A Method of Evaluating Certain Determinants

By J. L. Burchnall.

(Received 22nd January, 1952. Read 7th March, 1952.)

1. Let $\left[a_{s t}\right](s, t=0,1, \ldots, n)$ be a square matrix of order $n+1$ and determinant $\left|a_{s t}\right|$ and suppose that by repeated "isolation" of the variables the corresponding bilinear form has been expressed as

$$
\begin{equation*}
\sum_{s=0}^{n} \sum_{t=0}^{n} a_{s t} X_{s} Y_{t}=\sum_{r=0}^{n} c_{r}\left\{\sum_{s=r}^{n} p_{r s} X_{s}\right\}\left\{\sum_{t=r}^{n} q_{r t} Y_{t}\right\} \tag{1}
\end{equation*}
$$

where, for all r,

$$
\begin{equation*}
p_{r r}=q_{r r}=1 \tag{2}
\end{equation*}
$$

Then

$$
\begin{equation*}
\left|a_{s t}\right|=\prod_{r=0}^{n} c_{r} \tag{3}
\end{equation*}
$$

Now (1) implies, and is implied by, the identities

$$
\begin{equation*}
a_{s t}=\sum_{r=0}^{\min (s, t)} c_{r} p_{r s} q_{r t} \quad(s, t=0,1, \ldots, n) \tag{4}
\end{equation*}
$$

Thus, from any known identity of the form (4), subject to the condition (2), we may at once infer, using (3), the value of the corresponding determinant $\left|a_{r s}\right|$.

I have elsewhere ${ }^{1}$ applied this method, without explicit formulation, to evaluate the determinants in which
(i) $a_{s t}=F(a,-s-t ; c ; x)$,
(ii) $a_{s t}=\binom{s+t+2 \lambda-1}{s+t}^{-1} P_{s+t}^{\lambda}(x)$,
where F is the hypergeometric function and $P_{n}{ }^{\lambda}$ the ultra-spherical polynomial. I collect here some further instances, in part I believe new, in part furnishing alternative proofs of results given previously by myself and others ${ }^{2}$.

[^0]2. Let
$$
H_{n}(x)=\exp \left(\frac{1}{2} x^{2}\right)(-d / d x)^{n} \exp \left(-\frac{1}{2} x^{2}\right)
$$
be the Hermitian polynomial of degree n. Then ${ }^{1}$
$$
H_{s+t}(x)=\sum_{r=0}^{\min (s, t)}(-1)^{r} r!\binom{s}{r}\binom{t}{r} H_{s-r}(x) H_{i-r}(x)
$$
which we identity with (4) on letting
$$
c_{r}=(-1)^{r} r!, p_{r s}=\binom{s}{r} H_{s-r}(x), q_{r t}=\binom{t}{r} H_{t-r}(x) .
$$

Since (2) is clearly satisfied we have at once

$$
\begin{equation*}
\left|H_{s+l}(x)\right|=(-1)^{\ddagger n(n+1)} \prod_{r=1}^{n}(r!) . \tag{Б}
\end{equation*}
$$

3. Let $P_{n}(x)$ be Legendre's polynomial, let $2 u=x+1,2 v=x-1$ and $k_{n}{ }^{q}$ be the coefficient of $z^{2 p-q}$ in the expansion of

$$
\{(z+u)(z+v)\}^{p} .
$$

Evidently $k_{p}{ }^{0}=1$ for all p.
Now ${ }^{2}$

$$
P_{s+l}(x)=k_{s}^{s} k_{t}^{t}+2 \sum_{r=1}^{\min (s, t)}(u v)^{r} k_{s}^{s-r} k_{t}^{t-r}=\sum_{r=0}^{\min (s, t)} c_{r} p_{r s} q_{r t}
$$

with

$$
c_{0}=1, c_{r}=2(u v)^{r} \quad(r>1) .
$$

Hence

$$
\begin{equation*}
\left|P_{s+t}(x)\right|=2^{n}(u v)^{\frac{t n(n+1)}{}=2^{-n^{2}}\left(x^{2}-1\right)^{\frac{1}{n}(n+1)} . . . ~} \tag{6}
\end{equation*}
$$

4. Let
where

$$
\begin{aligned}
& F^{(1)}(s, t)=\sum_{m=0}^{s} \sum_{n \cdots 0}^{t} \frac{(a)_{m+n}(-s)_{m}(-t)_{n}}{m!n!(c)_{m+n}} x^{m} y^{n} \\
& F^{(2)}(s, t)=\sum_{m=0}^{s} \sum_{n=0}^{t} \frac{(a)_{m+n}(-s)_{m}(-t)_{n}}{m!n!(c)_{m}\left(c^{\prime}\right)_{n}} x^{m} y^{n} \\
& F^{(3)}(s, t)=\sum_{m=0}^{s} \sum_{n-0}^{t} \frac{(a)_{m}}{m!} \frac{\left(a^{\prime}\right)_{n}(-s)_{m}(-t)_{n}}{n!} x^{m} y^{n}
\end{aligned}
$$

$$
(k)_{r}=k(k+1) \ldots(k+r-1) .
$$

[^1]These are, of course, instances of Appell's hypergeometric functions of two variables in which a pair of numerator parameters have been replaced by negative integers and, in consequence, the functions reduce to polynomials in two variables of total degree $s+t$.

If now we adapt to these special parameters known expansions ${ }^{1}$ of Appell's functions we have

$$
\begin{align*}
& F^{(1)}(s, t)=\sum_{r=0}^{\min (s, t)} \frac{r!(a)_{r}(c-a)_{r}}{(c+r-1)_{r}(c)_{2 r}}(x y)^{r}\binom{s}{r}\binom{t}{r} F\left[\begin{array}{c}
a+r,-s+r, \\
c+2 r,
\end{array}\right] \\
& \times F\left[\begin{array}{c}
a+r,-t+r, \\
c+2 r,
\end{array}\right] \tag{6}\\
& F^{(2)}(s, t)=\sum_{r=0}^{\min (0, t)} \frac{r!(a)_{r}}{(c)_{r}\left(c^{\prime}\right)_{r}}(x y)^{r}\binom{s}{r}\binom{t}{r} F\left[\begin{array}{c}
a+r,-s+r, \\
c+r,
\end{array}\right] \\
& \times F\left[\begin{array}{c}
a+r,-t+r, \\
c^{\prime}+r,
\end{array}\right] \tag{7}
\end{align*}
$$

and

$$
\begin{align*}
F^{(3)}(s, t)=\sum_{r=0}^{\min (s, t)} \frac{(-1)^{r}(a)_{r}\left(a^{\prime}\right)_{r}}{(c+r-1)_{r}(c)_{2 r}}(x y)^{r}\binom{s}{r}\binom{t}{r} & F\left[\begin{array}{c}
a+r,-s+r, \\
c+2 r,
\end{array}\right] \\
& \times F\left[\begin{array}{cc}
a^{\prime}+r,-t+r, & y \\
c+2 r,
\end{array}\right] \tag{8}
\end{align*}
$$

where F is in every case the ordinary hypergeometric function.
Each of these formulae is of the form (4); the condition (2) is satisfied and we deduce

$$
\begin{align*}
& \left|F^{(\mathbf{1})}(s, t)\right|=(x y)^{\frac{1 n}{} n(n+1)} \prod_{r=1}^{n}\left[\frac{r!(a)_{r}(c-a)_{r}}{(c+r-1)_{r}(c)_{2 r}}\right] \tag{9}\\
& \left|F^{(2)}(s, t)\right|=(x y)^{ \pm n(n+1)} \prod_{r=1}^{n}\left[\frac{r!(a)_{r}}{(c)_{r}\left(c^{c}\right)_{r}}\right] \tag{10}
\end{align*}
$$

and

$$
\begin{equation*}
\left\lvert\, F^{(3)}(s, t)=(-x y)^{i n(n+1)} \prod_{r=1}^{n}\left[\frac{r!(a)_{r}\left(a^{\prime}\right)_{r}}{(c+r-1)_{r}(c)_{2 r}}\right] .\right. \tag{11}
\end{equation*}
$$

[^2]If we recall that, when $y=x, F^{(1)}$ reduces to an ordinary hypergeometric function ${ }^{1}$ we see that (9) includes as a special case

$$
\left|F\left[\begin{array}{ccc}
a, & -s-t, & x \tag{12}\\
c, & x
\end{array}\right]\right|=x^{n(n+1)} \prod_{r=1}^{n}\left[\frac{r!(a)_{r}(c-a)_{r}}{(c+r-1)_{r}(c)_{2 r}}\right],
$$

which I have given elsewhere ${ }^{2}$.
Formulae of more apparent complexity may be obtained by increasing the number of the non-integral parameters involved and employing for example the formulae (11)-(13) of (6). Alternatively we may consider degenerate hypergeometric functions and from ${ }^{3}$

$$
\begin{aligned}
& { }_{1} F_{1}[-s-t ; c ; x] \\
& =\sum_{r=0}^{\min (0, t)} \frac{(-1)^{r} r!}{(c+r-1)_{r}(c)_{2 r}}\binom{8}{r}\binom{t}{r}_{1} F_{1}[-s+r ; c+2 r ; x]_{1} F_{1}[-t+r ; c+2 r ; x]
\end{aligned}
$$

obtain the result

$$
\begin{equation*}
\left|{ }_{1} F_{1}[-s-t ; c ; x]\right|=\left(-x^{2}\right)^{t n(n+1)} \prod_{r=1}^{n}\left[\frac{r!}{(c+r-1)_{r}(c)_{2 r}}\right] . \tag{13}
\end{equation*}
$$

5. Inspection of the formulae (9)-(11) shows that the right-hand side of each arises from the terms of highest degree only in each element of the determinant on the left. If we take these terms only and recall that

$$
\left|(-1)^{s+t} a_{s t}\right|=\left|a_{s t}\right|
$$

we find that

$$
\begin{gather*}
\left|\frac{(a)_{s+t}}{(c)_{s+l}}\right|=\prod_{r=1}^{n}\left[\frac{r!(a)_{r}(c-a)_{r}}{(c+r-1)_{r}(c)_{2 r}}\right] \tag{14}\\
\left|\frac{(a)_{s+t}}{(c)_{s}\left(c^{\prime}\right)_{t}}\right|=\prod_{r=1}^{n}\left[\frac{r!(a)_{r}}{(c)_{r}\left(c^{\prime}\right)_{r}}\right] \tag{15}\\
\left|\frac{(a)_{s}\left(a^{\prime}\right)_{t}}{(c)_{s+t}}\right|=(-1)^{t n(n+1)} \prod_{r=1}^{n}\left[\frac{r!(a)_{r}\left(a^{\prime}\right)_{r}}{(c+r-1)_{r}(c)_{2 r}}\right] \tag{18}
\end{gather*}
$$

Of these I have given (14) elsewhere ${ }^{4}$: (15) and (16) are more simply written as

$$
\left|(a)_{r+d}\right|=\prod_{r=1}^{n}\left[r!(a)_{r}\right]
$$

${ }^{1}$ (7), 23 (25).
${ }^{2}(1)$ (9).
${ }^{3}$ (6), 185 (71).
${ }^{4}(1)$ (11).

J. L. Burchnall

which is elementary, and the more recondite

$$
\left|\frac{1}{(c)_{s+l}}\right|=(-1)^{\frac{1}{n} n(n+1)} \prod_{r \rightarrow 1}^{n}\left[\frac{r!}{(c+r-1)_{r}(c)_{2 r}}\right] .
$$

REFERENCES.

1. J. L. Burchnall, "Some determinants with hypergeometric elements", Quart. J. of Math. (Oxford) (2), 3(1952), 151-157.
2. __, "An algebraic property of the classical polynomials", Proc. London Math. Soc. (3), I (1951), 232-240.
3. J. Geronimus, "On some persymmetric determinants formed by the polynomials of M. Appell ", Journal London Math. Soc., 6 (1931), 55-59.
4. J. L. Burchnall, "A note on the polynomials of Hermite ", Quart. J. of Math. (Oxford), 12 (1941), 9-11.
5. J. L. Burchnall and T. W. Chaundy, "Expansions of Appell's double hypergeometric functions '", Quart. J. of Math. (Oxford), 11 (1940), 249-270.
6. -_, "Expansions of Appell's double hypergeometric functions, II ", Quart. J. of Math. (Oxford), 12 (1941), 112-128.
7. P. Appell and J. Kampé de Fériet, Fonctions hypergéometriques et hypersphériques (Paris, 1926).

The University, Durham.

[^0]: ${ }^{1}$ (1) §6.
 ${ }^{2}$ (2) and (3) for the formulae of $\S \S 2,3$,

[^1]: ${ }^{1}(4), 10(5)$, with a change of notation.
 ${ }^{2}$ (2), 230 (17).

[^2]: ${ }^{1}$ (5), pp. 253-4 (30), (26), (28).

