M (E+ΩφW/B)

x̄c

√
2E cos θ√

2 (E − χM(x̄) + ΩφW/B)
fW(v)Ω dx̄, (7.11)

where the Jacobian
∂(vx, vz)

∂(E, θ)
=

√
2E cos θ√

2 (E − χM(x̄) + ΩφW/B)
(7.12)

was used to change variables from vx and vz to E and θ . The inverse function of χM(x̄),
denoted by χ−1

M , is used to obtain the maximum value of x̄ for a given value of E, which
is, from (7.10), the solution of χM(x̄) = E + ΩφW/B.

The energy–angle distributions calculated from the numerical solution of the
electrostatic potential in the magnetic presheath and from the large gyro-orbit model are
shown for α = 3◦ and 5◦, for τ = 0.5, in figure 6, and for τ = 2, in figure 7. The qualitative
features of the distribution function obtained from the full electrostatic potential solution
are, even for τ = 0.5, adequately captured by the model, including the average angle of
impact of ions with the wall. The model performs better at the largest of the two values of
τ (τ = 2, figure 7), as expected.

7.4. Accounting for
√

Zme/mi ∼ α

For some of the angles we have considered, the assumption of adiabatic electrons,√
Zme/mi = 0.0165 ≈ 1◦ � α, is not well-satisfied. Once φDSE − φW � 0 our assumption

that the Debye sheath repels most electrons back into the magnetic presheath is clearly
incorrect. In fact, the Boltzmann distribution for the electron density becomes inaccurate
when φDSE − φW becomes sufficiently small that the ordering (3.14) is no longer satisfied.
The critical value of α for which φDSE = φW in the model increases slightly with τ : for
τ = 2 it is α ≈ 3◦, whereas for τ = 10 it is α ≈ 5◦. In order to solve for the self-consistent
electrostatic potential across the magnetic presheath, a more accurate expression for the
electron density must be used. In the context of the large gyro-orbit model, this is expected
to change (6.4) and (6.8).

8. Conclusions

The velocity distribution of ions reaching a planar target when the angle between the
magnetic field and the target is small, α � 1, has been calculated using a model consisting
of (4.19), (4.21), (5.7), (6.4), (6.8), (6.15), (6.16) and (6.28) (replaced with (6.19) at the
Debye sheath entrance instead of the target). The model, like the asymptotic theory it is
based on, has been argued to be valid for α � 5◦. The advantage of the model is that the
full solution of the quasi-neutrality equation in the magnetic presheath is bypassed, and
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(a) (b)

(c) (d )

FIGURE 6. Energy–angle distributions at the target, ζW(E, θ), obtained from the full
electrostatic potential solution (full theory) and from the large gyro-orbit model for τ = 0.5
and α = 3◦ and 5◦, are shown normalized to their peak value.

replaced with constraints derived from quasi-neutrality near the Debye sheath entrance
only. The treatment is more accurate for large ion gyro-orbits, τ = Ti/ZTe � 1. Yet, it
can also be used for τ ∼ 1 and reproduces the main qualitative features of distribution
functions obtained by solving the self-consistent electrostatic potential across the magnetic
presheath (for α � 1), as shown in figures 3, 6 and 7. As the sputtering yield of an
ion striking a target depends on the ion’s energy and angle of incidence with the target,
calculations of energy–angle distributions (7.11) using the model, shown in figures 6 and
7, may be valuable for sputtering predictions.

The narrowing of the wall-normal velocity distribution with the angle α, shown in
figure 3 at the Debye sheath entrance, is explained from the model as follows. Ions reaching
the Debye sheath have a minimum normal velocity, Vx,slow, which is related to the size of
the gyro-orbit, and so to the adiabatic invariant μ. Ions with smaller gyro-orbits have a
smaller gyration velocity, and so a smaller magnetic force acts on them to maintain the
gyro-motion. Consequently, a weaker electric force is needed to overcome the magnetic
force and accelerate these ions towards the target. Ions in smaller gyro-orbits (smaller
μ) are thus accelerated towards the wall for a larger distance, as shown schematically in
figure 1(b,c). However, the dependence of Vx,slow on the adiabatic invariant μ is weak, as
seen in figure 4. As the distribution function exponentially decays with μ, the distribution
function sharply drops to zero for |vx| below the typical values of Vx,slow, as seen in
figure 3. The width of the wall-normal velocity distribution is therefore dominated by the
gyro-phase dependence of vx at the target. This dependence is represented, schematically,
by pairs of ion trajectories with the same value of μ and U in figure 1(b,c). It results in the
scaling 〈ṽ2

x 〉 ∼ αv2
t,i for the variance of vx.
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(a) (b)

(c) (d )

FIGURE 7. Energy–angle distributions at the target, ζW(E, θ), obtained from the full
electrostatic potential solution (full theory) and from the large gyro-orbit model for τ = 2 and
α = 3◦ and 5◦, are shown normalized to their peak value.

The orderings (2.1) and (2.2) are required in the asymptotic theory and in the
large gyro-orbit model, and are typically well-satisfied in fusion devices except for
α � √

Zme/mi and ρe � λD. Therefore, a kinetic model (instead of an adiabatic model)
for the electrons should be used in the quasi-neutrality equation for φ(x) in the
magnetic presheath. This would change the electron contribution to the closure (6.4)
(quasi-neutrality) and (6.8) (kinetic Bohm condition) of the large gyro-orbit model.
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Appendix A. Change of U⊥ − χM (x̄) during the last ion gyro-orbit

In this appendix, the change in the quantity U⊥ − χM(x̄) during the last gyro-orbit of an
ion is calculated. This quantity is denoted by ΔM(x̄, U), and is responsible for the spread
of values of vx in the ion distribution function at the Debye sheath entrance (5.8) and at
the wall (5.10).

Recalling from the discussion after (4.8) that ˙̄x = −αvz, we obtain χ̇M(x̄) = ẋMχ ′

(xM, x̄) + ˙̄x∂χ(xM, x̄)/∂ x̄ = αvzΩ
2(xM − x̄). Here we have used that ẋMχ ′(xM, x̄) = 0
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owing to ẋM = 0 for type I orbits (xM = 0) and χ ′(xM, x̄) = 0 for type II orbits.
Also recalling U̇⊥ = −αΩvzvy = αΩ2(x − x̄), the rate of change of the
quantity U⊥ − χM(x̄) is

d
dt

(U⊥ − χM(x̄)) = αΩ2V‖(χM(x̄), U) (x − xM) . (A 1)

This is always positive for closed orbits which satisfy x � xb � xM. Consider an ion, at
a position x, that has just reached values of x̄ and U⊥ such that U⊥ = χM(x̄). The time
taken for the ion to reach x = 0 is approximated by integrating the equation dx/dt = vx �
σx

√
2(χM − χ(x, x̄)), where σx = ±1 is the sign of vx, to obtain

t = (σx + 1)

∫ xt

x

ds√
2 (χM − χ(s, x̄))

+
∫ x

0

ds√
2 (χM − χ(s, x̄))

. (A 2)

Here, and in the rest of this appendix, we denote the position x by the symbol s when
under an integral if the symbol x is already used for one of the limits of the integration.
The problem with the approximation in (A 2) is that the second integral is logarithmically
divergent for type II orbits owing to the form of the integrand for s → xM,

lim
s→xM

1√
2 (χM − χ(s, x̄))

= 1√
χ ′′(xM) |s − xM| . (A 3)

However, the time t taken by an ion to reach the Debye sheath entrance from a point in
its last gyro-orbit would only be infinite if vx = σx

√
2(χM − χ(x, x̄)) was exactly true.

In practice, the quantity U⊥ − χM(x̄) is not exactly zero. To calculate this quantity, the
time evolution of U⊥ − χM(x̄) is estimated in the same way the time t was estimated
(incorrectly): we replace the time derivative in (A 1) with a spatial derivative using the
substitution d/dt = vxd/dx, and the approximation vx � √

2(χM − χ(x, x̄)) to obtain

d
dx

(U⊥ − χM) = ±αΩ2V‖ (χM(x̄), U)
x − xM√

2 (χM − χ(x, x̄))
. (A 4)

This equation is then integrated in the same way as before to obtain

U⊥ − χM(x̄) = αΩ2V‖ (χM(x̄), U)

[
(σx + 1)

∫ xt

x

s − xM√
2 (χM − χ(s, x̄))

ds

+
∫ x

0

s − xM√
2 (χM − χ(s, x̄))

ds
]

. (A 5)

The second integral in (A 5) is not divergent near x = xM because the integrand tends to

lim
s→xM

s − xM√
2 (χM − χ(s, x̄))

= s − xM√
χ ′′(xM) |s − xM| = Θ (s − xM)

1√
χ ′′(xM)

, (A 6)

which is always finite (moreover, the contribution from the region near s = xM in the
integral (A 5) vanishes because the integrand changes sign there). Considering (A 5),
U⊥ is only ever exactly equal to χM(x̄) at an instant, and at all other times it is different.
Therefore, the time estimated in (A 2) is incorrect, and the divergence in (A 3) does not
occur. In practice, ions cross the effective potential maximum in a time t ∼ 2π| ln α|/Ω
(Geraldini et al. 2018).
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Upper and lower bounds for the values of U⊥ − χM(x̄) of ions reaching x = 0 can be
obtained using the fact that these ions must have past trajectories with a bottom bounce
point xb. We consider the following two limiting cases: (i) an ion crossing the maximum
x = xM towards the sheath with U⊥ = χM(x̄) + ε; (ii) an ion bouncing back (for the last
time) from x = xM with U⊥ = χM(x̄) − ε, where ε is an energy difference so small it can
be neglected. The minimum value of U⊥ − χM of an ion entering the Debye sheath is
calculated from case (i),

U⊥ − χM(x̄) = −Δ+(x, x̄, U), (A 7)

where

Δ+(x, x̄, U) = αΩ2V‖ (χM, U)

∫ xM

0

xM − s√
2 (χM − χ(s, x̄))

ds (A 8)

is a positive quantity. Here, we have added to U⊥ − χM(x̄) = 0 the amount obtained by
integrating (A 1) from xM to the Debye sheath entrance (x � 0 here). The maximum value
of U⊥ − χM(x̄) is calculated from case (ii),

U⊥ − χM(x̄) = ΔM(x̄, U) − Δ+(x, x̄, U), (A 9)

where

ΔM(x̄, U) = 2αΩ2V‖ (χM, U)

∫ xt

xM

x − xM√
2 (χM − χ(x, x̄))

dx. (A 10)

Here, we have added to U⊥ − χM(x̄) = 0 the amount obtained by integrating (A 1) from
xM to xt, then back again all the way to the Debye sheath entrance (x � 0). The quantity Δ+
was shown to be negligible when calculating vx from (4.12), as it is always small relative
to either χM(x̄) − χ(x, x̄) or ΔM(x̄, U) (Geraldini et al. 2018). Thus, we can consider 0 �
U⊥ − χM(x̄) < ΔM(x̄, U) for ions reaching the Debye sheath entrance.

Equation (4.22) for ΔM(x̄, U) follows from (A 10) and from the equality

μ′
op(x̄) = Ω2

∫ xt

xM

x − xM√
2 (χM − χ(x, x̄))

dx, (A 11)

which can be verified from (4.20).

Appendix B. Ion conservation

The ion distribution function at the Debye sheath entrance (5.8) is proved here to
be consistent with ion conservation in the magnetic presheath. Equation (5.4) gives the
current flowing normal to the wall at the magnetic presheath entrance. In steady state,
the current flowing normal to the wall at the Debye sheath entrance should be the same.
At the Debye sheath entrance, the ion density is small in α and the ion current flowing
normal to the wall is owing to the component vx of the velocity of all ions,

ji,x

Ze
= −2π

∫ ∞

x̄c

Ω dx̄
∫ ∞

Ωμ

F
(
μop(x̄), U

)
dU

V‖(χM(x̄), U)

×
∫ ∞

−∞
Π̂

(
1
2
v2

x − χM(x̄) + 1
2
Ω2x̄2 + ΩφDSE

B
, 0,ΔM(x̄, U)

)
vx dvx. (B 1)

The last integral in vx is taken by replacing vx dvx = d(v2
x/2), and the result is ΔM(x̄) =

2απμ′
op(x̄)V‖(χM(x̄), U),

ji,x

Ze
= −2απ

∫ ∞

0
Ω dx̄μ′

op(x̄)
∫ ∞

Ωμ̂

F
(
μop(x̄), U

)
dU. (B 2)
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Using μ′
op(x̄) = dμ/dx̄ and changing integration variable to μ = μop(x̄) leads to (5.4). The

same argument applies to the ion distribution function at the wall (5.10) and to the large
gyro-orbit model distribution functions (6.19) and (6.28).
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